
Fixed-Point Designer™

User’s Guide

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Fixed-Point Designer™ User’s Guide

© COPYRIGHT 2013–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2013 Online only New for Version 4.0 (R2013a)
September 2013 Online only Revised for Version 4.1 (R2013b)
March 2014 Online only Revised for Version 4.2 (R2014a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Fixed-Point Designer™ for MATLAB®
Code

Fixed-Point Concepts

1
Fixed-Point Data Types . 1-2

Scaling . 1-4

Slope Bias Scaling . 1-6
What Is Slope Bias Scaling? . 1-6
How to Compute Slope and Bias . 1-6

Precision and Range . 1-9
Range . 1-9
Precision . 1-10

Arithmetic Operations . 1-14
Modulo Arithmetic . 1-14
Two’s Complement . 1-15
Addition and Subtraction . 1-16
Multiplication . 1-17
Casts . 1-23

fi Objects and C Integer Data Types 1-26
Integer Data Types . 1-26
Unary Conversions . 1-28
Binary Conversions . 1-29
Overflow Handling . 1-32

iii

Working with fi Objects

2
Ways to Construct fi Objects . 2-2
Types of fi Constructors . 2-2
Examples of Constructing fi Objects 2-3

Cast fi Objects . 2-13
Overwriting by Assignment . 2-13
Ways to Cast with MATLAB Software 2-13

fi Object Properties . 2-19
Data Properties . 2-19
fimath Properties . 2-19
numerictype Properties . 2-21
Setting fi Object Properties . 2-22

fi Object Functions . 2-26

Fixed-Point Topics

3
Set Up Fixed-Point Objects . 3-2
Create Fixed-Point Data . 3-2

View Fixed-Point Number Circles 3-18

Perform Binary-Point Scaling . 3-27

Develop Fixed-Point Algorithms . 3-33

Calculate Fixed-Point Sine and Cosine 3-40

Calculate Fixed-Point Arctangent 3-55

iv Contents

Compute Sine and Cosine Using CORDIC Rotation
Kernel . 3-77

Perform QR Factorization Using CORDIC 3-82

Compute Square Root Using CORDIC 3-120

Convert Cartesian to Polar Using CORDIC Vectoring
Kernel . 3-128

Set Data Types Using Min/Max Instrumentation 3-133

Convert Fast Fourier Transform (FFT) to Fixed
Point . 3-143

Detect Limit Cycles in Fixed-Point State-Space
Systems . 3-150

Compute Quantization Error . 3-159

Normalize Data for Lookup Tables 3-164

Implement Fixed-Point Log2 Using Lookup Table 3-170

Implement Fixed-Point Square Root Using Lookup
Table . 3-175

Set Fixed-Point Math Attributes . 3-180

Working with fimath Objects

4
fimath Object Construction . 4-2
fimath Object Syntaxes . 4-2
Building fimath Object Constructors in a GUI 4-4

v

fimath Object Properties . 4-6
Math, Rounding, and Overflow Properties 4-6
How Properties are Related . 4-11
Setting fimath Object Properties . 4-13

fimath Properties Usage for Fixed-Point Arithmetic . . 4-15
fimath Rules for Fixed-Point Arithmetic 4-15
Binary-Point Arithmetic . 4-17
[Slope Bias] Arithmetic . 4-20

fimath for Rounding and Overflow Modes 4-24

fimath for Sharing Arithmetic Rules 4-26
Default fimath Usage to Share Arithmetic Rules 4-26
Local fimath Usage to Share Arithmetic Rules 4-26

fimath ProductMode and SumMode 4-29
Example Setup . 4-29
FullPrecision . 4-30
KeepLSB . 4-31
KeepMSB . 4-32
SpecifyPrecision . 4-34

How Functions Use fimath . 4-36
Functions that use then discard attached fimath 4-36
Functions that ignore and discard attached fimath 4-36
Functions that do not perform math 4-37

Working with fipref Objects

5
fipref Object Construction . 5-2

fipref Object Properties . 5-3
Display, Data Type Override, and Logging Properties 5-3
fipref Object Properties Setting . 5-3

vi Contents

fi Object Display Preferences Using fipref 5-5

Underflow and Overflow Logging Using fipref 5-7
Logging Overflows and Underflows as Warnings 5-7
Accessing Logged Information with Functions 5-9

Data Type Override Preferences Using fipref 5-12
Overriding the Data Type of fi Objects 5-12
Data Type Override for Fixed-Point Scaling 5-13

Working with numerictype Objects

6
numerictype Object Construction 6-2
numerictype Object Syntaxes . 6-2
Example: Construct a numerictype Object with Property
Name and Property Value Pairs 6-3

Example: Copy a numerictype Object 6-4
Example: Build numerictype Object Constructors in a
GUI . 6-5

numerictype Object Properties . 6-7
Data Type and Scaling Properties . 6-7
How Properties are Related . 6-11
Set numerictype Object Properties 6-12

numerictype of Fixed-Point Objects 6-14
Valid Values for numerictype Object Properties 6-14
Properties That Affect the Slope . 6-16
Stored Integer Value and Real World Value 6-16

numerictype Objects Usage to Share Data Type and
Scaling Settings of fi objects . 6-17
Example 1 . 6-17
Example 2 . 6-18

vii

Working with quantizer Objects

7
Constructing quantizer Objects . 7-2

quantizer Object Properties . 7-3

Quantizing Data with quantizer Objects 7-4

Transformations for Quantized Data 7-6

Fixed-Point Conversion

8
Fixed-Point Conversion Workflows 8-2
Manual Workflow . 8-2
Automated Project Workflow . 8-2

Automated Fixed-Point Conversion 8-3
License Requirements . 8-3
Automated Fixed-Point Conversion Capabilities 8-3
Code Coverage . 8-6
Proposing Data Types . 8-9
Locking Proposed Data Types . 8-11
Viewing Functions . 8-12
Viewing Variables . 8-12
Histogram . 8-15
Function Replacements . 8-17
Validating Types . 8-17
Testing Numerics . 8-17
Detecting Overflows . 8-18

Specify Type Proposal Options . 8-20

Detect Overflows Using the Fixed-Point Conversion
Tool . 8-23

viii Contents

Detect Overflows at the Command Line 8-30

Implement FIR Filter Algorithm for Floating-Point and
Fixed-Point Types using cast and zeros 8-34

Propose Data Types Based on Simulation Ranges 8-54

Propose Data Types Based on Derived Ranges 8-72

Manual Fixed-Point Conversion Workflow 8-87

Manual Fixed-Point Conversion Best Practices 8-89
Create a Test File . 8-89
Prepare Your Algorithm for Code Acceleration or Code
Generation . 8-91

Check for Fixed-Point Support for Functions Used in Your
Algorithm . 8-92

Manage Data Types and Control Bit Growth 8-93
Separate Data Type Definitions from Algorithm 8-94
Convert to Fixed Point . 8-96
Optimize Data Types . 8-99
Optimize Your Algorithm . 8-103

Generated Fixed-Point Code . 8-106

Fixed-Point Code for MATLAB Classes 8-107
Automated Conversion Support for MATLAB Classes 8-107
Unsupported Constructs . 8-107
Coding Style Best Practices . 8-108

Automated Fixed-Point Conversion Best Practices . . . 8-110
Create a Test File . 8-110
Prepare Your Algorithm for Code Acceleration or Code
Generation . 8-112

Check for Fixed-Point Support for Functions Used in Your
Algorithm . 8-113

Manage Data Types and Control Bit Growth 8-113
Convert to Fixed Point . 8-113
Use the Histogram to Fine-Tune Data Type Settings 8-114
Optimize Your Algorithm . 8-116

ix

Avoid Explicit Double and Single Casts 8-119

Code Acceleration and Code Generation from
MATLAB for Fixed-Point Algorithms

9
Code Acceleration and Code Generation from
MATLAB . 9-3

Requirements for Generating Complied C Code
Files . 9-4

Functions Supported for Code Acceleration or C Code
Generation . 9-5

Workflow for Fixed-Point Code Acceleration and
Generation . 9-15

Set Up C Compiler . 9-16

Accelerate Code Using fiaccel . 9-17
Speeding Up Fixed-Point Execution with fiaccel 9-17
Running fiaccel . 9-17
Generated Files and Locations . 9-18
Data Type Override Using fiaccel . 9-21
Specifying Default fimath Values for MEX Functions 9-22

File Infrastructure and Paths Setup 9-24
Compile Path Search Order . 9-24
Naming Conventions . 9-24

Detect and Debug Code Generation Errors 9-27
Debugging Strategies . 9-27
Error Detection at Design Time . 9-28
Error Detection at Compile Time . 9-28

x Contents

Set Up C Code Compilation Options 9-30
C Code Compiler Configuration Object 9-30
Compilation Options Modification at the Command Line
Using Dot Notation . 9-30

How fiaccel Resolves Conflicting Options 9-31

MEX Configuration Dialog Box Options 9-32
See Also . 9-37

Best Practices for Accelerating Fixed-Point Code 9-38
Recommended Compilation Options for fiaccel 9-38
Build Scripts . 9-39
Check Code Interactively Using MATLAB Code
Analyzer . 9-40

Separating Your Test Bench from Your Function Code . . . 9-41
Preserving Your Code . 9-41
File Naming Conventions . 9-41

Use Fixed-Point Code Generation Reports 9-42
Code Generation Report Creation . 9-42
Code Generation Report Opening . 9-43
Viewing Your MATLAB Code . 9-43
Viewing Variables in the Variables Tab 9-46
See Also . 9-47

Generate C Code from Code Containing Global Data . . 9-48
Workflow Overview . 9-48
Declaring Global Variables . 9-48
Defining Global Data . 9-49
Synchronizing Global Data with MATLAB 9-50
Limitations of Using Global Data . 9-53

Define Input Properties Programmatically in MATLAB
File . 9-54
How to Use assert . 9-54
Rules for Using assert Function . 9-58
Specifying Properties of Primary Fixed-Point Inputs 9-59
Specifying Class and Size of Scalar Structure 9-60
Specifying Class and Size of Structure Array 9-60

Control Run-Time Checks . 9-62

xi

Types of Run-Time Checks . 9-62
When to Disable Run-Time Checks 9-63
How to Disable Run-Time Checks . 9-63

Fix Run-Time Stack Overflows . 9-65

Code Generation with MATLAB Coder 9-66

Code Generation with MATLAB Function Block 9-67
Composing a MATLAB Language Function in a Simulink
Model . 9-67

MATLAB Function Block with Data Type Override 9-67
Fixed-Point Data Types with MATLAB Function Block . . . 9-69

Generate Fixed-Point FIR Code Using MATLAB
Function Block . 9-76
Program the MATLAB Function Block 9-76
Prepare the Inputs . 9-77
Create the Model . 9-77
Define the fimath Object Using the Model Explorer 9-79
Run the Simulation . 9-80

Fixed-Point FIR Code Example Parameter Values 9-81

Accelerate Code for Variable-Size Data 9-84
Disable Support for Variable-Size Data 9-84
Control Dynamic Memory Allocation 9-85
Accelerate Code for MATLAB Functions with Variable-Size
Data . 9-86

Accelerate Code for a MATLAB Function That Expands a
Vector in a Loop . 9-88

Accelerate Fixed-Point Simulation 9-95

Propose Fixed-Point Data Types Using an Instrumented
Mex Function . 9-98

Apply Fixed-Point Data Types Using an Instrumented
Mex Function . 9-108

xii Contents

Code Generation Readiness Tool . 9-114
What Information Does the Code Generation Readiness
Tool Provide? . 9-114

Summary Tab . 9-115
Code Structure Tab . 9-117
See Also . 9-120

Check Code Using the Code Generation Readiness
Tool . 9-121
Run Code Generation Readiness Tool at the Command
Line . 9-121

Run the Code Generation Readiness Tool From the Current
Folder Browser . 9-121

See Also . 9-121

Check Code Using the MATLAB Code Analyzer 9-122

Fix Errors Detected at Code Generation Time 9-123
See Also . 9-123

Avoid Multiword Operations in Generated Code 9-124

Interoperability with Other Products

10
fi Objects with Simulink . 10-2
Reading Fixed-Point Data from the Workspace 10-2
Writing Fixed-Point Data to the Workspace 10-2
Setting the Value and Data Type of Block Parameters . . . 10-6
Logging Fixed-Point Signals . 10-6
Accessing Fixed-Point Block Data During Simulation 10-7

fi Objects with DSP System Toolbox 10-8
Reading Fixed-Point Signals from the Workspace 10-8
Writing Fixed-Point Signals to the Workspace 10-8
fi Objects with dfilt Objects . 10-12

Ways to Generate Code . 10-13

xiii

Calling Functions for Code Generation

11
Resolution of Function Calls for Code Generation 11-2
Key Points About Resolving Function Calls 11-4
Compile Path Search Order . 11-4
When to Use the Code Generation Path 11-5

Resolution of File Types on Code Generation Path . . . 11-6

Compilation Directive %#codegen 11-8

Call Local Functions . 11-9

Call Supported Toolbox Functions 11-10

Call MATLAB Functions . 11-11
Declaring MATLAB Functions as Extrinsic Functions . . . 11-12
Calling MATLAB Functions Using feval 11-16
How MATLAB Resolves Extrinsic Functions During
Simulation . 11-16

Working with mxArrays . 11-17
Restrictions on Extrinsic Functions for Code Generation . . 11-19
Limit on Function Arguments . 11-19

Code Generation for MATLAB Classes

12
MATLAB Classes Definition for Code Generation 12-2
Language Limitations . 12-2
Code Generation Features Not Compatible with Classes . . 12-3
Defining Class Properties for Code Generation 12-4
Calls to Base Class Constructor . 12-5
Inheritance from Built-In MATLAB Classes Not
Supported . 12-7

Classes That Support Code Generation 12-8

xiv Contents

Generate Code for MATLAB Value Classes 12-9

Generate Code for MATLAB Handle Classes and System
Objects . 12-15

MATLAB Classes in Code Generation Reports 12-18
What Reports Tell You About Classes 12-18
How Classes Appear in Code Generation Reports 12-18
How to Generate a Code Generation Report 12-20

Troubleshooting Issues with MATLAB Classes 12-21
Class class does not have a property with name name . . . 12-21

Defining Data for Code Generation

13
Data Definition for Code Generation 13-2

Code Generation for Complex Data 13-4
Restrictions When Defining Complex Variables 13-4
Expressions With Complex Operands Yield Complex
Results . 13-5

Code Generation for Characters . 13-7

Defining Functions for Code Generation

14
Specify Variable Numbers of Arguments 14-2

Supported Index Expressions . 14-3

xv

Apply Operations to a Variable Number of
Arguments . 14-4
When to Force Loop Unrolling . 14-4
Using Variable Numbers of Arguments in a for-Loop 14-5

Implement Wrapper Functions . 14-7
Passing Variable Numbers of Arguments from One
Function to Another . 14-7

Pass Property/Value Pairs . 14-8

Variable Length Argument Lists for Code
Generation . 14-10

Defining MATLAB Variables for C/C++ Code
Generation

15
Variables Definition for Code Generation 15-2

Best Practices for Defining Variables for C/C++ Code
Generation . 15-3
Define Variables By Assignment Before Using Them 15-3
Use Caution When Reassigning Variables 15-6
Use Type Cast Operators in Variable Definitions 15-6
Define Matrices Before Assigning Indexed Variables 15-6

Eliminate Redundant Copies of Variables in Generated
Code . 15-7
When Redundant Copies Occur . 15-7
How to Eliminate Redundant Copies by Defining
Uninitialized Variables . 15-7

Defining Uninitialized Variables . 15-8

Reassignment of Variable Properties 15-9

Define and Initialize Persistent Variables 15-10

xvi Contents

Reuse the Same Variable with Different Properties . . . 15-11
When You Can Reuse the Same Variable with Different
Properties . 15-11

When You Cannot Reuse Variables 15-12
Limitations of Variable Reuse . 15-14

Avoid Overflows in for-Loops . 15-16

Supported Variable Types . 15-18

Design Considerations for C/C++ Code
Generation

16
When to Generate Code from MATLAB Algorithms . . . 16-2
When Not to Generate Code from MATLAB Algorithms . . 16-2

Which Code Generation Feature to Use 16-4

Prerequisites for C/C++ Code Generation from
MATLAB . 16-6

MATLAB Code Design Considerations for Code
Generation . 16-7
See Also . 16-8

Differences in Behavior After Compiling MATLAB
Code . 16-9
Why Are There Differences? . 16-9
Character Size . 16-9
Order of Evaluation in Expressions 16-9
Termination Behavior . 16-10
Size of Variable-Size N-D Arrays . 16-10
Size of Empty Arrays . 16-11
Floating-Point Numerical Results . 16-11
NaN and Infinity Patterns . 16-12
Code Generation Target . 16-12
MATLAB Class Initial Values . 16-12

xvii

Variable-Size Support for Code Generation 16-12

MATLAB Language Features Supported for C/C++ Code
Generation . 16-13
MATLAB Language Features Not Supported for C/C++
Code Generation . 16-14

Code Generation for Enumerated Data

17
Enumerated Data Definition for Code Generation 17-2

Enumerated Types Supported for Code Generation . . . 17-3
Enumerated Type Based on int32 . 17-3

When to Use Enumerated Data for Code Generation . . 17-5

Generate Code for Enumerated Data from MATLAB
Algorithms . 17-6
How to Generate Code for Enumerated Data 17-6

Define Enumerated Data for Code Generation 17-8
Naming Enumerated Types for Code Generation 17-9

Instantiate Enumerated Types for Code Generation . . 17-10

Operations on Enumerated Data for Code
Generation . 17-11
Assignment Operator, = . 17-11
Relational Operators, < > <= >= == ~= 17-11
Cast Operation . 17-12
Indexing Operation . 17-12
Control Flow Statements: if, switch, while 17-13

Include Enumerated Data in Control Flow
Statements . 17-14
if Statement with Enumerated Data Types 17-14

xviii Contents

switch Statement with Enumerated Data Types 17-15
while Statement with Enumerated Data Types 17-18

Customize Enumerated Types Based on int32 17-20
About Customizing Enumerated Types 17-20
Specify a Default Enumerated Value 17-22
Specify a Header File . 17-23

Control Names of Enumerated Type Values in
Generated Code . 17-26

Change and Reload Enumerated Data Types 17-28

Restrictions on Use of Enumerated Data in
for-Loops . 17-29

Toolbox Functions That Support Enumerated Types for
Code Generation . 17-30

Code Generation for Function Handles

18
Function Handle Definition for Code Generation 18-2

Define and Pass Function Handles for Code
Acceleration . 18-3

Function Handle Limitations for Code Generation . . . 18-5

Generate Efficient and Reusable Code

19
Optimization Strategies . 19-3

xix

Modularize MATLAB Code . 19-6

Eliminate Redundant Copies of Function Inputs 19-7

Inline Code . 19-9
Prevent Function Inlining . 19-9
Use Inlining in Control Flow Statements 19-9

Control Inlining Using Configuration Object 19-11
Control Size of Functions Inlined . 19-11
Control Size of Functions After Inlining 19-12
Control Stack Size Limit on Inlined Functions 19-12

Fold Function Calls into Constants 19-14

Control Stack Space Usage . 19-16

Stack Allocation and Performance 19-17

Rewrite Logical Array Indexing as a Loop 19-18

Dynamic Memory Allocation and Performance 19-19
When Dynamic Memory Allocation Occurs 19-19

Minimize Dynamic Memory Allocation 19-21

Provide Maximum Size for Variable-Size Arrays 19-22

Disable Dynamic Memory Allocation During Code
Generation . 19-28

Set Dynamic Memory Allocation Threshold 19-29
Set Dynamic Memory Allocation Threshold Using Project
Interface . 19-29

Set Dynamic Memory Allocation Threshold from Command
Line . 19-31

Excluding Unused Paths from Generated Code 19-32

xx Contents

Prevent Code Generation for Unused Execution
Paths . 19-33
Prevent Code Generation When Local Variable Controls
Flow . 19-33

Prevent Code Generation When Input Variable Controls
Flow . 19-34

Generate Code with Parallel for-Loops (parfor) 19-36

Minimize Redundant Operations in Loops 19-38

Unroll for-Loops . 19-40
Limit Copying the for-loop Body in Generated Code 19-40

Support for Integer Overflow and Non-Finites 19-43
Disable Support for Integer Overflow 19-43
Disable Support for Non-Finites . 19-44

Integrate Custom Code . 19-45

MATLAB Coder Optimizations in Generated Code 19-51
Constant Folding . 19-51
Loop Fusion . 19-52
Successive Matrix Operations Combined 19-53
Unreachable Code Elimination . 19-53

Generate Reusable Code . 19-55

Code Generation for MATLAB Structures

20
Structure Definition for Code Generation 20-2

Structure Operations Allowed for Code Generation . . . 20-3

Define Scalar Structures for Code Generation 20-4

xxi

Restriction When Using struct . 20-4
Restrictions When Defining Scalar Structures by
Assignment . 20-4

Adding Fields in Consistent Order on Each Control Flow
Path . 20-4

Restriction on Adding New Fields After First Use 20-5

Define Arrays of Structures for Code Generation 20-7
Ensuring Consistency of Fields . 20-7
Using repmat to Define an Array of Structures with
Consistent Field Properties . 20-7

Defining an Array of Structures Using Concatenation 20-8

Make Structures Persistent . 20-9

Index Substructures and Fields . 20-10

Assign Values to Structures and Fields 20-12

Pass Large Structures as Input Parameters 20-14

Functions, Classes, and System Objects
Supported for Code Generation

21
Functions and Objects Supported for C and C++ Code
Generation — Alphabetical List 21-2

Functions and Objects Supported for C and C++ Code
Generation — Categorical List . 21-135
Aerospace Toolbox . 21-136
Arithmetic Operations in MATLAB 21-137
Bit-Wise Operations MATLAB . 21-138
Casting in MATLAB . 21-138
Communications System Toolbox . 21-139
Complex Numbers in MATLAB . 21-148
Computer Vision System Toolbox . 21-149

xxii Contents

Control Flow in MATLAB . 21-157
Data and File Management in MATLAB 21-158
Data Types in MATLAB . 21-161
Desktop Environment in MATLAB 21-162
Discrete Math in MATLAB . 21-162
DSP System Toolbox . 21-163
Error Handling in MATLAB . 21-171
Exponents in MATLAB . 21-171
Filtering and Convolution in MATLAB 21-172
Fixed-Point Designer . 21-173
Histograms in MATLAB . 21-183
Image Acquisition Toolbox . 21-183
Image Processing Toolbox . 21-183
Input and Output Arguments in MATLAB 21-189
Interpolation and Computational Geometry inMATLAB . . 21-189
Linear Algebra in MATLAB . 21-193
Logical and Bit-Wise Operations in MATLAB 21-193
MATLAB Compiler . 21-194
Matrices and Arrays in MATLAB . 21-194
Nonlinear Numerical Methods in MATLAB 21-202
Numerical Integration and Differentiation in MATLAB . . 21-202
Optimization Functions in MATLAB 21-203
Phased Array System Toolbox . 21-204
Polynomials in MATLAB . 21-212
Programming Utilities in MATLAB 21-212
Relational Operators in MATLAB . 21-213
Rounding and Remainder Functions in MATLAB 21-213
Set Operations in MATLAB . 21-214
Signal Processing in MATLAB . 21-218
Signal Processing Toolbox . 21-219
Special Values in MATLAB . 21-224
Specialized Math in MATLAB . 21-224
Statistics in MATLAB . 21-225
Statistics Toolbox . 21-226
String Functions in MATLAB . 21-235
Structures in MATLAB . 21-237
Trigonometry in MATLAB . 21-237

xxiii

Code Generation for Variable-Size Data

22
What Is Variable-Size Data? . 22-2

Variable-Size Data Definition for Code Generation . . . 22-3

Bounded Versus Unbounded Variable-Size Data 22-4

Control Memory Allocation of Variable-Size Data 22-5

Specify Variable-Size Data Without Dynamic Memory
Allocation . 22-6
Fixing Upper Bounds Errors . 22-6
Specifying Upper Bounds for Variable-Size Data 22-6

Variable-Size Data in Code Generation Reports 22-10
What Reports Tell You About Size . 22-10
How Size Appears in Code Generation Reports 22-11
How to Generate a Code Generation Report 22-11

Define Variable-Size Data for Code Generation 22-12
When to Define Variable-Size Data Explicitly 22-12
Using a Matrix Constructor with Nonconstant
Dimensions . 22-13

Inferring Variable Size from Multiple Assignments 22-13
Defining Variable-Size Data Explicitly Using
coder.varsize . 22-15

C Code Interface for Arrays . 22-19
C Code Interface for Statically Allocated Arrays 22-19
C Code Interface for Dynamically Allocated Arrays 22-20
Utility Functions for Creating emxArray Data
Structures . 22-21

Diagnose and Fix Variable-Size Data Errors 22-23
Diagnosing and Fixing Size Mismatch Errors 22-23
Diagnosing and Fixing Errors in Detecting Upper
Bounds . 22-25

xxiv Contents

Incompatibilities with MATLAB in Variable-Size
Support for Code Generation . 22-27
Incompatibility with MATLAB for Scalar Expansion 22-27
Incompatibility with MATLAB in Determining Size of
Variable-Size N-D Arrays . 22-29

Incompatibility with MATLAB in Determining Size of
Empty Arrays . 22-30

Incompatibility with MATLAB in Determining Class of
Empty Arrays . 22-31

Incompatibility with MATLAB in Vector-Vector
Indexing . 22-32

Incompatibility with MATLAB in Matrix Indexing
Operations for Code Generation 22-33

Incompatibility with MATLAB in Concatenating
Variable-Size Matrices . 22-34

Dynamic Memory Allocation Not Supported for MATLAB
Function Blocks . 22-35

Variable Sizing Restrictions for Code Generation of
Toolbox Functions . 22-36
Common Restrictions . 22-36
Toolbox Functions with Variable Sizing Restrictions 22-37

Primary Functions

23
Primary Function Input Specification 23-2
Why You Must Specify Input Properties 23-2
Properties to Specify . 23-2
Rules for Specifying Properties of Primary Inputs 23-4
Methods for Defining Properties of Primary Inputs 23-5
Define Input Properties by Example at the Command
Line . 23-5

Specify Constant Inputs at the Command Line 23-8
Specify Variable-Size Inputs at the Command Line 23-10

Define Input Properties Programmatically in the
MATLAB File . 23-12
How to Use assert with MATLAB Coder 23-12
Rules for Using assert Function . 23-19

xxv

Specifying General Properties of Primary Inputs 23-20
Specifying Properties of Primary Fixed-Point Inputs 23-20
Specifying Class and Size of Scalar Structure 23-21
Specifying Class and Size of Structure Array 23-22

System Objects Supported for Code Generation

24
Code Generation for System Objects 24-2

System Objects

25
Create System Objects . 25-2
Create a System object . 25-2
Change a System object Property . 25-3
Check if a System object Property Has Changed 25-3
Run a System object . 25-3
Display Available System Objects . 25-3

Set Up System Objects . 25-4
Create a New System object . 25-4
Retrieve System object Property Values 25-4
Set System object Property Values 25-4

Process Data Using System Objects 25-7
What are System object Methods? . 25-7
The Step Method . 25-7
Common Methods . 25-7
Advantages of Using Methods . 25-9

Tuning System object Properties in MATLAB 25-10
Understand System object Modes . 25-10
Change Properties While Running System Objects 25-11
Change System object Input Complexity or Dimensions . . 25-11

xxvi Contents

Find Help and Examples for System Objects 25-12

Use System Objects in MATLAB Code Generation 25-13
Considerations for Using System Objects in Generated
Code . 25-13

Use System Objects with codegen . 25-17
Use System Objects with the MATLAB Function Block . . . 25-17
Use System Objects with MATLAB Compiler 25-18

Fixed-Point Designer™ for Simulink®
Models

Getting Started

26
Product Description . 26-2
Key Features . 26-2

What You Need to Get Started . 26-3
Installation . 26-3
Sharing Fixed-Point Models . 26-3

Physical Quantities and Measurement Scales 26-5
Introduction . 26-5
Selecting a Measurement Scale . 26-6
Select a Measurement Scale for Temperature 26-8

Why Use Fixed-Point Hardware? . 26-14

Why Use the Fixed-Point Designer Software? 26-16

Developing and Testing Fixed-Point Systems 26-17

Supported Data Types . 26-20

Configure Blocks with Fixed-Point Output 26-21

xxvii

Specify the Output Data Type and Scaling 26-22
Specify Fixed-Point Data Types with the Data Type
Assistant . 26-24

Rounding . 26-27
Overflow Handling . 26-28
Lock the Output Data Type Setting 26-28
Real-World Values Versus Stored Integer Values 26-28

Configure Blocks with Fixed-Point Parameters 26-30
Specify Fixed-Point Values Directly 26-30
Specify Fixed-Point Values Via Parameter Objects 26-31

Pass Fixed-Point Data Between Simulink Models and
MATLAB . 26-34
Read Fixed-Point Data from the Workspace 26-34
Write Fixed-Point Data to the Workspace 26-34
Log Fixed-Point Signals . 26-37
Access Fixed-Point Block Data During Simulation 26-37

Cast from Doubles to Fixed Point 26-39
About This Example . 26-39
Block Descriptions . 26-40
Simulations . 26-41

Data Types and Scaling

27
Data Types and Scaling in Digital Hardware 27-2

Fixed-Point Numbers . 27-3
Fixed-Point Numbers . 27-3
Signed Fixed-Point Numbers . 27-4
Binary Point Interpretation . 27-4
Scaling . 27-6
Quantization . 27-8
Range and Precision . 27-10

Fixed-Point Numbers in Simulink 27-15

xxviii Contents

Constant Scaling for Best Precision 27-15
Fixed-Point Data Type and Scaling Notation 27-18
Scaled Doubles . 27-20
Use Scaled Doubles to Avoid Precision Loss 27-22
Display Port Data Types . 27-25

Floating-Point Numbers . 27-27
Floating-Point Numbers . 27-27
Scientific Notation . 27-28
The IEEE Format . 27-28
Range and Precision . 27-30
Exceptional Arithmetic . 27-33

Arithmetic Operations

28
Fixed-Point Arithmetic Operations 28-2

Precision . 28-3
Limitations on Precision . 28-3
Rounding . 28-4
Choose a Rounding Mode . 28-4
Rounding Modes for Fixed-Point Simulink Blocks 28-5
Rounding Mode: Ceiling . 28-7
Rounding Mode: Convergent . 28-8
Rounding Mode: Floor . 28-10
Rounding Mode: Nearest . 28-11
Rounding Mode: Round . 28-12
Rounding Mode: Simplest . 28-14
Rounding Mode: Zero . 28-17
Pad with Trailing Zeros . 28-19
Limitations on Precision and Errors 28-20
Maximize Precision . 28-21
Net Slope and Net Bias Precision . 28-21
Detect Net Slope and Bias Precision Issues 28-24
Detect Fixed-Point Constant Precision Loss 28-25

Range . 28-27
Limitations on Range . 28-27

xxix

What Are Saturation and Wrapping? 28-28
Saturation and Wrapping . 28-28
Guard Bits . 28-31
Determine the Range of Fixed-Point Numbers 28-31

Recommendations for Arithmetic and Scaling 28-33
Arithmetic Operations and Fixed-Point Scaling 28-33
Addition . 28-34
Accumulation . 28-37
Multiplication . 28-37
Gain . 28-39
Division . 28-41
Summary . 28-43

Parameter and Signal Conversions 28-44
Introduction . 28-44
Parameter Conversions . 28-45
Signal Conversions . 28-46

Rules for Arithmetic Operations . 28-49
Introduction . 28-49
Computational Units . 28-49
Addition and Subtraction . 28-50
The Summation Process . 28-52
Multiplication . 28-55
The Multiplication Process . 28-60
Division . 28-62
The Division Process . 28-63
Shifts . 28-64

Conversions and Arithmetic Operations 28-67

Realization Structures

29
Realizing Fixed-Point Digital Filters 29-2
Introduction . 29-2
Realizations and Data Types . 29-2

xxx Contents

Targeting an Embedded Processor 29-4
Introduction . 29-4
Size Assumptions . 29-4
Operation Assumptions . 29-4
Design Rules . 29-5

Canonical Forms . 29-7
Canonical Forms . 29-7
Direct Form II . 29-8
Series Cascade Form . 29-13
Parallel Form . 29-15

Fixed-Point Advisor

30
Preparation for Fixed-Point Conversion 30-2
Introduction . 30-2
Best Practices . 30-2
Run the Fixed-Point Advisor . 30-4
Fix a Task Failure . 30-5
Manually Fixing Failures . 30-6
Automatically Fixing Failures . 30-6
Batch Fixing Failures . 30-7
Restore Points . 30-7
Save a Restore Point . 30-8
Load a Restore Point . 30-9

Converting a Model from Floating- to Fixed-Point Using
Simulation Data . 30-11
About This Example . 30-11
Starting the Preparation . 30-11
Preparing Model for Conversion . 30-12
Prepare for Data Typing and Scaling 30-17
Propose Data Types Based on the Simulation Reference
Run . 30-20

Apply the New Fixed-Point Data Types 30-20
Simulate the Model Using New Fixed-Point Settings 30-21

xxxi

Fixed-Point Tool

31
Fixed-Point Tool . 31-2
Introduction to the Fixed-Point Tool 31-2
Using the Fixed-Point Tool . 31-2

Run Management . 31-5
Run Management . 31-5
Why Use Shortcuts to Manage Runs 31-7
When to Use Shortcuts to Manage Runs 31-7
Add Shortcuts . 31-8
Edit Shortcuts . 31-9
Delete Shortcuts . 31-10
Capture Model Settings Using the Shortcut Editor 31-10

Debug a Fixed-Point Model . 31-12
Simulating the Model to See the Initial Behavior 31-12
Debugging the Model . 31-14
Simulating the Model Using a Different Input Stimulus . . 31-16
Debugging the Model with the New Input 31-17
Proposing Fraction Lengths for Math2 Based on Simulation
Results . 31-18

Verifying the New Settings . 31-18

Logging Simulation Ranges for Referenced Models . . . 31-20
Viewing Simulation Ranges for Referenced Models 31-20
Fixed-Point Instrumentation and Data Type Override
Settings . 31-22

See Also . 31-23

Log Simulation Ranges for Referenced Models 31-24

Propose Data Types for a Referenced Model 31-30

Logging Simulation Ranges for MATLAB Function
Block . 31-34
See Also . 31-34

Log Simulation Ranges for MATLAB Function Block . . 31-35

xxxii Contents

View Signal Names in Fixed-Point Tool 31-39

Convert Floating-Point Model to Fixed Point

32
Learning Objectives . 32-2

Model Description . 32-4
Model Overview . 32-4
Model Set Up . 32-5

Before You Begin . 32-7

Convert Floating-Point Model to Fixed Point 32-9
Open the Model . 32-9
Prepare Floating-Point Model for Conversion to Fixed
Point . 32-9

Propose Data Types . 32-18
Apply Fixed-Point Data Types . 32-19
Verify Fixed-Point Settings . 32-19
Test Fixed-Point Settings With New Input Data 32-22
Gather a Floating-Point Benchmark 32-23
Propose Data Types for the New Input 32-24
Apply the New Fixed-Point Data Types 32-25
Verify New Fixed-Point Settings . 32-25
Prepare for Code Generation . 32-26

Key Points to Remember . 32-28

Where to Learn More . 32-29

xxxiii

Producing Lookup Table Data

33
Producing Lookup Table Data . 33-2

Worst-Case Error for a Lookup Table 33-3
What Is the Worst-Case Error? . 33-3
Approximate the Square Root Function 33-3

Create Lookup Tables for a Sine Function 33-6
Introduction . 33-6
Parameters for fixpt_look1_func_approx 33-6
Setting Function Parameters for the Lookup Table 33-8
Using errmax with Unrestricted Spacing 33-8
Using nptsmax with Unrestricted Spacing 33-11
Using errmax with Even Spacing . 33-14
Using nptsmax with Even Spacing 33-15
Using errmax with Power of Two Spacing 33-17
Using nptsmax with Power of Two Spacing 33-19
Specifying Both errmax and nptsmax 33-20
Comparison of Example Results . 33-21

Use Lookup Table Approximation Functions 33-23

Effects of Spacing on Speed, Error, and Memory
Usage . 33-24
Criteria for Comparing Types of Breakpoint Spacing 33-24
Model That Illustrates Effects of Breakpoint Spacing 33-24
Data ROM Required for Each Lookup Table 33-25
Determination of Out-of-Range Inputs 33-26
How the Lookup Tables Determine Input Location 33-26
Interpolation for Each Lookup Table 33-28
Summary of the Effects of Breakpoint Spacing 33-31

Automatic Data Typing

34
About Automatic Data Typing . 34-2

xxxiv Contents

Before Proposing Data Types for Your Model 34-3

Best Practices for Fixed-Point Workflow 34-5
Use a Known Working Simulink Model 34-5
Back Up Your Simulink Model . 34-5
Capture the Current Data Type Override Settings 34-5
Convert Individual Subsystems . 34-5
Isolate the System Under Conversion 34-5
Do Not Use “Save as” on Referenced Models 34-6
Use Lock Output Data Type Setting 34-6
Save Simulink Signal Objects . 34-6
Test Update Diagram Failure . 34-6

Models That Might Cause Data Type Propagation
Errors . 34-8

Automatic Data Typing Using Simulation Data 34-12
Workflow for Automatic Data Typing Using Simulation
Data . 34-13

Set Up the Model . 34-14
Prepare the Model for Fixed-Point Conversion 34-15
Gather a Floating-Point Benchmark 34-16
Proposing Data Types . 34-17
Propose Data Types . 34-19
Examine Results to Resolve Conflicts 34-20
Apply Proposed Data Types . 34-24
Verify New Settings . 34-25
Automatic Data Typing of Simulink Signal Objects 34-26

Automatic Data Typing Using Derived Ranges 34-27
Prerequisites for Autoscaling Using Derived Ranges 34-27
Workflow for Autoscaling Using Derived Data 34-27
Set Up the Model . 34-28
Prepare Model for Autoscaling Using Derived Data 34-29
Derive Minimum and Maximum Values 34-30
Resolve Range Analysis Issues . 34-32
Proposing Data Types . 34-32
Propose Data Types . 34-34
Examine Results to Resolve Conflicts 34-35
Apply Proposed Data Types . 34-41
Update Diagram . 34-42

xxxv

Propose Fraction Lengths . 34-43
Propose Fraction Lengths . 34-43
About the Feedback Controller Example Model 34-44
Propose Fraction Lengths Using Simulation Range
Data . 34-50

Propose Word Lengths . 34-61
How the Fixed-Point Tool Proposes Word Lengths 34-61
Propose Word Lengths . 34-63
Propose Word Lengths Based on Simulation Data 34-64

Propose Data Types Using Multiple Simulations 34-71
About This Example . 34-71
Running the Simulation . 34-74

View Simulation Results . 34-77
Compare Runs . 34-77
Compare Signals . 34-78
Inspect Signals . 34-80
Histogram Plot of Signal . 34-81
See Also . 34-82

Viewing Results With the Simulation Data Inspector . . 34-83
Why Use the Simulation Data Inspector 34-83
When to Use the Simulation Data Inspector 34-83
What You Can Inspect in the Simulation Data Inspector . . 34-83
See Also . 34-84

Range Analysis

35
How Range Analysis Works . 35-2
Analyzing a Model with Range Analysis 35-2
Automatic Stubbing . 35-5
Model Compatibility with Range Analysis 35-6

Derive Ranges . 35-7

xxxvi Contents

Derive Ranges at the Subsystem Level 35-10
Deriving Ranges at the Subsystem Level 35-10
Derive Ranges at the Subsystem Level 35-11

View Derived Ranges in the Fixed-Point Tool 35-12

Range Analysis Examples . 35-14
Derive Ranges Using Design Ranges 35-14
Derive Ranges Using Block Initial Conditions 35-16
Derive Ranges Using Design Ranges for
Simulink.Parameter Objects . 35-19

Insufficient Design Range Information 35-22
Providing More Design Range Information 35-25
Fixing Design Range Conflicts . 35-28

Derive Ranges for a Referenced Model 35-31

Propose Data Types for a Referenced Model 35-37

Deriving Ranges for a Referenced Model 35-39
Viewing Derived Minimum and Maximum Values for
Referenced Models . 35-39

Data Type Override Settings . 35-40
See Also . 35-40

Intermediate Range Results . 35-41

Unsupported Simulink Software Features 35-44

Supported and Unsupported Simulink Blocks 35-46
Overview of Simulink Block Support 35-46
Limitations of Support for Model Blocks 35-57

xxxvii

Working with Bus Objects in the Fixed-Point
Workflow

36
Refine Data Types of a Model with Buses Using
Simulation Data . 36-2
Open and Simulate the Model . 36-2
Use Data Type Override to Resolve Overflows 36-3
Propose New Fraction Lengths . 36-6
Examine and Apply Proposed Types 36-6
Verify New Fixed-Point Settings . 36-9
Save the Model and New Bus Data Types 36-12

Convert a Model with Buses to Fixed-Point Using
Range Analysis . 36-13
Open and Simulate the Model . 36-13
Set Design Minimums and Maximums 36-14
Open the Fixed-Point Tool and Run the Fixed-Point
Advisor . 36-16

Derive Minimum and Maximum Values 36-17
Propose Fraction Lengths . 36-17
Examine and Apply Proposed Types 36-17
Verify New Fixed-Point Types . 36-20
Save the Model and the New Bus Data Types 36-23

Bus Objects in the Fixed-Point Workflow 36-24
Bus Naming Conventions with Data Type Override 36-24
Data Type Override Limitations . 36-24
How Data Type Proposals Are Determined for Bus
Objects . 36-25

Code Generation

37
Generating and Deploying Production Code 37-2

Code Generation Support . 37-3
Introduction . 37-3

xxxviii Contents

Languages . 37-3
Data Types . 37-3
Rounding Modes . 37-3
Overflow Handling . 37-3
Blocks . 37-4
Scaling . 37-4

Accelerating Fixed-Point Models . 37-5

Using External Mode or Rapid Simulation Target 37-7
Introduction . 37-7
External Mode . 37-7
Rapid Simulation Target . 37-8

Optimize Your Generated Code . 37-9
Reducing ROM Consumption or Model Execution Time . . 37-9
Restrict Data Type Word Lengths . 37-10
Avoid Fixed-Point Scalings with Bias 37-11
Wrap and Round to Floor or Simplest 37-11
Limit the Use of Custom Storage Classes 37-13
Limit the Use of Unevenly Spaced Lookup Tables 37-13
Minimize the Variety of Similar Fixed-Point Utility
Functions . 37-13

Handle Net Slope Correction . 37-14
Use Integer Division to Handle Net Slope Correction 37-15
Improve Numerical Accuracy of Simulation Results with
Integer Division to Handle Net Slope 37-16

Improve Efficiency of Generated Code with Integer Division
to Handle Net Slope . 37-21

Optimize Generated Code Using Specified Minimum and
Maximum Values . 37-25

Eliminate Unnecessary Utility Functions Using Specified
Minimum and Maximum Values 37-28

Optimizing Your Generated Code with the Model
Advisor . 37-32
Optimize Generated Code with Model Advisor 37-32
Identify Blocks that Generate Expensive Fixed-Point and
Saturation Code . 37-33

Identify Questionable Fixed-Point Operations 37-36
Identify Blocks that Generate Expensive Rounding
Code . 37-39

xxxix

Use the Model Advisor to Optimize Fixed-Point
Operations in Generated Code . 37-41

Fixed-Point Advisor Reference

38
Fixed-Point Advisor . 38-2
Fixed-Point Advisor Overview . 38-3

Preparing Model for Conversion . 38-6
Prepare Model for Conversion Overview 38-7
Verify model simulation settings . 38-8
Verify update diagram status . 38-11
Address unsupported blocks . 38-12
Set up signal logging . 38-14
Create simulation reference data . 38-15
Verify Fixed-Point Conversion Guidelines Overview 38-17
Check model configuration data validity diagnostic
parameters settings . 38-18

Implement logic signals as Boolean data 38-19
Check bus usage . 38-20
Simulation range checking . 38-21
Check for implicit signal resolution 38-22

Preparing for Data Typing and Scaling 38-24
Prepare for Data Typing and Scaling Overview 38-25
Review locked data type settings . 38-26
Remove output data type inheritance 38-27
Relax input data type settings . 38-30
Verify Stateflow charts have strong data typing with
Simulink . 38-32

Remove redundant specification between signal objects and
blocks . 38-33

Verify hardware selection . 38-35
Specify block minimum and maximum values 38-37

Return to the Fixed-Point Tool to Perform Data Typing
and Scaling . 38-39
See Also . 38-39

xl Contents

Troubleshooting

39
Frequently Asked Questions About Fixed-Point
Numbers . 39-2
What Is the Difference Between Fixed-Point and Built-In
Integer Types? . 39-2

Negative Fraction Length . 39-2
Fraction Length Greater Than Word Length 39-4
fi Constructor Does Not Follow globalfimath Rules 39-5

Decide Which Workflow Is Right For Your
Application . 39-6

Tips for Making Generated Code More Efficient 39-8
fimath Settings for Efficient Code . 39-8
Replace Functions With More Efficient Fixed-Point
Implementations . 39-9

Know When a Function is Supported for
Instrumentation and Acceleration 39-10

What to Do If a Function Is Not Supported for
Fixed-Point Conversion . 39-11
Isolate the Unsupported Functions 39-11
Create a Replacement Function . 39-12

Common Errors and Warnings . 39-13
fi*non-fi Errors . 39-13
Data Type Mismatch Errors . 39-13
Mismatched fimath Errors . 39-14

Prevent The Fixed-Point Tool From Overriding Integer
Data Types . 39-16

Why Did The Fixed-Point Tool Not Propose Data
Types? . 39-17
Inherited Output Data Types . 39-17
Inadequate Range Information . 39-17

xli

What to Do When a Block Is Not Supported For
Fixed-Point Conversion . 39-18
Which Simulink Blocks Are Supported by the Fixed-Point
Tool . 39-18

What to Do When a Block Is Not Supported for Fixed-Point
Conversion . 39-18

Writing Fixed-Point S-Functions

A
Data Type Support . A-2
Supported Data Types . A-2
The Treatment of Integers . A-3
Data Type Override . A-3

Structure of the S-Function . A-5

Storage Containers . A-7
Introduction . A-7
Storage Containers in Simulation . A-7
Storage Containers in Code Generation A-10

Data Type IDs . A-13
The Assignment of Data Type IDs . A-13
Registering Data Types . A-14
Setting and Getting Data Types . A-16
Getting Information About Data Types A-17
Converting Data Types . A-19

Overflow Handling and Rounding Methods A-20
Tokens for Overflow Handling and Rounding Methods . . . A-20
Overflow Logging Structure . A-21

Create MEX-Files . A-23

Fixed-Point S-Function Examples A-24
List of Fixed-Point S-Function Examples A-24
Get the Input Port Data Type . A-25

xlii Contents

Set the Output Port Data Type . A-27
Interpret an Input Value . A-28
Write an Output Value . A-30
Determine Output Type Using the Input Type A-31

API Function Reference . A-33

xliii

xliv Contents

Fixed-Point Designer for
MATLAB Code

1

Fixed-Point Concepts

• “Fixed-Point Data Types” on page 1-2

• “Scaling” on page 1-4

• “Slope Bias Scaling” on page 1-6

• “Precision and Range” on page 1-9

• “Arithmetic Operations” on page 1-14

• “fi Objects and C Integer Data Types” on page 1-26

1 Fixed-Point Concepts

Fixed-Point Data Types
In digital hardware, numbers are stored in binary words. A binary word is
a fixed-length sequence of bits (1’s and 0’s). How hardware components or
software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are represented as either fixed-point or floating-point data
types. This chapter discusses many terms and concepts relating to fixed-point
numbers, data types, and mathematics.

A fixed-point data type is characterized by the word length in bits, the position
of the binary point, and whether it is signed or unsigned. The position of
the binary point is the means by which fixed-point values are scaled and
interpreted.

For example, a binary representation of a generalized fixed-point number
(either signed or unsigned) is shown below:

��� � ��� � �� ���� �� �� ��

where

• bi is the i
th binary digit.

• wl is the word length in bits.

• bwl-1 is the location of the most significant, or highest, bit (MSB).

• b0 is the location of the least significant, or lowest, bit (LSB).

• The binary point is shown four places to the left of the LSB. In this
example, therefore, the number is said to have four fractional bits, or a
fraction length of four.

Fixed-point data types can be either signed or unsigned. Signed binary
fixed-point numbers are typically represented in one of three ways:

1-2

Fixed-Point Data Types

• Sign/magnitude

• One’s complement

• Two’s complement

Two’s complement is the most common representation of signed fixed-point
numbers and is the only representation used by Fixed-Point Designer™
documentation.

1-3

1 Fixed-Point Concepts

Scaling
Fixed-point numbers can be encoded according to the scheme

real-world value slope integer bias

where the slope can be expressed as

slope slope adjustment factor 2fixed exponent

The integer is sometimes called the stored integer. This is the raw binary
number, in which the binary point assumed to be at the far right of the word.
In Fixed-Point Designer documentation, the negative of the fixed exponent is
often referred to as the fraction length.

The slope and bias together represent the scaling of the fixed-point number.
In a number with zero bias, only the slope affects the scaling. A fixed-point
number that is only scaled by binary point position is equivalent to a number
in [Slope Bias] representation that has a bias equal to zero and a slope
adjustment factor equal to one. This is referred to as binary point-only scaling
or power-of-two scaling:

real-world value integerfixed exponent 2

or

real-world value integer-fixed exponent 2

Fixed-Point Designer software supports both binary point-only scaling and
[Slope Bias] scaling.

1-4

Scaling

Note For examples of binary point-only scaling, see the Fixed-Point Designer
Binary-Point Scaling example.

For an example of how to compute slope and bias in MATLAB®, see “Slope
Bias Scaling” on page 1-6

1-5

1 Fixed-Point Concepts

Slope Bias Scaling

In this section...

“What Is Slope Bias Scaling?” on page 1-6

“How to Compute Slope and Bias” on page 1-6

What Is Slope Bias Scaling?
With slope bias scaling, you must specify the slope and bias of a number. The
real-world value of a slope bias scaled number can be represented by:

real world value slope integer bias- = × +()

slope slope adjustment factor fixed exponent= × 2

How to Compute Slope and Bias
Start with the endpoints that you want, signedness, and word length.

lower_bound = 999;
upper_bound = 1000;
is_signed = true;
word_length = 16;

To find the range of a fi object with a specified word length and signedness,
use the range function.

[Q_min, Q_max] = range(fi([], is_signed, word_length, 0));

To find the slope and bias, solve the system of equations:

lower_bound = slope * Q_min + bias

upper_bound = slope * Q_max + bias

Rewrite these equations in matrix form.

1-6

Slope Bias Scaling

lower_bound

upper_bound
=

Q_min 1

Q_max 1
�
slope

bias

Solve for the slope and bias.

A = double ([Q_min, 1; Q_max, 1]);
b = double ([lower_bound; upper_bound]);
x = A\b;
format long g

To find the slope, or precision, call the first element of the slope-bias vector, x.

slope = x(1)

slope =

1.52590218966964e-05

To find the bias, call the second element of vector x.

bias = x(2)

bias =

999.500007629511

Create a numerictype object with slope bias scaling.

T = numerictype(is_signed, word_length, slope, bias)

T =

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16

Slope: 1.5259021896696368e-5
Bias: 999.500007629511

Create a fi object with numerictype T.

1-7

1 Fixed-Point Concepts

a = fi(999.255, T)

a =

999.254993514916

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16

Slope: 1.5259021896696368e-5
Bias: 999.500007629511

Verify that the fi object that you created has the correct specifications by
finding the range of a.

range(a)

ans =

999 1000

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16

Slope: 1.5259021896696368e-5
Bias: 999.500007629511

1-8

Precision and Range

Precision and Range

In this section...

“Range” on page 1-9

“Precision” on page 1-10

Note You must pay attention to the precision and range of the fixed-point
data types and scalings you choose in order to know whether rounding
methods will be invoked or if overflows or underflows will occur.

Range
The range is the span of numbers that a fixed-point data type and scaling
can represent. The range of representable numbers for a two’s complement

fixed-point number of word length wl , scaling S and bias B is illustrated
below:

�
��

��������	�
���� ��������	�
����

� ���� � �� � � ���� � �� ��

For both signed and unsigned fixed-point numbers of any data type, the
number of different bit patterns is 2wl.

For example, in two’s complement, negative numbers must be represented
as well as zero, so the maximum value is 2wl -1 – 1. Because there is only one
representation for zero, there are an unequal number of positive and negative

numbers. This means there is a representation for − −2 1wl but not for 2 1wl− :

�

��������	�
���� ��������	�
����

��	�����	�	�	���	����	�	��

� ��� � ����

1-9

1 Fixed-Point Concepts

Overflow Handling
Because a fixed-point data type represents numbers within a finite range,
overflows and underflows can occur if the result of an operation is larger or
smaller than the numbers in that range.

Fixed-Point Designer software allows you to either saturate or wrap overflows.
Saturation represents positive overflows as the largest positive number in the
range being used, and negative overflows as the largest negative number in
the range being used. Wrapping uses modulo arithmetic to cast an overflow
back into the representable range of the data type.

When you create a fi object, any overflows are saturated. The OverflowMode
property of the default fimath is saturate. You can log overflows and
underflows by setting the LoggingMode property of the fipref object to on.
Refer to “LoggingMode” for more information.

Precision
The precision of a fixed-point number is the difference between successive
values representable by its data type and scaling, which is equal to the value
of its least significant bit. The value of the least significant bit, and therefore
the precision of the number, is determined by the number of fractional bits.
A fixed-point value can be represented to within half of the precision of its
data type and scaling.

For example, a fixed-point representation with four bits to the right of the
binary point has a precision of 2-4 or 0.0625, which is the value of its least
significant bit. Any number within the range of this data type and scaling can
be represented to within (2-4)/2 or 0.03125, which is half the precision. This is
an example of representing a number with finite precision.

Rounding Methods
When you represent numbers with finite precision, not every number in the
available range can be represented exactly. If a number cannot be represented
exactly by the specified data type and scaling, a rounding method is used to
cast the value to a representable number. Although precision is always lost
in the rounding operation, the cost of the operation and the amount of bias
that is introduced depends on the rounding method itself. To provide you with

1-10

Precision and Range

greater flexibility in the trade-off between cost and bias, Fixed-Point Designer
software currently supports the following rounding methods:

• Ceiling rounds to the closest representable number in the direction of
positive infinity.

• Convergent rounds to the closest representable number. In the case of
a tie, convergent rounds to the nearest even number. This is the least
biased rounding method provided by the toolbox.

• fix rounds to the closest representable number in the direction of zero.

• Floor, which is equivalent to two’s complement truncation, rounds to the
closest representable number in the direction of negative infinity.

• Nearest rounds to the closest representable number. In the case of a tie,
nearest rounds to the closest representable number in the direction of
positive infinity. This rounding method is the default for fi object creation
and fi arithmetic.

• Round rounds to the closest representable number. In the case of a tie,
the round method rounds:

- Positive numbers to the closest representable number in the direction
of positive infinity.

- Negative numbers to the closest representable number in the direction
of negative infinity.

Choosing a Rounding Method. Each rounding method has a set of
inherent properties. Depending on the requirements of your design, these
properties could make the rounding method more or less desirable to you. By
knowing the requirements of your design and understanding the properties of
each rounding method, you can determine which is the best fit for your needs.
The most important properties to consider are:

• Cost — Independent of the hardware being used, how much processing
expense does the rounding method require?

- Low — The method requires few processing cycles.

- Moderate — The method requires a moderate number of processing
cycles.

- High — The method requires more processing cycles.

1-11

1 Fixed-Point Concepts

Note The cost estimates provided here are hardware independent. Some
processors have rounding modes built-in, so consider carefully the hardware
you are using before calculating the true cost of each rounding mode.

• Bias — What is the expected value of the rounded values minus the original

values: Ε ̂ −() ?
- Ε ̂ −() < 0 — The rounding method introduces a negative bias.

- Ε ̂ −() = 0 — The rounding method is unbiased.

- Ε ̂ −() > 0 — The rounding method introduces a positive bias.

• Possibility of Overflow — Does the rounding method introduce the
possibility of overflow?

- Yes — The rounded values may exceed the minimum or maximum
representable value.

- No — The rounded values will never exceed the minimum or maximum
representable value.

1-12

Precision and Range

The following table shows a comparison of the different rounding methods
available in the Fixed-Point Designer product.

Fixed-Point Designer
Rounding Mode

Cost Bias Possibility of
Overflow

Ceiling Low Large positive Yes

Convergent High Unbiased Yes

Zero Low • Large positive for negative
samples

• Unbiased for samples with
evenly distributed positive
and negative values

• Large negative for positive
samples

No

Floor Low Large negative No

Nearest Moderate Small positive Yes

Round High • Small negative for negative
samples

• Unbiased for samples with
evenly distributed positive
and negative values

• Small positive for positive
samples

Yes

Simplest
(Simulink® only)

Low Depends on the operation No

1-13

1 Fixed-Point Concepts

Arithmetic Operations

In this section...

“Modulo Arithmetic” on page 1-14

“Two’s Complement” on page 1-15

“Addition and Subtraction” on page 1-16

“Multiplication” on page 1-17

“Casts” on page 1-23

Note These sections will help you understand what data type and scaling
choices result in overflows or a loss of precision.

Modulo Arithmetic
Binary math is based on modulo arithmetic. Modulo arithmetic uses only
a finite set of numbers, wrapping the results of any calculations that fall
outside the given set back into the set.

For example, the common everyday clock uses modulo 12 arithmetic. Numbers
in this system can only be 1 through 12. Therefore, in the “clock” system, 9
plus 9 equals 6. This can be more easily visualized as a number circle:

1-14

Arithmetic Operations

��
�

�

�

�

�
�

�

�

�

��

��
��

�

�

�

�

�
�

�

�

�

��

��

�	 	��
�	�	���	

 	�!
���	�

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic
results that fall outside this range are wrapped “around the circle” to either 0
or 1.

Two’s Complement
Two’s complement is a way to interpret a binary number. In two’s
complement, positive numbers always start with a 0 and negative numbers
always start with a 1. If the leading bit of a two’s complement number is 0,
the value is obtained by calculating the standard binary value of the number.
If the leading bit of a two’s complement number is 1, the value is obtained by
assuming that the leftmost bit is negative, and then calculating the binary
value of the number. For example,

01 0 2 1

11 2 2 2 1 1

0

1 0

= + =

= −() + ()() = − + = −

()

()

To compute the negative of a binary number using two’s complement,

1 Take the one’s complement, or “flip the bits.”

1-15

1 Fixed-Point Concepts

2 Add a 2^(-FL) using binary math, where FL is the fraction length.

3 Discard any bits carried beyond the original word length.

For example, consider taking the negative of 11010 (-6). First, take the one’s
complement of the number, or flip the bits:

11010 00101→

Next, add a 1, wrapping all numbers to 0 or 1:

00101
1

00110 6
+

()

Addition and Subtraction
The addition of fixed-point numbers requires that the binary points of the
addends be aligned. The addition is then performed using binary arithmetic
so that no number other than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

010010 1
0110 110

011001 010

18 5
6 75
25 25

.

.

.

(.)
(.)
(.)

+

Fixed-point subtraction is equivalent to adding while using the two’s
complement value for any negative values. In subtraction, the addends
must be sign-extended to match each other’s length. For example, consider
subtracting 0110.110 (6.75) from 010010.1 (18.5):

010010 100
0110 110

18 5
6 75

.

.
(.)
(.)−

010010 100
1001 010

1001011 110

18 5
6 75

11 75

.

.

.

(.)
(.)
(.)

+
/

−11

"�#	���
��	���$����

�%�&�	$���������
���	����	�'�������

1-16

Arithmetic Operations

The default fimath has a value of 1 (true) for the CastBeforeSum property.
This casts addends to the sum data type before addition. Therefore, no further
shifting is necessary during the addition to line up the binary points.

If CastBeforeSum has a value of 0 (false), the addends are added with full
precision maintained. After the addition the sum is then quantized.

Multiplication
The multiplication of two’s complement fixed-point numbers is directly
analogous to regular decimal multiplication, with the exception that the
intermediate results must be sign-extended so that their left sides align
before you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

Multiplication Data Types
The following diagrams show the data types used for fixed-point multiplication
using Fixed-Point Designer software. The diagrams illustrate the differences
between the data types used for real-real, complex-real, and complex-complex
multiplication.

1-17

1 Fixed-Point Concepts

Real-Real Multiplication. The following diagram shows the data types used
by the toolbox in the multiplication of two real numbers. The software returns
the output of this operation in the product data type, which is governed by the
fimath object ProductMode property.

Real-Complex Multiplication. The following diagram shows the data types
used by the toolbox in the multiplication of a real and a complex fixed-point
number. Real-complex and complex-real multiplication are equivalent. The
software returns the output of this operation in the product data type, which
is governed by the fimath object ProductMode property:

Complex-Complex Multiplication. The following diagram shows the
multiplication of two complex fixed-point numbers. The software returns the
output of this operation in the sum data type, which is governed by the fimath
object SumMode property. The intermediate product data type is determined
by the fimath object ProductMode property.

1-18

Arithmetic Operations

When the fimath object CastBeforeSum property is true, the casts to the
sum data type are present after the multipliers in the preceding diagram. In
C code, this is equivalent to

acc=ac;
acc-=bd;

for the subtractor, and

acc=ad;
acc+=bc;

for the adder, where acc is the accumulator. When the CastBeforeSum
property is false, the casts are not present, and the data remains in the
product data type before the subtraction and addition operations.

1-19

1 Fixed-Point Concepts

Multiplication with fimath
In the following examples, let

F = fimath('ProductMode','FullPrecision',...
'SumMode','FullPrecision')
T1 = numerictype('WordLength',24,'FractionLength',20)
T2 = numerictype('WordLength',16,'FractionLength',10)

Real*Real. Notice that the word length and fraction length of the result z
are equal to the sum of the word lengths and fraction lengths, respectively,
of the multiplicands. This is because the fimath SumMode and ProductMode
properties are set to FullPrecision:

P = fipref;
P.FimathDisplay = 'none';
x = fi(5, T1, F)

x =

5

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24

FractionLength: 20

y = fi(10, T2, F)

y =

10

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 10

z = x*y

1-20

Arithmetic Operations

z =

50

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 40

FractionLength: 30

Real*Complex. Notice that the word length and fraction length of the result
z are equal to the sum of the word lengths and fraction lengths, respectively,
of the multiplicands. This is because the fimath SumMode and ProductMode
properties are set to FullPrecision:

x = fi(5,T1,F)

x =

5

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24

FractionLength: 20

y = fi(10+2i,T2,F)

y =

10.0000 + 2.0000i

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 10

1-21

1 Fixed-Point Concepts

z = x*y

z =

50.0000 +10.0000i

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 40

FractionLength: 30

Complex*Complex. Complex-complex multiplication involves an addition
as well as multiplication. As a result, the word length of the full-precision
result has one more bit than the sum of the word lengths of the multiplicands:

x = fi(5+6i,T1,F)

x =

5.0000 + 6.0000i

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24

FractionLength: 20

y = fi(10+2i,T2,F)

y =

10.0000 + 2.0000i

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 10

1-22

Arithmetic Operations

z = x*y

z =

38.0000 +70.0000i

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 41

FractionLength: 30

Casts
The fimath object allows you to specify the data type and scaling of
intermediate sums and products with the SumMode and ProductMode
properties. It is important to keep in mind the ramifications of each cast
when you set the SumMode and ProductMode properties. Depending upon the
data types you select, overflow and/or rounding might occur. The following
two examples demonstrate cases where overflow and rounding can occur.

Note For more examples of casting, see “Cast fi Objects” on page 2-13.

Casting from a Shorter Data Type to a Longer Data Type
Consider the cast of a nonzero number, represented by a 4-bit data type with
two fractional bits, to an 8-bit data type with seven fractional bits:

1-23

1 Fixed-Point Concepts

()��	���	*��	�)�	��
$�	����
�#��	+*����	�**,	�)�)��)	���	%��)
�)�	�)�*�	
� 	-��*��%	���)�	�$$

()�	��
��	%���	���
���	�	%��

()���	����	�*	�)�	�����������
����	�#��	��	������	%��)
�&�	�	�&�

��
$�

�����������

()�	��
$�	����	�
��	��	�)�*���	
�	��	���$)	�)�
����#	�����	��������	�*	�)�	�����������	����	�#��

As the diagram shows, the source bits are shifted up so that the binary point
matches the destination binary point position. The highest source bit does
not fit, so overflow might occur and the result can saturate or wrap. The
empty bits at the low end of the destination data type are padded with either
0’s or 1’s:

• If overflow does not occur, the empty bits are padded with 0’s.

• If wrapping occurs, the empty bits are padded with 0’s.

• If saturation occurs,

- The empty bits of a positive number are padded with 1’s.

- The empty bits of a negative number are padded with 0’s.

You can see that even with a cast from a shorter data type to a longer data
type, overflow can still occur. This can happen when the integer length of
the source data type (in this case two) is longer than the integer length of
the destination data type (in this case one). Similarly, rounding might be
necessary even when casting from a shorter data type to a longer data type, if
the destination data type and scaling has fewer fractional bits than the source.

1-24

Arithmetic Operations

Casting from a Longer Data Type to a Shorter Data Type
Consider the cast of a nonzero number, represented by an 8-bit data type with
seven fractional bits, to a 4-bit data type with two fractional bits:

()��	��	��	���
�	*�	�)��	���
*��	�)�	��
$�.	��	�)�	��
��
�
��	��	����/�'������	��	*���
�)�	�����������	����	�#��

()���	����	*��	�)�	��
$�
��	���	*��	����	�)�	�����������
����	�#�� 	()�	��
��	��	�
����

��
$�

�����������

()�	��
$�	����	�
��	��	�)�*���	��%�	��	���$)	�)�
����#	�����	��������	�*	�)�	�����������	����	�#��

As the diagram shows, the source bits are shifted down so that the binary
point matches the destination binary point position. There is no value for
the highest bit from the source, so sign extension is used to fill the integer
portion of the destination data type. The bottom five bits of the source do not
fit into the fraction length of the destination. Therefore, precision can be
lost as the result is rounded.

In this case, even though the cast is from a longer data type to a shorter
data type, all the integer bits are maintained. Conversely, full precision can
be maintained even if you cast to a shorter data type, as long as the fraction
length of the destination data type is the same length or longer than the
fraction length of the source data type. In that case, however, bits are lost
from the high end of the result and overflow can occur.

The worst case occurs when both the integer length and the fraction length of
the destination data type are shorter than those of the source data type and
scaling. In that case, both overflow and a loss of precision can occur.

1-25

1 Fixed-Point Concepts

fi Objects and C Integer Data Types

In this section...

“Integer Data Types” on page 1-26

“Unary Conversions” on page 1-28

“Binary Conversions” on page 1-29

“Overflow Handling” on page 1-32

Note The sections in this topic compare the fi object with fixed-point data
types and operations in C. In these sections, the information on ANSI® C
is adapted from Samuel P. Harbison and Guy L. Steele Jr., C: A Reference
Manual, 3rd ed., Prentice Hall, 1991.

Integer Data Types
This section compares the numerical range of fi integer data types to the
minimum numerical range of C integer data types, assuming a “Two’s
Complement” on page 1-15 representation.

C Integer Data Types
Many C compilers support a two’s complement representation of signed
integer data types. The following table shows the minimum ranges of C
integer data types using a two’s complement representation. The integer
ranges can be larger than or equal to the ranges shown, but cannot be smaller.
The range of a longmust be larger than or equal to the range of an int, which
must be larger than or equal to the range of a short.

In the two’s complement representation, a signed integer with n bits has a

range from − −2 1n to 2 11n− − , inclusive. An unsigned integer with n bits has

a range from 0 to 2 1n − , inclusive. The negative side of the range has one
more value than the positive side, and zero is represented uniquely.

1-26

fi Objects and C Integer Data Types

Integer Type Minimum Maximum

signed char –128 127

unsigned char 0 255

short int –32,768 32,767

unsigned short 0 65,535

int –32,768 32,767

unsigned int 0 65,535

long int –2,147,483,648 2,147,483,647

unsigned long 0 4,294,967,295

fi Integer Data Types
The following table lists the numerical ranges of the integer data types
of the fi object, in particular those equivalent to the C integer data
types. The ranges are large enough to accommodate the two’s complement
representation, which is the only signed binary encoding technique supported
by Fixed-Point Designer software.

Constructor Signed Word
Length

Fraction
Length Minimum Maximum Closest ANSI

C Equivalent

fi(x,1,n,0) Yes
n
(2 to
65,535)

0 − −2 1n 2 11n− − Not applicable

fi(x,0,n,0) No
n
(2 to
65,535)

0 0 2 1n − Not applicable

fi(x,1,8,0) Yes 8 0 –128 127 signed char

fi(x,0,8,0) No 8 0 0 255 unsigned char

fi(x,1,16,0) Yes 16 0 –32,768 32,767 short int

fi(x,0,16,0) No 16 0 0 65,535
unsigned
short

1-27

1 Fixed-Point Concepts

Constructor Signed Word
Length

Fraction
Length Minimum Maximum Closest ANSI

C Equivalent

fi(x,1,32,0) Yes 32 0 –2,147,483,648 2,147,483,647 long int

fi(x,0,32,0) No 32 0 0 4,294,967,295 unsigned long

Unary Conversions
Unary conversions dictate whether and how a single operand is converted
before an operation is performed. This section discusses unary conversions
in ANSI C and of fi objects.

ANSI C Usual Unary Conversions
Unary conversions in ANSI C are automatically applied to the operands of
the unary !, –, ~, and * operators, and of the binary << and >> operators,
according to the following table:

Original Operand Type ANSI C Conversion

char or short int

unsigned char or unsigned short int or unsigned int1

float float

Array of T Pointer to T

Function returning T Pointer to function returning T

1If type int cannot represent all the values of the original data type without
overflow, the converted type is unsigned int.

1-28

fi Objects and C Integer Data Types

fi Usual Unary Conversions
The following table shows the fi unary conversions:

C Operator fi Equivalent fi Conversion

!x ~x = not(x) Result is logical.

~x bitcmp(x) Result is same numeric type as operand.

*x No equivalent Not applicable

x<<n bitshift(x,n)
positive n

Result is same numeric type as operand. Round mode
is always floor. Overflow mode is obeyed. 0-valued
bits are shifted in on the right.

x>>n bitshift(x,-n) Result is same numeric type as operand. Round mode
is always floor. Overflow mode is obeyed. 0-valued
bits are shifted in on the left if the operand is unsigned
or signed and positive. 1-valued bits are shifted in on
the left if the operand is signed and negative.

+x +x Result is same numeric type as operand.

-x -x Result is same numeric type as operand. Overflow
mode is obeyed. For example, overflow might occur
when you negate an unsigned fi or the most negative
value of a signed fi.

Binary Conversions
This section describes the conversions that occur when the operands of a
binary operator are different data types.

ANSI C Usual Binary Conversions
In ANSI C, operands of a binary operator must be of the same type. If they
are different, one is converted to the type of the other according to the first
applicable conversion in the following table:

1-29

1 Fixed-Point Concepts

Type of One Operand
Type of Other
Operand ANSI C Conversion

long double Any long double

double Any double

float Any float

unsigned long Any unsigned long

long unsigned long or unsigned
long1

long int long

unsigned int or unsigned unsigned

int int int

1Type long is only used if it can represent all values of type unsigned.

fi Usual Binary Conversions
When one of the operands of a binary operator (+, –, *, .*) is a fi object and
the other is a MATLAB built-in numeric type, then the non-fi operand is
converted to a fi object before the operation is performed, according to the
following table:

Type of One
Operand

Type of Other
Operand

Properties of Other Operand After Conversion to a fi
Object

fi double or
single • Signed = same as the original fi operand

• WordLength = same as the original fi operand

• FractionLength = set to best precision possible

fi int8
• Signed = 1

• WordLength = 8

• FractionLength = 0

1-30

fi Objects and C Integer Data Types

Type of One
Operand

Type of Other
Operand

Properties of Other Operand After Conversion to a fi
Object

fi uint8
• Signed = 0

• WordLength = 8

• FractionLength = 0

fi int16
• Signed = 1

• WordLength = 16

• FractionLength = 0

fi uint16
• Signed = 0

• WordLength = 16

• FractionLength = 0

fi int32
• Signed = 1

• WordLength = 32

• FractionLength = 0

fi uint32
• Signed = 0

• WordLength = 32

• FractionLength = 0

fi int64 • Signed = 1

• WordLength = 64

• FractionLength = 0

fi uint64 • Signed = 0

• WordLength = 64

• FractionLength = 0

1-31

1 Fixed-Point Concepts

Overflow Handling
The following sections compare how ANSI C and Fixed-Point Designer
software handle overflows.

ANSI C Overflow Handling
In ANSI C, the result of signed integer operations is whatever value is
produced by the machine instruction used to implement the operation.
Therefore, ANSI C has no rules for handling signed integer overflow.

The results of unsigned integer overflows wrap in ANSI C.

fi Overflow Handling
Addition and multiplication with fi objects yield results that can be exactly
represented by a fi object, up to word lengths of 65,535 bits or the available
memory on your machine. This is not true of division, however, because many
ratios result in infinite binary expressions. You can perform division with fi
objects using the divide function, which requires you to explicitly specify the
numeric type of the result.

The conditions under which a fi object overflows and the results then
produced are determined by the associated fimath object. You can specify
certain overflow characteristics separately for sums (including differences)
and products. Refer to the following table:

fimath Object Properties
Related to Overflow
Handling Property Value Description

'saturate' Overflows are saturated to the maximum
or minimum value in the range.

OverflowMode

'wrap' Overflows wrap using modulo arithmetic if
unsigned, two’s complement wrap if signed.

1-32

fi Objects and C Integer Data Types

fimath Object Properties
Related to Overflow
Handling Property Value Description

ProductMode 'FullPrecision' Full-precision results are kept. Overflow
does not occur. An error is thrown if the
resulting word length is greater than
MaxProductWordLength.

The rules for computing the resulting
product word and fraction lengths are
given in “fimath Object Properties” on page
4-6 in the Property Reference.

'KeepLSB' The least significant bits of the product are
kept. Full precision is kept, but overflow
is possible. This behavior models the C
language integer operations.

The ProductWordLength property
determines the resulting word length. If
ProductWordLength is greater than is
necessary for the full-precision product,
then the result is stored in the least
significant bits. If ProductWordLength is
less than is necessary for the full-precision
product, then overflow occurs.

The rule for computing the resulting
product fraction length is given in “fimath
Object Properties” on page 4-6 in the
Property Reference.

1-33

1 Fixed-Point Concepts

fimath Object Properties
Related to Overflow
Handling Property Value Description

'KeepMSB' The most significant bits of the product are
kept. Overflow is prevented, but precision
may be lost.

The ProductWordLength property
determines the resulting word length. If
ProductWordLength is greater than is
necessary for the full-precision product,
then the result is stored in the most
significant bits. If ProductWordLength is
less than is necessary for the full-precision
product, then rounding occurs.

The rule for computing the resulting
product fraction length is given in “fimath
Object Properties” on page 4-6 in the
Property Reference.

'SpecifyPrecision' You can specify both the word length and
the fraction length of the resulting product.

ProductWordLength Positive integer The word length of product results when
ProductMode is 'KeepLSB', 'KeepMSB', or
'SpecifyPrecision'.

MaxProductWordLength Positive integer The maximum product word length allowed
when ProductMode is 'FullPrecision'.
The default is 65,535 bits. This property
can help ensure that your simulation does
not exceed your hardware requirements.

ProductFractionLength Integer The fraction length of product results when
ProductMode is 'Specify Precision'.

1-34

fi Objects and C Integer Data Types

fimath Object Properties
Related to Overflow
Handling Property Value Description

SumMode 'FullPrecision' Full-precision results are kept. Overflow
does not occur. An error is thrown if the
resulting word length is greater than
MaxSumWordLength.

The rules for computing the resulting sum
word and fraction lengths are given in
“fimath Object Properties” on page 4-6 in
the Property Reference.

'KeepLSB' The least significant bits of the sum are
kept. Full precision is kept, but overflow
is possible. This behavior models the C
language integer operations.

The SumWordLength property determines
the resulting word length. If
SumWordLength is greater than is
necessary for the full-precision sum, then
the result is stored in the least significant
bits. If SumWordLength is less than is
necessary for the full-precision sum, then
overflow occurs.

The rule for computing the resulting sum
fraction length is given in “fimath Object
Properties” on page 4-6 in the Property
Reference.

1-35

1 Fixed-Point Concepts

fimath Object Properties
Related to Overflow
Handling Property Value Description

'KeepMSB' The most significant bits of the sum are
kept. Overflow is prevented, but precision
may be lost.

The SumWordLength property determines
the resulting word length. If
SumWordLength is greater than is
necessary for the full-precision sum, then
the result is stored in the most significant
bits. If SumWordLength is less than is
necessary for the full-precision sum, then
rounding occurs.

The rule for computing the resulting sum
fraction length is given in “fimath Object
Properties” on page 4-6 in the Property
Reference.

'SpecifyPrecision' You can specify both the word length and
the fraction length of the resulting sum.

SumWordLength Positive integer The word length of sum results when
SumMode is 'KeepLSB', 'KeepMSB', or
'SpecifyPrecision'.

MaxSumWordLength Positive integer The maximum sum word length allowed
when SumMode is 'FullPrecision'. The
default is 65,535 bits. This property can
help ensure that your simulation does not
exceed your hardware requirements.

SumFractionLength Integer The fraction length of sum results when
SumMode is 'SpecifyPrecision'.

1-36

2

Working with fi Objects

• “Ways to Construct fi Objects” on page 2-2

• “Cast fi Objects” on page 2-13

• “fi Object Properties” on page 2-19

• “fi Object Functions” on page 2-26

2 Working with fi Objects

Ways to Construct fi Objects

In this section...

“Types of fi Constructors” on page 2-2

“Examples of Constructing fi Objects” on page 2-3

Types of fi Constructors
You can create fi objects using Fixed-Point Designer software in any of the
following ways:

• You can use the fi constructor function to create a fi object.

• You can use the sfi constructor function to create a new signed fi object.

• You can use the ufi constructor function to create a new unsigned fi object.

• You can use any of the fi constructor functions to copy an existing fi object.

To get started, to create a fi object with the default data type and a value of 0:

a = fi(0)

a =

0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

This constructor syntax creates a signed fi object with a value of 0, word
length of 16 bits, and fraction length of 15 bits. Because you did not specify
any fimath object properties in the fi constructor, the resulting fi object a
has no local fimath.

To see all of the fi, sfi, and ufi constructor syntaxes, refer to the respective
reference pages.

2-2

Ways to Construct fi Objects

For information on the display format of fi objects, refer to “View Fixed-Point
Data”.

Examples of Constructing fi Objects
The following examples show you several different ways to construct fi
objects. For other, more basic examples of constructing fi objects, see the
Examples section of the following constructor function reference pages:

• fi

• sfi

• ufi

Note The fi constructor creates the fi object using a RoundingMethod of
Nearest and an OverflowAction of Saturate. If you construct a fi from
floating-point values, the default RoundingMethod and OverflowAction
property settings are not used.

Constructing a fi Object with Property Name/Property Value
Pairs
You can use property name/property value pairs to set fi and fimath object
properties when you create the fi object:

a = fi(pi, 'RoundingMethod','Floor', 'OverflowAction','Wrap')

a =

3.1415

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

RoundingMethod: Floor
OverflowAction: Wrap

2-3

2 Working with fi Objects

ProductMode: FullPrecision
SumMode: FullPrecision

You do not have to specify every fimath object property in the fi constructor.
The fi object uses default values for all unspecified fimath object properties.

• If you specify at least one fimath object property in the fi constructor, the
fi object has a local fimath object. The fi object uses default values for
the remaining unspecified fimath object properties.

• If you do not specify any fimath object properties in the fi object
constructor, the fi object uses default fimath values.

Constructing a fi Object Using a numerictype Object
You can use a numerictype object to define a fi object:

T = numerictype

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

a = fi(pi, T)

a =

1.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

You can also use a fimath object with a numerictype object to define a fi
object:

2-4

Ways to Construct fi Objects

F = fimath('RoundingMethod', 'Nearest',...
'OverflowAction', 'Saturate',...
'ProductMode','FullPrecision',...
'SumMode','FullPrecision')

F =

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: FullPrecision

a = fi(pi, T, F)

a =

1.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: FullPrecision

Note The syntax a = fi(pi,T,F) is equivalent to a = fi(pi,F,T). You
can use both statements to define a fi object using a fimath object and a
numerictype object.

Constructing a fi Object Using a fimath Object
You can create a fi object using a specific fimath object. When you do so, a
local fimath object is assigned to the fi object you create. If you do not specify

2-5

2 Working with fi Objects

any numerictype object properties, the word length of the fi object defaults
to 16 bits. The fraction length is determined by best precision scaling:

F = fimath('RoundingMethod', 'Nearest',...
'OverflowAction', 'Saturate',...
'ProductMode','FullPrecision',...
'SumMode','FullPrecision')

F =

RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: FullPrecision

SumMode: FullPrecision

F.OverflowAction = 'Wrap'

F =

RoundingMethod: Nearest
OverflowAction: Wrap
ProductMode: FullPrecision

SumMode: FullPrecision

a = fi(pi, F)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

2-6

Ways to Construct fi Objects

You can also create fi objects using a fimath object while specifying various
numerictype properties at creation time:

b = fi(pi, 0, F)

b =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16

FractionLength: 14

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

c = fi(pi, 0, 8, F)

c =

3.1406

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8

FractionLength: 6

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

d = fi(pi, 0, 8, 6, F)

d =

3.1406

2-7

2 Working with fi Objects

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8

FractionLength: 6

RoundingMethod: Nearest
OverflowAction: wrap

ProductMode: FullPrecision
SumMode: FullPrecision

Building fi Object Constructors in a GUI
When you are working with files in MATLAB, you can build your fi object
constructors using the Insert fi Constructor dialog box. After specifying
the value and properties of the fi object in the dialog box, you can insert the
prepopulated fi object constructor string at a specific location in your file.

For example, to create a signed fi object with a value of pi, a word length of
16 bits and a fraction length of 13 bits:

1 On the Home tab, in the File section, click New > Script to open the
MATLAB Editor.

2 On the Editor tab, in the Edit section, click in the Insert button
group. Click Insert fi... to open the Insert fi Constructor dialog box.

3 Use the edit boxes and drop-down menus to specify the following properties
of the fi object:

• Value = pi

• Data type mode = Fixed-point: binary point scaling

• Signedness = Signed

• Word length = 16

• Fraction length = 13

2-8

Ways to Construct fi Objects

4 To insert the fi object constructor string in your file, place your cursor at
the desired location in the file, and click OK on the Insert fi Constructor
dialog box. Clicking OK closes the Insert fi Constructor dialog box and
automatically populates the fi object constructor string in your file:

Determining Property Precedence
The value of a property is taken from the last time it is set. For example,
create a numerictype object with a value of true for the Signed property
and a fraction length of 14:

T = numerictype('Signed', true, 'FractionLength', 14)

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 14

2-9

2 Working with fi Objects

Now, create the following fi object in which you specify the numerictype
property after the Signed property, so that the resulting fi object is signed:

a = fi(pi,'Signed',false,'numerictype',T)

a =

1.9999

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 14

Contrast the fi object in this code sample with the fi object in the following
code sample. The numerictype property in the following code sample is
specified before the Signed property, so the resulting fi object is unsigned:

b = fi(pi,'numerictype',T,'Signed',false)

b =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16

FractionLength: 14

Copying a fi Object
To copy a fi object, simply use assignment:

a = fi(pi)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling

2-10

Ways to Construct fi Objects

Signedness: Signed
WordLength: 16

FractionLength: 13

b = a

b =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

Creating fi Objects For Use in a Types Table
You can write a reusable MATLAB algorithm by keeping the data types of the
algorithmic variables in a separate types table. For example,

function T = mytypes(dt)
switch dt

case 'double'
T.b = double([]);
T.x = double([]);
T.y = double([]);

case 'fixed16'
T.b = fi([],true,16,15);
T.x = fi([],true,16,15);
T.y = fi([],true,16,14);

end
end

Cast the variables in the algorithm to the data types in the types table as
described in “Manual Fixed-Point Conversion Best Practices” on page 8-89.

function [y,z]=myfilter(b,x,z,T)
y = zeros(size(x),'like',T.y);
for n=1:length(x)

z(:) = [x(n); z(1:end-1)];

2-11

2 Working with fi Objects

y(n) = b * z;
end

end

In a separate test file, set up input data to feed into your algorithm, and
specify the data types of the inputs.

% Test inputs
b = fir1(11,0.25);
t = linspace(0,10*pi,256)';
x = sin((pi/16)*t.^2);
% Linear chirp

% Cast inputs
T=mytypes('fixed16');
b=cast(b,'like',T.b);
x=cast(x,'like',T.x);
z=zeros(size(b'),'like',T.x);

% Run
[y,z] = myfilter(b,x,z,T);

2-12

Cast fi Objects

Cast fi Objects

In this section...

“Overwriting by Assignment” on page 2-13

“Ways to Cast with MATLAB Software” on page 2-13

Overwriting by Assignment
Because MATLAB software does not have type declarations, an assignment
like A = B replaces the type and content of A with the type and content of B. If
A does not exist at the time of the assignment, MATLAB creates the variable
A and assigns it the same type and value as B. Such assignment happens
with all types in MATLAB—objects and built-in types alike—including fi,
double, single, int8, uint8, int16, etc.

For example, the following code overwrites the value and int8 type of A with
the value and int16 type of B:

A = int8(0);
B = int16(32767);
A = B

A =

32767

class(A)

ans =

int16

Ways to Cast with MATLAB Software
You may find it useful to cast data into another type—for example, when you
are casting data from an accumulator to memory. There are several ways
to cast data in MATLAB. The following sections provide examples of three
different methods:

2-13

2 Working with fi Objects

• Casting by Subscripted Assignment

• Casting by Conversion Function

• Casting with the Fixed-Point Designer reinterpretcast Function

• Casting with the cast Function

Casting by Subscripted Assignment
The following subscripted assignment statement retains the type of A and
saturates the value of B to an int8:

A = int8(0);
B = int16(32767);
A(:) = B

A =

127

class(A)

ans =

int8

The same is true for fi objects:

fipref('NumericTypeDisplay', 'short');
A = fi(0, true, 8, 0);
B = fi(32767, true, 16, 0);
A(:) = B

A =

127
s8,0

2-14

Cast fi Objects

Note For more information on subscripted assignments, see the subsasgn
function.

Casting by Conversion Function
You can convert from one data type to another by using a conversion function.
In this example, A does not have to be predefined because it is overwritten.

B = int16(32767);
A = int8(B)

A =

127

class(A)

ans =

int8

The same is true for fi objects:

B = fi(32767, true, 16, 0)
A = fi(B, 1, 8, 0)

B =

32767
s16,0

A =

127
s8,0

2-15

2 Working with fi Objects

Using a numerictype Object in the fi Conversion Function. Often a
specific numerictype is used in many places, and it is convenient to predefine
numerictype objects for use in the conversion functions. Predefining these
objects is a good practice because it also puts the data type specification in
one place.

T8 = numerictype(1,8,0)

T8 =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8

FractionLength: 0

T16 = numerictype(1,16,0)

T16 =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 0

B = fi(32767,T16)

B =

32767
s16,0

A = fi(B, T8)

A =

127
s8,0

2-16

Cast fi Objects

Casting with the reinterpretcast Function
You can convert fixed-point and built-in data types without changing the
underlying data. The Fixed-Point Designer reinterpretcast function
performs this type of conversion.

In the following example, B is an unsigned fi object with a word length of 8
bits and a fraction length of 5 bits. The reinterpretcast function converts B
into a signed fi object A with a word length of 8 bits and a fraction length of 1
bit. The real-world values of A and B differ, but their binary representations
are the same.

B = fi([pi/4 1 pi/2 4], false, 8, 5)
T = numerictype(true, 8, 1);
A = reinterpretcast(B, T)

B =

0.7813 1.0000 1.5625 4.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8

FractionLength: 5

A =

12.5000 16.0000 25.0000 -64.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8

FractionLength: 1

To verify that the underlying data has not changed, compare the binary
representations of A and B:

binary_B = bin(B)
binary_A = bin(A)

binary_A =

2-17

2 Working with fi Objects

00011001 00100000 00110010 10000000

binary_B =

00011001 00100000 00110010 10000000

Casting with the cast Function
Using the cast function, you can convert the value of a variable to the same
numerictype, complexity, and fimath as another variable.

In the following example, a is cast to the data type of b. The output, c, has the
same numerictype and fimath properties as b, and the value of a.

a = pi;
b = fi([],1,16,13,'RoundingMethod',Floor);
c= cast(a,'like',b)

c =

3.1415

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

RoundingMethod: Floor
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: FullPrecision

Using this syntax allows you to specify data types separately from your
algorithmic code as described in “Manual Fixed-Point Conversion Best
Practices” on page 8-89.

2-18

fi Object Properties

fi Object Properties

In this section...

“Data Properties” on page 2-19

“fimath Properties” on page 2-19

“numerictype Properties” on page 2-21

“Setting fi Object Properties” on page 2-22

Data Properties
The data properties of a fi object are always writable.

• bin — Stored integer value of a fi object in binary

• data — Numerical real-world value of a fi object

• dec — Stored integer value of a fi object in decimal

• double — Real-world value of a fi object, stored as a MATLAB double
data type

• hex— Stored integer value of a fi object in hexadecimal

• int — Stored integer value of a fi object, stored in a built-in MATLAB
integer data type

• oct — Stored integer value of a fi object in octal

To learn more about these properties, see “fi Object Properties” in the
Fixed-Point Designer Reference.

fimath Properties
In general, the fimath properties associated with fi objects depend on how
you create the fi object:

• When you specify one or more fimath object properties in the fi
constructor, the resulting fi object has a local fimath object.

• When you do not specify any fimath object properties in the fi constructor,
the resulting fi object has no local fimath.

2-19

2 Working with fi Objects

To determine whether a fi object has a local fimath object, use the
isfimathlocal function.

The fimath properties associated with fi objects determine how fixed-point
arithmetic is performed. These fimath properties can come from a local
fimath object or from default fimath property values. To learn more about
fimath objects in fixed-point arithmetic, see “fimath Rules for Fixed-Point
Arithmetic” on page 4-15.

The following fimath properties are, by transitivity, also properties of the fi
object. You can set these properties for individual fi objects. The following
fimath properties are always writable.

• CastBeforeSum— Whether both operands are cast to the sum data type
before addition

Note This property is hidden when the SumMode is set to FullPrecision.

• MaxProductWordLength—Maximum allowable word length for the product
data type

• MaxSumWordLength — Maximum allowable word length for the sum data
type

• OverflowAction — Action to take on overflow

• ProductBias — Bias of the product data type

• ProductFixedExponent— Fixed exponent of the product data type

• ProductFractionLength — Fraction length, in bits, of the product data
type

• ProductMode— Defines how the product data type is determined

• ProductSlope — Slope of the product data type

• ProductSlopeAdjustmentFactor— Slope adjustment factor of the product
data type

• ProductWordLength—Word length, in bits, of the product data type

• RoundingMethod — Rounding method

2-20

fi Object Properties

• SumBias — Bias of the sum data type

• SumFixedExponent— Fixed exponent of the sum data type

• SumFractionLength— Fraction length, in bits, of the sum data type

• SumMode— Defines how the sum data type is determined

• SumSlope — Slope of the sum data type

• SumSlopeAdjustmentFactor — Slope adjustment factor of the sum data
type

• SumWordLength— The word length, in bits, of the sum data type

For more information, see “fimath Object Properties” on page 4-6.

numerictype Properties
When you create a fi object, a numerictype object is also automatically
created as a property of the fi object:

numerictype— Object containing all the data type information of a fi object,
Simulink signal, or model parameter

The following numerictype properties are, by transitivity, also properties of a
fi object. The following properties of the numerictype object become read
only after you create the fi object. However, you can create a copy of a fi
object with new values specified for the numerictype properties:

• Bias — Bias of a fi object

• DataType— Data type category associated with a fi object

• DataTypeMode— Data type and scaling mode of a fi object

• FixedExponent— Fixed-point exponent associated with a fi object

• FractionLength — Fraction length of the stored integer value of a fi
object in bits

• Scaling — Fixed-point scaling mode of a fi object

• Signed— Whether a fi object is signed or unsigned

• Signedness— Whether a fi object is signed or unsigned

2-21

2 Working with fi Objects

Note numerictype objects can have a Signedness of Auto, but all fi
objects must be Signed or Unsigned. If a numerictype object with Auto
Signedness is used to create a fi object, the Signedness property of the fi
object automatically defaults to Signed.

• Slope — Slope associated with a fi object

• SlopeAdjustmentFactor— Slope adjustment associated with a fi object

• WordLength—Word length of the stored integer value of a fi object in bits

For more information, see “numerictype Object Properties” on page 6-7.

There are two ways to specify properties for fi objects in Fixed-Point Designer
software. Refer to the following sections:

• “Setting Fixed-Point Properties at Object Creation” on page 2-22

• “Using Direct Property Referencing with fi” on page 2-23

Setting fi Object Properties
You can set fi object properties in two ways:

• Setting the properties when you create the object

• Using direct property referencing

Setting Fixed-Point Properties at Object Creation
You can set properties of fi objects at the time of object creation by including
properties after the arguments of the fi constructor function. For example, to
set the overflow action to Wrap and the rounding method to Convergent,

a = fi(pi, 'OverflowAction', 'Wrap',...
'RoundingMethod', 'Convergent')

a =

3.1416

2-22

fi Object Properties

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

RoundingMethod: Convergent
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

To set the stored integer value of a fi object, use the parameter/value pair
for the 'int' property when you create the object. For example, create a
signed fi object with a stored integer value of 4, 16-bit word length, and
15-bit fraction length.

x = fi(0,true,16,15,'int',4);

Verify that the fi object has the expected integer setting.

x.int

ans =

4

Using Direct Property Referencing with fi
You can reference directly into a property for setting or retrieving fi object
property values using MATLAB structure-like referencing. You do so by using
a period to index into a property by name.

For example, to get the WordLength of a,

a.WordLength

ans =

16

To set the OverflowMode of a,

2-23

2 Working with fi Objects

a.OverflowAction = 'Wrap'

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

RoundingMethod: Convergent
OverflowAction: wrap

ProductMode: FullPrecision
SumMode: FullPrecision

If you have a fi object b with a local fimath object, you can remove the local
fimath object and force b to use default fimath values:

b = fi(pi, 1, 'RoundingMethod', 'Floor')

b =
3.1415

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

RoundingMethod: Floor
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: FullPrecision

b.fimath = []

b =
3.1415

2-24

fi Object Properties

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

isfimathlocal(b)

ans =
0

2-25

2 Working with fi Objects

fi Object Functions
In addition to functions that operate on fi objects, you can use the following
functions to access data in a fi object using dot notation.

• bin

• data

• dec

• double

• hex

• storedInteger

• storedIntegerToDouble

• oct

For example,

a = fi(pi);
n = storedInteger(a)

n =

25736

h = hex(a)

h =

6488

a.hex

ans =

6488

2-26

3

Fixed-Point Topics

• “Set Up Fixed-Point Objects” on page 3-2

• “View Fixed-Point Number Circles” on page 3-18

• “Perform Binary-Point Scaling” on page 3-27

• “Develop Fixed-Point Algorithms” on page 3-33

• “Calculate Fixed-Point Sine and Cosine” on page 3-40

• “Calculate Fixed-Point Arctangent” on page 3-55

• “Compute Sine and Cosine Using CORDIC Rotation Kernel” on page 3-77

• “Perform QR Factorization Using CORDIC” on page 3-82

• “Compute Square Root Using CORDIC” on page 3-120

• “Convert Cartesian to Polar Using CORDIC Vectoring Kernel” on page
3-128

• “Set Data Types Using Min/Max Instrumentation” on page 3-133

• “Convert Fast Fourier Transform (FFT) to Fixed Point” on page 3-143

• “Detect Limit Cycles in Fixed-Point State-Space Systems” on page 3-150

• “Compute Quantization Error” on page 3-159

• “Normalize Data for Lookup Tables” on page 3-164

• “Implement Fixed-Point Log2 Using Lookup Table” on page 3-170

• “Implement Fixed-Point Square Root Using Lookup Table” on page 3-175

• “Set Fixed-Point Math Attributes” on page 3-180

3 Fixed-Point Topics

Set Up Fixed-Point Objects

Create Fixed-Point Data
This example shows the basics of how to use the fixed-point numeric object fi.

Notation

The fixed-point numeric object is called fi because J.H. Wilkinson used fi
to denote fixed-point computations in his classic texts Rounding Errors in
Algebraic Processes (1963), and The Algebraic Eigenvalue Problem (1965).

Setup

This example may use display settings or preferences that are different from
what you are currently using. To ensure that your current display settings
and preferences are not changed by running this example, the example
automatically saves and restores them. The following code captures the
current states for any display settings or properties that the example changes.

originalFormat = get(0, 'format');
format loose
format long g
% Capture the current state of and reset the fi display and logging
% preferences to the factory settings.
fiprefAtStartOfThisExample = get(fipref);
reset(fipref);

Default Fixed-Point Attributes

To assign a fixed-point data type to a number or variable with the default
fixed-point parameters, use the fi constructor. The resulting fixed-point
value is called a fi object.

For example, the following creates fi objects a and b with attributes shown in
the display, all of which we can specify when the variables are constructed.
Note that when the FractionLength property is not specified, it is set
automatically to "best precision" for the given word length, keeping the
most-significant bits of the value. When the WordLength property is not
specified it defaults to 16 bits.

3-2

Set Up Fixed-Point Objects

a = fi(pi)

a =

3.1416015625

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

b = fi(0.1)

b =

0.0999984741210938

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 18

Specifying Signed and WordLength Properties

The second and third numeric arguments specify Signed (true or 1 = signed,
false or 0 = unsigned), and WordLength in bits, respectively.

% Signed 8-bit
a = fi(pi, 1, 8)

a =

3.15625

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8

3-3

3 Fixed-Point Topics

FractionLength: 5

The sfi constructor may also be used to construct a signed fi object

a1 = sfi(pi,8)

a1 =

3.15625

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8

FractionLength: 5

% Unsigned 20-bit
b = fi(exp(1), 0, 20)

b =

2.71828079223633

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 20

FractionLength: 18

The ufi constructor may be used to construct an unsigned fi object

b1 = ufi(exp(1), 20)

b1 =

2.71828079223633

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned

3-4

Set Up Fixed-Point Objects

WordLength: 20
FractionLength: 18

Precision

The data is stored internally with as much precision as is specified. However,
it is important to be aware that initializing high precision fixed-point variables
with double-precision floating-point variables may not give you the resolution
that you might expect at first glance. For example, let’s initialize an unsigned
100-bit fixed-point variable with 0.1, and then examine its binary expansion:

a = ufi(0.1, 100);

bin(a)

ans =

110011001100110011001100110011001100110011001100110100000000000000000000000

Note that the infinite repeating binary expansion of 0.1 gets cut off
at the 52nd bit (in fact, the 53rd bit is significant and it is rounded
up into the 52nd bit). This is because double-precision floating-point
variables (the default MATLAB® data type), are stored in 64-bit
floating-point format, with 1 bit for the sign, 11 bits for the exponent,
and 52 bits for the mantissa plus one "hidden" bit for an effective 53
bits of precision. Even though double-precision floating-point has a very
large range, its precision is limited to 53 bits. For more information
on floating-point arithmetic, refer to Chapter 1 of Cleve Moler’s book,
Numerical Computing with MATLAB. The pdf version can be found here:
http://www.mathworks.com/company/aboutus/founders/clevemoler.html

So, why have more precision than floating-point? Because most fixed-point
processors have data stored in a smaller precision, and then compute with
larger precisions. For example, let’s initialize a 40-bit unsigned fi and
multiply using full-precision for products.

Note that the full-precision product of 40-bit operands is 80 bits, which is
greater precision than standard double-precision floating-point.

3-5

http://www.mathworks.com/company/aboutus/founders/clevemoler.html

3 Fixed-Point Topics

a = fi(0.1, 0, 40);
bin(a)

ans =

1100110011001100110011001100110011001101

b = a*a

b =

0.0100000000000045

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 80

FractionLength: 86

bin(b)

ans =

101000111101011100001010001111010111000011110101110000101000111101011100001

Access to Data

The data can be accessed in a number of ways which map to built-in data
types and binary strings. For example,

DOUBLE(A)

a = fi(pi);
double(a)

3-6

Set Up Fixed-Point Objects

ans =

3.1416015625

returns the double-precision floating-point "real-world" value of a, quantized
to the precision of a.

A.DOUBLE = ...

We can also set the real-world value in a double.

a.double = exp(1)

a =

2.71826171875

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

sets the real-world value of a to e, quantized to a’s numeric type.

STOREDINTEGER(A)

storedInteger(a)

ans =

22268

returns the "stored integer" in the smallest built-in integer type available,
up to 64 bits.

Relationship Between Stored Integer Value and Real-World Value

3-7

3 Fixed-Point Topics

In BinaryPoint scaling, the relationship between the stored integer value
and the real-world value is

There is also SlopeBias scaling, which has the relationship

where

and

The math operators of fi work with BinaryPoint scaling and real-valued
SlopeBias scaled fi objects.

BIN(A), OCT(A), DEC(A), HEX(A)

return the stored integer in binary, octal, unsigned decimal, and hexadecimal
strings, respectively.

bin(a)

ans =

0101011011111100

oct(a)

ans =

053374

3-8

Set Up Fixed-Point Objects

dec(a)

ans =

22268

hex(a)

ans =

56fc

A.BIN = ..., A.OCT = ..., A.DEC = ..., A.HEX = ...

set the stored integer from binary, octal, unsigned decimal, and hexadecimal
strings, respectively.

a.bin = '0110010010001000'

a =

3.1416015625

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

a.oct = '031707'

3-9

3 Fixed-Point Topics

a =

1.6180419921875

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

a.dec = '22268'

a =

2.71826171875

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

a.hex = '0333'

a =

0.0999755859375

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

Specifying FractionLength

3-10

Set Up Fixed-Point Objects

When the FractionLength property is not specified, it is computed to be the
best precision for the magnitude of the value and given word length. You may
also specify the fraction length directly as the fourth numeric argument in the
fi constructor or the third numeric argument in the sfi or ufi constructor.
In the following, compare the fraction length of a, which was explicitly set to
0, to the fraction length of b, which was set to best precision for the magnitude
of the value.

a = sfi(10,16,0)

a =

10

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 0

b = sfi(10,16)

b =

10

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 11

Note that the stored integer values of a and b are different, even though their
real-world values are the same. This is because the real-world value of a is
the stored integer scaled by 2^0 = 1, while the real-world value of b is the
stored integer scaled by 2^-11 = 0.00048828125.

storedInteger(a)

3-11

3 Fixed-Point Topics

ans =

10

storedInteger(b)

ans =

20480

Specifying Properties with Parameter/Value Pairs

Thus far, we have been specifying the numeric type properties by passing
numeric arguments to the fi constructor. We can also specify properties
by giving the name of the property as a string followed by the value of the
property:

a = fi(pi,'WordLength',20)

a =

3.14159393310547

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 20

FractionLength: 17

For more information on fi properties, type

help fi

or

doc fi

3-12

Set Up Fixed-Point Objects

at the MATLAB command line.

Numeric Type Properties

All of the numeric type properties of fi are encapsulated in an object named
numerictype:

T = numerictype

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

The numeric type properties can be modified either when the object is created
by passing in parameter/value arguments

T = numerictype('WordLength',40,'FractionLength',37)

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 40

FractionLength: 37

or they may be assigned by using the dot notation

T.Signed = false

T =

DataTypeMode: Fixed-point: binary point scaling

3-13

3 Fixed-Point Topics

Signedness: Unsigned
WordLength: 40

FractionLength: 37

All of the numeric type properties of a fi may be set at once by passing in
the numerictype object. This is handy, for example, when creating more than
one fi object that share the same numeric type.

a = fi(pi,'numerictype',T)

a =

3.14159265359194

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 40

FractionLength: 37

b = fi(exp(1),'numerictype',T)

b =

2.71828182845638

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 40

FractionLength: 37

The numerictype object may also be passed directly to the fi constructor

a1 = fi(pi,T)

a1 =

3.14159265359194

3-14

Set Up Fixed-Point Objects

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 40

FractionLength: 37

For more information on numerictype properties, type

help numerictype

or

doc numerictype

at the MATLAB command line.

Display Preferences

The display preferences for fi can be set with the fipref object. They can be
saved between MATLAB sessions with the savefipref command.

Display of Real-World Values

When displaying real-world values, the closest double-precision floating-point
value is displayed. As we have seen, double-precision floating-point may
not always be able to represent the exact value of high-precision fixed-point
number. For example, an 8-bit fractional number can be represented exactly
in doubles

a = sfi(1,8,7)

a =

0.9921875

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8

FractionLength: 7

3-15

3 Fixed-Point Topics

bin(a)

ans =

01111111

while a 100-bit fractional number cannot (1 is displayed, when the exact value
is 1 - 2^-99):

b = sfi(1,100,99)

b =

1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 100

FractionLength: 99

Note, however, that the full precision is preserved in the internal
representation of fi

bin(b)

ans =

011

The display of the fi object is also affected by MATLAB’s format command.
In particular, when displaying real-world values, it is handy to use

format long g

so that as much precision as is possible will be displayed.

3-16

Set Up Fixed-Point Objects

There are also other display options to make a more shorthand display of the
numeric type properties, and options to control the display of the value (as
real-world value, binary, octal, decimal integer, or hex).

For more information on display preferences, type

help fipref
help savefipref
help format

or

doc fipref
doc savefipref
doc format

at the MATLAB command line.

Cleanup

The following code sets any display settings or preferences that the example
changed back to their original states.

% Reset the fi display and logging preferences
fipref(fiprefAtStartOfThisExample);
set(0, 'format', originalFormat);

3-17

3 Fixed-Point Topics

View Fixed-Point Number Circles
This example shows how to define unsigned and signed two’s complement
integer and fixed-point numbers.

Fixed-Point Number Definitions

This example illustrates the definitions of unsigned and
signed-two’s-complement integer and fixed-point numbers.

Unsigned Integers.

Unsigned integers are represented in the binary number system in the
following way. Let

b = [b(n) b(n-1) ... b(2) b(1)]

be the binary digits of an n-bit unsigned integer, where each b(i) is either
one or zero. Then the value of b is

u = b(n)*2^(n-1) + b(n-1)*2^(n-2) + ... + b(2)*2^(1) + b(1)*2^(0)

For example, let’s define a 3-bit unsigned integer quantizer, and enumerate
its range.

originalFormat = get(0, 'format'); format

q = quantizer('ufixed',[3 0]);
[a,b] = range(q);
u = (a:eps(q):b)'

% Now, let's display those values in binary.
b = num2bin(q,u)

u =

0
1
2
3

3-18

View Fixed-Point Number Circles

4
5
6
7

b =

000
001
010
011
100
101
110
111

Unsigned Integer Number Circle.

Let’s array them around a clock face with their corresponding binary and
decimal values.

fidemo.numbercircle(q);

Unsigned Fixed-Point.

Unsigned fixed-point values are unsigned integers that are scaled by a power
of two. We call the negative exponent of the power of two the "fractionlength".

If the unsigned integer u is defined as before, and the fractionlength is f, then
the value of the unsigned fixed-point number is

uf = u*2^-f

For example, let’s define a 3-bit unsigned fixed-point quantizer with a
fractionlength of 1, and enumerate its range.

q = quantizer('ufixed',[3 1]);

3-19

3 Fixed-Point Topics

[a,b] = range(q);
uf = (a:eps(q):b)'

% Now, let's display those values in binary.
b = num2bin(q,uf)

uf =

0
0.5000
1.0000
1.5000
2.0000
2.5000
3.0000
3.5000

b =

000
001
010
011
100
101
110
111

Unsigned Fixed-Point Number Circle.

Let’s array them around a clock face with their corresponding binary and
decimal values.

fidemo.numbercircle(q);

3-20

View Fixed-Point Number Circles

Unsigned Fractional Fixed-Point.

Unsigned fractional fixed-point numbers are fixed-point numbers whos
fractionlength f is equal to the wordlength n, which produces a scaling such
that the range of numbers is between 0 and 1-2^-f, inclusive. This is the most
common form of fixed-point numbers because it has the nice property that all
of the numbers are less than one, and the product of two numbers less than
one is a number less than one, and so multiplication does not overflow.

Thus, the definition of unsigned fractional fixed-point is the same as unsigned
fixed-point, with the restriction that f=n, where n is the wordlength in bits.

uf = u*2^-f

For example, let’s define a 3-bit unsigned fractional fixed-point quantizer,
which implies a fractionlength of 3.

q = quantizer('ufixed',[3 3]);
[a,b] = range(q);
uf = (a:eps(q):b)'

% Now, let's display those values in binary.
b = num2bin(q,uf)

uf =

0
0.1250
0.2500
0.3750
0.5000
0.6250
0.7500
0.8750

b =

000

3-21

3 Fixed-Point Topics

001
010
011
100
101
110
111

Unsigned Fractional Fixed-Point Number Circle.

Let’s array them around a clock face with their corresponding binary and
decimal values.

fidemo.numbercircle(q);

Signed Two’s-Complement Integers.

Signed integers are represented in two’s-complement in the binary number
system in the following way. Let

b = [b(n) b(n-1) ... b(2) b(1)]

be the binary digits of an n-bit signed integer, where each b(i) is either one or
zero. Then the value of b is

s = -b(n)*2^(n-1) + b(n-1)*2^(n-2) + ... + b(2)*2^(1) + b(1)*2^(0)

Note that the difference between this and the unsigned number is the
negative weight on the most-significant-bit (MSB).

For example, let’s define a 3-bit signed integer quantizer, and enumerate
its range.

q = quantizer('fixed',[3 0]);
[a,b] = range(q);
s = (a:eps(q):b)'

% Now, let's display those values in binary.

3-22

View Fixed-Point Number Circles

b = num2bin(q,s)

% Note that the most-significant-bit of negative numbers is 1, and positive
% numbers is 0.

s =

-4
-3
-2
-1
0
1
2
3

b =

100
101
110
111
000
001
010
011

Signed Two’s-Complement Integer Number Circle.

Let’s array them around a clock face with their corresponding binary and
decimal values.

The reason for this ungainly looking definition of negative numbers is that
addition of all numbers, both positive and negative, is carried out as if they
were all positive, and then the n+1 carry bit is discarded. The result will be
correct if there is no overflow.

3-23

3 Fixed-Point Topics

fidemo.numbercircle(q);

Signed Fixed-Point.

Signed fixed-point values are signed integers that are scaled by a power of
two. We call the negative exponent of the power of two the "fractionlength".

If the signed integer s is defined as before, and the fractionlength is f, then
the value of the signed fixed-point number is

sf = s*2^-f

For example, let’s define a 3-bit signed fixed-point quantizer with a
fractionlength of 1, and enumerate its range.

q = quantizer('fixed',[3 1]);
[a,b] = range(q);
sf = (a:eps(q):b)'

% Now, let's display those values in binary.
b = num2bin(q,sf)

sf =

-2.0000
-1.5000
-1.0000
-0.5000

0
0.5000
1.0000
1.5000

b =

100
101

3-24

View Fixed-Point Number Circles

110
111
000
001
010
011

Signed Fixed-Point Number Circle.

Let’s array them around a clock face with their corresponding binary and
decimal values.

fidemo.numbercircle(q);

Signed Fractional Fixed-Point.

Signed fractional fixed-point numbers are fixed-point numbers whos
fractionlength f is one less than the wordlength n, which produces a scaling
such that the range of numbers is between -1 and 1-2^-f, inclusive. This is the
most common form of fixed-point numbers because it has the nice property
that the product of two numbers less than one is a number less than one, and
so multiplication does not overflow. The only exception is the case when we
are multiplying -1 by -1, because +1 is not an element of this number system.
Some processors have a special multiplication instruction for this situation,
and some add an extra bit in the product to guard against this overflow.

Thus, the definition of signed fractional fixed-point is the same as signed
fixed-point, with the restriction that f=n-1, where n is the wordlength in bits.

sf = s*2^-f

For example, let’s define a 3-bit signed fractional fixed-point quantizer, which
implies a fractionlength of 2.

q = quantizer('fixed',[3 2]);
[a,b] = range(q);
sf = (a:eps(q):b)'

3-25

3 Fixed-Point Topics

% Now, let's display those values in binary.
b = num2bin(q,sf)

sf =

-1.0000
-0.7500
-0.5000
-0.2500

0
0.2500
0.5000
0.7500

b =

100
101
110
111
000
001
010
011

Signed Fractional Fixed-Point Number Circle.

Let’s array them around a clock face with their corresponding binary and
decimal values.

fidemo.numbercircle(q);

set(0, 'format', originalFormat);

3-26

Perform Binary-Point Scaling

Perform Binary-Point Scaling
This example shows how to perform binary point scaling in FI.

FI Construction

a = fi(v,s,w,f) returns a fi with value v, signedness s, word length w,
and fraction length f.

If s is true (signed) the leading or most significant bit (MSB) in the resulting
fi is always the sign bit.

Fraction length f is the scaling 2^(-f).

For example, create a signed 8-bit long fi with a value of 0.5 and a scaling
of 2^(-7):

a = fi(0.5,true,8,7)

a =

0.5000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8

FractionLength: 7

Fraction Length and the Position of the Binary Point

The fraction length or the scaling determines the position of the binary point
in the fi object.

The Fraction Length is Positive and Less than the Word Length

When the fraction length f is positive and less than the word length, the
binary point lies f places to the left of the least significant bit (LSB) and
within the word.

3-27

3 Fixed-Point Topics

For example, in a signed 3-bit fi with fraction length of 1 and value -0.5, the
binary point lies 1 place to the left of the LSB. In this case each bit is set to 1
and the binary equivalent of the fi with its binary point is 11.1 .

The real world value of -0.5 is obtained by multiplying each bit by its scaling
factor, starting with the LSB and working up to the signed MSB.

(1*2^-1) + (1*2^0) +(-1*2^1) = -0.5

storedInteger(a) returns the stored signed, unscaled integer value -1.

(1*2^0) + (1*2^1) +(-1*2^2) = -1

a = fi(-0.5,true,3,1)
bin(a)
storedInteger(a)

a =

-0.5000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 3

FractionLength: 1

ans =

111

ans =

-1

The Fraction Length is Positive and Greater than the Word Length

3-28

Perform Binary-Point Scaling

When the fraction length f is positive and greater than the word length, the
binary point lies f places to the left of the LSB and outside the word.

For example the binary equivalent of a signed 3-bit word with fraction length
of 4 and value of -0.0625 is ._111 Here _ in the ._111 denotes an unused
bit that is not a part of the 3-bit word. The first 1 after the _ is the MSB or
the sign bit.

The real world value of -0.0625 is computed as follows (LSB to MSB).

(1*2^-4) + (1*2^-3) + (-1*2^-2) = -0.0625

bin(b) will return 111 at the MATLAB® prompt and storedInteger(b) = -1

b = fi(-0.0625,true,3,4)
bin(b)
storedInteger(b)

b =

-0.0625

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 3

FractionLength: 4

ans =

111

ans =

-1

The Fraction Length is a Negative Integer and Less than the Word Length

3-29

3 Fixed-Point Topics

When the fraction length f is negative the binary point lies f places to the
right of LSB and is outside the physical word.

For instance in c = fi(-4,true,3,-2) the binary point lies 2 places to the
right of the LSB 111__.. Here the two right most spaces are unused bits that
are not part of the 3-bit word. The right most 1 is the LSB and the leading
1 is the sign bit.

The real world value of -4 is obtained by multiplying each bit by its scaling
factor 2^(-f), i.e. 2(-(-2)) = 2^(2) for the LSB, and then adding the
products together.

(1*2^2) + (1*2^3) +(-1*2^4) = -4

bin(c) and storedInteger(c) will still give 111 and -1 as in the previous
two examples.

c = fi(-4,true,3,-2)
bin(c)
storedInteger(c)

c =

-4

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 3

FractionLength: -2

ans =

111

ans =

-1

3-30

Perform Binary-Point Scaling

The Fraction Length is Set Automatically to the Best Precision Possible and is
Negative

In this example we create a signed 3-bit fi where the fraction length is set
automatically depending on the value that the fi is supposed to contain.
The resulting fi has a value of 6, with a wordlength of 3 bits and a fraction
length of -1. Here the binary point is 1 place to the right of the LSB: 011_..
The _ is again an unused bit and the first 1 before the _ is the LSB. The
leading 1 is the sign bit.

The real world value (6) is obtained as follows:

(1*2^1) + (1*2^2) + (-0*2^3) = 6

bin(d) and storedInteger(d) will give 011 and 3 respectively.

d = fi(5,true,3)
bin(d)
storedInteger(d)

d =

6

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 3

FractionLength: -1

ans =

011

ans =

3

3-31

3 Fixed-Point Topics

Interactive FI Binary Point Scaling Example

This is an interactive example that allows the user to change the fraction
length of a 3-bit fixed-point number by moving the binary point using a slider.
The fraction length can be varied from -3 to 5 and the user can change the
value of the 3 bits to ’0’ or ’1’ for either signed or unsigned numbers.

The "Scaling factors" above the 3 bits display the scaling or weight that each
bit is given for the specified signedness and fraction length. The fi code,
the double precision real-world value and the fixed-point attributes are also
displayed.

Type fibinscaling at the MATLAB prompt to run this example.

3-32

Develop Fixed-Point Algorithms

Develop Fixed-Point Algorithms
This example shows how to develop and verify a simple fixed-point algorithm.

Simple Example of Algorithm Development

This example shows the development and verification of a simple fixed-point
filter algorithm. We will follow the following steps:

1) Implement a second order filter algorithm and simulate in double-precision
floating-point.

2) Instrument the code to visualize the dynamic range of the output and state.

3) Convert the algorithm to fixed-point by changing the data type of the
variables - the algorithm itself does not change.

4) Compare and plot the fixed-point and floating-point results.

Floating-Point Variable Definitions

We develop our algorithm in double-precision floating-point. We will use a
second-order lowpass filter to remove the high frequencies in the input signal.

b = [0.25 0.5 0.25]; % Numerator coefficients
a = [1 0.09375 0.28125]; % Denominator coefficients
% Random input that has both high and low frequencies.
s = rng; rng(0,'v5uniform');
x = randn(1000,1);
rng(s); % restore RNG state
% Pre-allocate the output and state for speed.
y = zeros(size(x));
z = [0;0];

Data-Type-Independent Algorithm

This is a second-order filter that implements the standard difference equation:

y(n) = b(1)*x(n) + b(2)*x(n-1) + b(3)*x(n-2) - a(2)*y(n-1) - a(3)*y(n-2)

for k=1:length(x)

3-33

3 Fixed-Point Topics

y(k) = b(1)*x(k) + z(1);
z(1) = (b(2)*x(k) + z(2)) - a(2)*y(k);
z(2) = b(3)*x(k) - a(3)*y(k);

end

% Save the Floating-Point Result
ydouble = y;

Visualize Dynamic Range

In order to convert to fixed-point, we need to know the range of the variables.
Depending on the complexity of an algorithm, this task can be simple or
quite challenging. In this example, the range of the input value is known, so
selecting an appropriate fixed-point data type is simple. We will concentrate
on the output (y) and states (z) since their range is unknown. To view the
dynamic range of the output and states, we will modify the code slightly to
instrument it. We will create two NumericTypeScope objects and view the
dynamic range of the output (y) and states (z) simultaneously.

Instrument Floating-Point Code

% Reset states
z = [0;0];

hscope1 = NumericTypeScope;
hscope2 = NumericTypeScope;
for k=1:length(x)

y(k) = b(1)*x(k) + z(1);
z(1) = (b(2)*x(k) + z(2)) - a(2)*y(k);
z(2) = b(3)*x(k) - a(3)*y(k);
% process the data and update the visual.
step(hscope1,z);

end
step(hscope2,y);

Analyze Information in the Scope

3-34

Develop Fixed-Point Algorithms

Let us first analyze the information displayed for variable z (state). From the
histogram we can see that the dynamic range lies between (].

By default, the scope uses a word length of 16 bits with zero tolerable
overflows. This results in a data type of numerictype(true,16, 14) since we
need at least 2 integer bit to avoid overflows. You can get more information
on the statistical data from the Input Data and Resulting Type panels. From
the Input Data panel we can see that the data has both positive and negative
values and hence a signed quantity which is reflected in the suggested
numerictype. Also, the maximum data value is 1.51 which can be represented
by the suggested type.

Next, let us look at variable y (output). From the histogram plot we see that
the dynamic range lies between (].

By default, the scope uses a word length of 16 bits with zero tolerable
overflows. This results in a data type of numerictype(true,16, 14) since we
need at least 2 integer bits to avoid overflows. With this suggested type you
see no overflows or underflows.

Fixed-Point Variable Definitions

We convert variables to fixed-point and run the algorithm again. We will turn
on logging to see the overflows and underflows introduced by the selected
data types.

% Turn on logging to see overflows/underflows.
FIPREF_STATE = get(fipref);
reset(fipref)
fp = fipref;
default_loggingmode = fp.LoggingMode;
fp.LoggingMode = 'On';
% Capture the present state of and reset the global fimath to the factory
% settings.
globalFimathAtStart = fimath;
resetglobalfimath;
% Define the fixed-point types for the variables in the below format:
% fi(Data, Signed, WordLength, FractionLength)
b = fi(b, 1, 8, 6);
a = fi(a, 1, 8, 6);

3-35

3 Fixed-Point Topics

x = fi(x, 1, 16, 13);
y = fi(zeros(size(x)), 1, 16, 13);
z = fi([0;0], 1, 16, 14);

Same Data-Type-Independent Algorithm

for k=1:length(x)
y(k) = b(1)*x(k) + z(1);
z(1) = (b(2)*x(k) + z(2)) - a(2)*y(k);
z(2) = b(3)*x(k) - a(3)*y(k);

end
% Reset the logging mode.
fp.LoggingMode = default_loggingmode;

In this example, we have redefined the fixed-point variables with the same
names as the floating-point so that we could inline the algorithm code for
clarity. However, it is a better practice to enclose the algorithm code in a
MATLAB® file function that could be called with either floating-point or
fixed-point variables. See filimitcycledemo.m for an example of writing and
using a datatype-agnostic algorithm.

Compare and Plot the Floating-Point and Fixed-Point Results

We will now plot the magnitude response of the floating-point and fixed-point
results and the response of the filter to see if the filter behaves as expected
when it is converted to fixed-point.

n = length(x);
f = linspace(0,0.5,n/2);
x_response = 20*log10(abs(fft(double(x))));
ydouble_response = 20*log10(abs(fft(ydouble)));
y_response = 20*log10(abs(fft(double(y))));
plot(f,x_response(1:n/2),'c-',...

f,ydouble_response(1:n/2),'bo-',...
f,y_response(1:n/2),'gs-');

ylabel('Magnitude in dB');
xlabel('Normalized Frequency');
legend('Input','Floating point output','Fixed point output','Location','Bes
title('Magnitude response of Floating-point and Fixed-point results');

3-36

Develop Fixed-Point Algorithms

h = fft(double(b),n)./fft(double(a),n);
h = h(1:end/2);
clf
hax = axes;
plot(hax,f,20*log10(abs(h)));
set(hax,'YLim',[-40 0]);
title('Magnitude response of the filter');
ylabel('Magnitude in dB')
xlabel('Frequency');

Notice that the high frequencies in the input signal are attenuated by the
low-pass filter which is the expected behavior.

Plot the Error

clf
n = (0:length(y)-1)';
e = double(lsb(y));
plot(n,double(y)-ydouble,'.-r', ...

[n(1) n(end)],[e/2 e/2],'c', ...
[n(1) n(end)],[-e/2 -e/2],'c')

text(n(end),e/2,'+1/2 LSB','HorizontalAlignment','right','VerticalAlignment
text(n(end),-e/2,'-1/2 LSB','HorizontalAlignment','right','VerticalAlignmen
xlabel('n (samples)'); ylabel('error')

Simulink®

If you have Simulink® and Fixed-Point Designer™, you can run this model,
which is the equivalent of the algorithm above. The output, y_sim is a
fixed-point variable equal to the variable y calculated above in MATLAB code.

As in the MATLAB code, the fixed-point parameters in the blocks can be
modified to match an actual system; these have been set to match the

3-37

3 Fixed-Point Topics

MATLAB code in the example above. Double-click on the blocks to see the
settings.

if fidemo.hasSimulinkLicense

% Set up the From Workspace variable
x_sim.time = n;
x_sim.signals.values = x;
x_sim.signals.dimensions = 1;

% Run the simulation
out_sim = sim('fitdf2filter_demo', 'SaveOutput', 'on', ...

'SrcWorkspace', 'current');

% Open the model
fitdf2filter_demo

% Verify that the Simulink results are the same as the MATLAB file
isequal(y, out_sim.get('y_sim'))

end

ans =

1

Assumptions Made for this Example

In order to simplify the example, we have taken the default math parameters:
round-to-nearest, saturate on overflow, full precision products and sums. We
can modify all of these parameters to match an actual system.

The settings were chosen as a starting point in algorithm development. Save
a copy of this MATLAB file, start playing with the parameters, and see what
effects they have on the output. How does the algorithm behave with a

3-38

Develop Fixed-Point Algorithms

different input? See the help for fi, fimath, and numerictype for information
on how to set other parameters, such as rounding mode, and overflow mode.

close all force;
bdclose all;
% Reset the global fimath
globalfimath(globalFimathAtStart);
fipref(FIPREF_STATE);

3-39

3 Fixed-Point Topics

Calculate Fixed-Point Sine and Cosine
This example shows how to use both CORDIC-based and lookup table-based
algorithms provided by the Fixed-Point Designer™ to approximate the
MATLAB® sine (SIN) and cosine (COS) functions. Efficient fixed-point sine
and cosine algorithms are critical to many embedded applications, including
motor controls, navigation, signal processing, and wireless communications.

Calculating Sine and Cosine Using the CORDIC Algorithm

Introduction

The cordiccexp, cordicsincos, cordicsin, and cordiccos functions
approximate the MATLAB sin and cos functions using a CORDIC-based
algorithm. CORDIC is an acronym for COordinate Rotation DIgital
Computer. The Givens rotation-based CORDIC algorithm (see [1,2]) is one
of the most hardware efficient algorithms because it only requires iterative
shift-add operations. The CORDIC algorithm eliminates the need for explicit
multipliers, and is suitable for calculating a variety of functions, such as sine,
cosine, arcsine, arccosine, arctangent, vector magnitude, divide, square root,
hyperbolic and logarithmic functions.

You can use the CORDIC rotation computing mode to calculate sine and
cosine, and also polar-to-cartesian conversion operations. In this mode, the
vector magnitude and an angle of rotation are known and the coordinate (X-Y)
components are computed after rotation.

CORDIC Rotation Computation Mode

The CORDIC rotation mode algorithm begins by initializing an angle
accumulator with the desired rotation angle. Next, the rotation decision at
each CORDIC iteration is done in a way that decreases the magnitude of the
residual angle accumulator. The rotation decision is based on the sign of the
residual angle in the angle accumulator after each iteration.

In rotation mode, the CORDIC equations are:

3-40

Calculate Fixed-Point Sine and Cosine

where if , and otherwise;

, and is the total number of iterations.

This provides the following result as approaches :

Where:

.

In rotation mode, the CORDIC algorithm is limited to rotation angles between
and . To support angles outside of that range, the cordiccexp, cordicsincos,
cordicsin, and cordiccos functions use quadrant correction (including
possible extra negation) after the CORDIC iterations are completed.

Understanding the CORDICSINCOS Sine and Cosine Code

Introduction

The cordicsincos function calculates the sine and cosine of input angles
in the range [-2*pi 2*pi) using the CORDIC algorithm. This function takes
an angle (radians) and the number of iterations as input arguments. The
function returns approximations of sine and cosine.

The CORDIC computation outputs are scaled by the rotator gain. This gain is
accounted for by pre-scaling the initial constant value.

Initialization

The cordicsincos function performs the following initialization steps:

• The angle input look-up table inpLUT is set to atan(2 .^ -(0:N-1)).

3-41

3 Fixed-Point Topics

• is set to the input argument value.

• is set to .

• is set to zero.

The judicious choice of initial values allows the algorithm to directly compute
both sine and cosine simultaneously. After iterations, these initial values
lead to the following outputs as approaches :

Shared Fixed-Point and Floating-Point CORDIC Kernel Code

The MATLAB code for the CORDIC algorithm (rotation mode) kernel portion
is as follows (for the case of scalar x, y, and z). This same code is used for both
fixed-point and floating-point operations:

function [x, y, z] = cordic_rotation_kernel(x, y, z, inpLUT, n)
% Perform CORDIC rotation kernel algorithm for N kernel iterations.
xtmp = x;
ytmp = y;
for idx = 1:n

if z < 0
z(:) = z + inpLUT(idx);
x(:) = x + ytmp;
y(:) = y - xtmp;

else
z(:) = z - inpLUT(idx);
x(:) = x - ytmp;
y(:) = y + xtmp;

end
xtmp = bitsra(x, idx); % bit-shift-right for multiply by 2^(-idx)
ytmp = bitsra(y, idx); % bit-shift-right for multiply by 2^(-idx)

end

Visualizing the Sine-Cosine Rotation Mode CORDIC Iterations

3-42

Calculate Fixed-Point Sine and Cosine

The CORDIC algorithm is usually run through a specified (constant) number
of iterations since ending the CORDIC iterations early would break pipelined
code, and the CORDIC gain would not be constant because would vary.

For very large values of , the CORDIC algorithm is guaranteed to converge,
but not always monotonically. As will be shown in the following example,
intermediate iterations occasionally produce more accurate results than later
iterations. You can typically achieve greater accuracy by increasing the total
number of iterations.

Example

In the following example, iteration 5 provides a better estimate of the result
than iteration 6, and the CORDIC algorithm converges in later iterations.

theta = pi/5; % input angle in radians
niters = 10; % number of iterations
sinTh = sin(theta); % reference result
cosTh = cos(theta); % reference result
y_sin = zeros(niters, 1);
sin_err = zeros(niters, 1);
x_cos = zeros(niters, 1);
cos_err = zeros(niters, 1);
fprintf('\n\nNITERS \tERROR\n');
fprintf('------\t----------\n');
for n = 1:niters

[y_sin(n), x_cos(n)] = cordicsincos(theta, n);
sin_err(n) = abs(y_sin(n) - sinTh);
cos_err(n) = abs(x_cos(n) - cosTh);
if n < 10

fprintf(' %d \t %1.8f\n', n, cos_err(n));
else

fprintf(' %d \t %1.8f\n', n, cos_err(n));
end

end
fprintf('\n');

NITERS ERROR

3-43

3 Fixed-Point Topics

------ ----------
1 0.10191021
2 0.13966630
3 0.03464449
4 0.03846157
5 0.00020393
6 0.01776952
7 0.00888037
8 0.00436052
9 0.00208192

10 0.00093798

Plot the CORDIC approximation error on a bar graph

figure(1); clf;
bar(1:niters, cos_err(1:niters));
xlabel('Number of iterations','fontsize',12,'fontweight','b');
ylabel('Error','fontsize',12,'fontweight','b');
title('CORDIC approximation error for cos(pi/5) computation',...

'fontsize',12,'fontweight','b');
axis([0 niters 0 0.14]);

Plot the X-Y results for 5 iterations

Niter2Draw = 5;
figure(2), clf, hold on
plot(cos(0:0.1:pi/2), sin(0:0.1:pi/2), 'b--'); % semi-circle
for i=1:Niter2Draw

plot([0 x_cos(i)],[0 y_sin(i)], 'LineWidth', 2); % CORDIC iteration res
text(x_cos(i),y_sin(i),int2str(i),'fontsize',12,'fontweight','b');

end
plot(cos(theta), sin(theta), 'r*', 'MarkerSize', 20); % IDEAL result
xlabel('X (COS)','fontsize',12,'fontweight','b')
ylabel('Y (SIN)','fontsize',12,'fontweight','b')
title('CORDIC iterations for cos(pi/5) computation',...

'fontsize',12,'fontweight','b')
axis equal;

3-44

Calculate Fixed-Point Sine and Cosine

axis square;

Computing Fixed-point Sine with cordicsin

Create 1024 points between [-2*pi, 2*pi)

stepSize = pi/256;
thRadDbl = (-2*pi):stepSize:(2*pi - stepSize);
thRadFxp = sfi(thRadDbl, 12); % signed, 12-bit fixed-point values
sinThRef = sin(double(thRadFxp)); % reference results

Compare fixed-point CORDIC vs. double-precision trig function
results

Use 12-bit quantized inputs and vary number of iterations from 4 to 10.

for niters = 4:3:10
cdcSinTh = cordicsin(thRadFxp, niters);
errCdcRef = sinThRef - double(cdcSinTh);
figure; hold on; axis([-2*pi 2*pi -1.25 1.25]);
plot(thRadFxp, sinThRef, 'b');
plot(thRadFxp, cdcSinTh, 'g');
plot(thRadFxp, errCdcRef, 'r');
ylabel('sin(\Theta)','fontsize',12,'fontweight','b');
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',...

{'-2*pi', '-3*pi/2', '-pi', '-pi/2', ...
'0', 'pi/2', 'pi', '3*pi/2','2*pi'});

set(gca,'YTick',-1:0.5:1);
set(gca,'YTickLabel',{'-1.0','-0.5','0','0.5','1.0'});
ref_str = 'Reference: sin(double(\Theta))';
cdc_str = sprintf('12-bit CORDICSIN; N = %d', niters);
err_str = sprintf('Error (max = %f)', max(abs(errCdcRef)));
legend(ref_str, cdc_str, err_str);
title(cdc_str,'fontsize',12,'fontweight','b');

end

3-45

3 Fixed-Point Topics

Compute the LSB Error for N = 10

figure;
fracLen = cdcSinTh.FractionLength;
plot(thRadFxp, abs(errCdcRef) * pow2(fracLen));
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',...

{'-2*pi', '-3*pi/2', '-pi', '-pi/2', ...
'0', 'pi/2', 'pi', '3*pi/2','2*pi'});

ylabel(sprintf('LSB Error: 1 LSB = 2^{-%d}',fracLen),'fontsize',12,'fontwei
title('LSB Error: 12-bit CORDICSIN; N=10','fontsize',12,'fontweight','b');
axis([-2*pi 2*pi 0 6]);

Compute Noise Floor

fft_mag = abs(fft(double(cdcSinTh)));
max_mag = max(fft_mag);
mag_db = 20*log10(fft_mag/max_mag);
figure;
hold on;
plot(0:1023, mag_db);
plot(0:1023, zeros(1,1024),'r--'); % Normalized peak (0 dB)
plot(0:1023, -62.*ones(1,1024),'r--'); % Noise floor level
ylabel('dB Magnitude','fontsize',12,'fontweight','b');
title('62 dB Noise Floor: 12-bit CORDICSIN; N=10',...

'fontsize',12,'fontweight','b');
% axis([0 1023 -120 0]); full FFT
axis([0 round(1024*(pi/8)) -100 10]); % zoom in
set(gca,'XTick',[0 round(1024*pi/16) round(1024*pi/8)]);
set(gca,'XTickLabel',{'0','pi/16','pi/8'});

Accelerating the Fixed-Point CORDICSINCOS Function with FIACCEL

3-46

Calculate Fixed-Point Sine and Cosine

You can generate a MEX function from MATLAB code using the MATLAB®
fiaccel function. Typically, running a generated MEX function can improve
the simulation speed, although the actual speed improvement depends on
the simulation platform being used. The following example shows how to
accelerate the fixed-point cordicsincos function using fiaccel.

The fiaccel function compiles the MATLAB code into a MEX function. This
step requires the creation of a temporary directory and write permissions
in this directory.

tempdirObj = fidemo.fiTempdir('fi_sin_cos_demo');

When you declare the number of iterations to be a constant (e.g., 10) using
coder.newtype('constant',10), the compiled angle look-up table will also
be constant, and thus won’t be computed at each iteration. Also, when you
call cordicsincos_mex, you will not need to give it the input argument
for the number of iterations. If you pass in the number of iterations, the
MEX-function will error.

The data type of the input parameters determines whether the cordicsincos
function performs fixed-point or floating-point calculations. When MATLAB
generates code for this file, code is only generated for the specific data
type. For example, if the THETA input argument is fixed point, then only
fixed-point code is generated.

inp = {thRadFxp, coder.newtype('constant',10)}; % example inputs for the fu
fiaccel('cordicsincos', '-o', 'cordicsincos_mex', '-args', inp)

First, calculate sine and cosine by calling cordicsincos.

tstart = tic;
cordicsincos(thRadFxp,10);
telapsed_Mcordicsincos = toc(tstart);

Next, calculate sine and cosine by calling the MEX-function
cordicsincos_mex.

cordicsincos_mex(thRadFxp); % load the MEX file
tstart = tic;
cordicsincos_mex(thRadFxp);
telapsed_MEXcordicsincos = toc(tstart);

3-47

3 Fixed-Point Topics

Now, compare the speed. Type the following at the MATLAB command line
to see the speed improvement on your platform:

fiaccel_speedup = telapsed_Mcordicsincos/telapsed_MEXcordicsincos;

To clean up the temporary directory, run the following commands:

clear cordicsincos_mex;
status = tempdirObj.cleanUp;

Calculating SIN and COS Using Lookup Tables

There are many lookup table-based approaches that may be used to
implement fixed-point sine and cosine approximations. The following is a
low-cost approach based on a single real-valued lookup table and simple
nearest-neighbor linear interpolation.

Single Lookup Table Based Approach

The sin and cos methods of the fi object in the Fixed-Point Designer
approximate the MATLAB® builtin floating-point sin and cos functions,
using a lookup table-based approach with simple nearest-neighbor linear
interpolation between values. This approach allows for a small real-valued
lookup table and uses simple arithmetic.

Using a single real-valued lookup table simplifies the index computation
and the overall arithmetic required to achieve very good accuracy of the
results. These simplifications yield relatively high speed performance and
also relatively low memory requirements.

Understanding the Lookup Table Based SIN and COS Implementation

Lookup Table Size and Accuracy

Two important design considerations of a lookup table are its size and its
accuracy. It is not possible to create a table for every possible input value .
It is also not possible to be perfectly accurate due to the quantization of or
lookup table values.

3-48

Calculate Fixed-Point Sine and Cosine

As a compromise, the Fixed-Point Designer SIN and COS methods of FI use
an 8-bit lookup table as part of their implementation. An 8-bit table is only
256 elements long, so it is small and efficient. Eight bits also corresponds
to the size of a byte or a word on many platforms. Used in conjunction
with linear interpolation, and 16-bit output (lookup table value) precision,
an 8-bit-addressable lookup table provides both very good accuracy and
performance.

Initializing the Constant SIN Lookup Table Values

For implementation simplicity, table value uniformity, and speed, a full
sinewave table is used. First, a quarter-wave SIN function is sampled at 64
uniform intervals in the range [0, pi/2) radians. Choosing a signed 16-bit
fractional fixed-point data type for the table values, i.e., tblValsNT =
numerictype(1,16,15), produces best precision results in the SIN output
range [-1.0, 1.0). The values are pre-quantized before they are set, to avoid
overflow warnings.

tblValsNT = numerictype(1,16,15);
quarterSinDblFltPtVals = (sin(2*pi*((0:63) ./ 256)))';
endpointQuantized_Plus1 = 1.0 - double(eps(fi(0,tblValsNT)));

halfSinWaveDblFltPtVals = ...
[quarterSinDblFltPtVals; ...
endpointQuantized_Plus1; ...
flipud(quarterSinDblFltPtVals(2:end))];

fullSinWaveDblFltPtVals = ...
[halfSinWaveDblFltPtVals; -halfSinWaveDblFltPtVals];

FI_SIN_LUT = fi(fullSinWaveDblFltPtVals, tblValsNT);

Overview of Algorithm Implementation

The implementation of the Fixed-Point Designer sin and cos methods of fi
objects involves first casting the fixed-point angle inputs (in radians) to a
pre-defined data type in the range [0, 2pi]. For this purpose, a modulo-2pi
operation is performed to obtain the fixed-point input value inpValInRange
in the range [0, 2pi] and cast to in the best precision binary point scaled
unsigned 16-bit fixed-point type numerictype(0,16,13):

3-49

3 Fixed-Point Topics

% Best UNSIGNED type for real-world value range [0, 2*pi],
% which maps to fixed-point stored integer vals [0, 51472].
inpInRangeNT = numerictype(0,16,13);

Next, we get the 16-bit stored unsigned integer value from this in-range
fixed-point FI angle value:

idxUFIX16 = fi(storedInteger(inpValInRange), numerictype(0,16,0));

We multiply the stored integer value by a normalization constant,
65536/51472. The resulting integer value will be in a full-scale uint16 index
range:

normConst_NT = numerictype(0,32,31);
normConstant = fi(65536/51472, normConst_NT);
fullScaleIdx = normConstant * idxUFIX16;
idxUFIX16(:) = fullScaleIdx;

The top 8 most significant bits (MSBs) of this full-scale unsigned 16-bit
index idxUFIX16 are used to directly index into the 8-bit sine lookup table.
Two table lookups are performed, one at the computed table index location
lutValBelow, and one at the next index location lutValAbove:

idxUint8MSBs = storedInteger(bitsliceget(idxUFIX16, 16, 9));
zeroBasedIdx = int16(idxUint8MSBs);
lutValBelow = FI_SIN_LUT(zeroBasedIdx + 1);
lutValAbove = FI_SIN_LUT(zeroBasedIdx + 2);

The remaining 8 least significant bits (LSBs) of idxUFIX16 are used to
interpolate between these two table values. The LSB values are treated as a
normalized scaling factor with 8-bit fractional data type rFracNT:

rFracNT = numerictype(0,8,8); % fractional remainder data type
idxFrac8LSBs = reinterpretcast(bitsliceget(idxUFIX16,8,1), rFracNT);
rFraction = idxFrac8LSBs;

A real multiply is used to determine the weighted difference between the two
points. This results in a simple calculation (equivalent to one product and two
sums) to obtain the interpolated fixed-point sine result:

temp = rFraction * (lutValAbove - lutValBelow);

3-50

Calculate Fixed-Point Sine and Cosine

rslt = lutValBelow + temp;

Example

Using the above algorithm, here is an example of the lookup table and linear
interpolation process used to compute the value of SIN for a fixed-point input
inpValInRange = 0.425 radians:

% Use an arbitrary input value (e.g., 0.425 radians)
inpInRangeNT = numerictype(0,16,13); % best precision, [0, 2*pi] radian
inpValInRange = fi(0.425, inpInRangeNT); % arbitrary fixed-point input angl

% Normalize its stored integer to get full-scale unsigned 16-bit integer in
idxUFIX16 = fi(storedInteger(inpValInRange), numerictype(0,16,0));
normConst_NT = numerictype(0,32,31);
normConstant = fi(65536/51472, normConst_NT);
fullScaleIdx = normConstant * idxUFIX16;
idxUFIX16(:) = fullScaleIdx;

% Do two table lookups using unsigned 8-bit integer index (i.e., 8 MSBs)
idxUint8MSBs = storedInteger(bitsliceget(idxUFIX16, 16, 9));
zeroBasedIdx = int16(idxUint8MSBs); % zero-based table index valu
lutValBelow = FI_SIN_LUT(zeroBasedIdx + 1); % 1st table lookup value
lutValAbove = FI_SIN_LUT(zeroBasedIdx + 2); % 2nd table lookup value

% Do nearest-neighbor interpolation using 8 LSBs (treat as fractional remai
rFracNT = numerictype(0,8,8); % fractional remainder data type
idxFrac8LSBs = reinterpretcast(bitsliceget(idxUFIX16,8,1), rFracNT);
rFraction = idxFrac8LSBs; % fractional value for linear interpolation
temp = rFraction * (lutValAbove - lutValBelow);
rslt = lutValBelow + temp;

Here is a plot of the algorithm results:

x_vals = 0:(pi/128):(pi/4);
xIdxLo = zeroBasedIdx - 1;
xIdxHi = zeroBasedIdx + 4;
figure; hold on; axis([x_vals(xIdxLo) x_vals(xIdxHi) 0.25 0.65]);
plot(x_vals(xIdxLo:xIdxHi), double(FI_SIN_LUT(xIdxLo:xIdxHi)), 'b^--');
plot([x_vals(zeroBasedIdx+1) x_vals(zeroBasedIdx+2)], ...

3-51

3 Fixed-Point Topics

[lutValBelow lutValAbove], 'k.'); % Closest values
plot(0.425, double(rslt), 'r*'); % Interpolated fixed-point result
plot(0.425, sin(0.425), 'gs'); % Double precision reference result
xlabel('X'); ylabel('SIN(X)');
lut_val_str = 'Fixed-point lookup table values';
near_str = 'Two closest fixed-point LUT values';
interp_str = 'Interpolated fixed-point result';
ref_str = 'Double precision reference value';
legend(lut_val_str, near_str, interp_str, ref_str);
title('Fixed-Point Designer Lookup Table Based SIN with Linear Interpolatio

'fontsize',12,'fontweight','b');

Computing Fixed-point Sine Using SIN

Create 1024 points between [-2*pi, 2*pi)

stepSize = pi/256;
thRadDbl = (-2*pi):stepSize:(2*pi - stepSize); % double precision floating-
thRadFxp = sfi(thRadDbl, 12); % signed, 12-bit fixed-point inputs

Compare fixed-point SIN vs. double-precision SIN results

fxpSinTh = sin(thRadFxp); % fixed-point results
sinThRef = sin(double(thRadFxp)); % reference results
errSinRef = sinThRef - double(fxpSinTh);
figure; hold on; axis([-2*pi 2*pi -1.25 1.25]);
plot(thRadFxp, sinThRef, 'b');
plot(thRadFxp, fxpSinTh, 'g');
plot(thRadFxp, errSinRef, 'r');
ylabel('sin(\Theta)','fontsize',12,'fontweight','b');
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',...

{'-2*pi', '-3*pi/2', '-pi', '-pi/2', ...
'0', 'pi/2', 'pi', '3*pi/2','2*pi'});

set(gca,'YTick',-1:0.5:1);
set(gca,'YTickLabel',{'-1.0','-0.5','0','0.5','1.0'});
ref_str = 'Reference: sin(double(\Theta))';
fxp_str = sprintf('16-bit Fixed-Point SIN with 12-bit Inputs');

3-52

Calculate Fixed-Point Sine and Cosine

err_str = sprintf('Error (max = %f)', max(abs(errSinRef)));
legend(ref_str, fxp_str, err_str);
title(fxp_str,'fontsize',12,'fontweight','b');

Compute the LSB Error

figure;
fracLen = fxpSinTh.FractionLength;
plot(thRadFxp, abs(errSinRef) * pow2(fracLen));
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',...

{'-2*pi', '-3*pi/2', '-pi', '-pi/2', ...
'0', 'pi/2', 'pi', '3*pi/2','2*pi'});

ylabel(sprintf('LSB Error: 1 LSB = 2^{-%d}',fracLen),'fontsize',12,'fontwei
title('LSB Error: 16-bit Fixed-Point SIN with 12-bit Inputs','fontsize',12,
axis([-2*pi 2*pi 0 8]);

Compute Noise Floor

fft_mag = abs(fft(double(fxpSinTh)));
max_mag = max(fft_mag);
mag_db = 20*log10(fft_mag/max_mag);
figure;
hold on;
plot(0:1023, mag_db);
plot(0:1023, zeros(1,1024),'r--'); % Normalized peak (0 dB)
plot(0:1023, -64.*ones(1,1024),'r--'); % Noise floor level (dB)
ylabel('dB Magnitude','fontsize',12,'fontweight','b');
title('64 dB Noise Floor: 16-bit Fixed-Point SIN with 12-bit Inputs',...

'fontsize',12,'fontweight','b');
% axis([0 1023 -120 0]); full FFT
axis([0 round(1024*(pi/8)) -100 10]); % zoom in
set(gca,'XTick',[0 round(1024*pi/16) round(1024*pi/8)]);
set(gca,'XTickLabel',{'0','pi/16','pi/8'});

3-53

3 Fixed-Point Topics

Comparing the Costs of the Fixed-Point Approximation Algorithms

The fixed-point CORDIC algorithm requires the following operations:

• 1 table lookup per iteration

• 2 shifts per iteration

• 3 additions per iteration

The simplified single lookup table algorithm with nearest-neighbor linear
interpolatiom requires the following operations:

• 2 table lookups

• 1 multiplication

• 2 additions

In real world applications, selecting an algorithm for the fixed-point
trigonometric function calculations typically depends on the required
accuracy, cost and hardware constraints.

close all; % close all figure windows

References

1 Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE
Transactions on Electronic Computers, Volume EC-8, September 1959,
pp330-334.

2 Ray Andraka, A survey of CORDIC algorithm for FPGA based computers,
Proceedings of the 1998 ACM/SIGDA sixth international symposium on
Field programmable gate arrays, Feb. 22-24, 1998, pp191-200

3-54

Calculate Fixed-Point Arctangent

Calculate Fixed-Point Arctangent
This example shows how to use the CORDIC algorithm, polynomial
approximation, and lookup table approaches to calculate the fixed-point, four
quadrant inverse tangent. These implementations are approximations to
the MATLAB® built-in function atan2. An efficient fixed-point arctangent
algorithm to estimate an angle is critical to many applications, including
control of robotics, frequency tracking in wireless communications, and many
more.

Calculating atan2(y,x) Using the CORDIC Algorithm

Introduction

The cordicatan2 function approximates the MATLAB® atan2 function,
using a CORDIC-based algorithm. CORDIC is an acronym for COordinate
Rotation DIgital Computer. The Givens rotation-based CORDIC algorithm
(see [1,2]) is one of the most hardware efficient algorithms because it only
requires iterative shift-add operations. The CORDIC algorithm eliminates
the need for explicit multipliers, and is suitable for calculating a variety
of functions, such as sine, cosine, arcsine, arccosine, arctangent, vector
magnitude, divide, square root, hyperbolic and logarithmic functions.

CORDIC Vectoring Computation Mode

The CORDIC vectoring mode equations are widely used to calculate
atan(y/x). In vectoring mode, the CORDIC rotator rotates the input vector
towards the positive X-axis to minimize the component of the residual vector.
For each iteration, if the coordinate of the residual vector is positive, the
CORDIC rotator rotates clockwise (using a negative angle); otherwise, it
rotates counter-clockwise (using a positive angle). If the angle accumulator is
initialized to 0, at the end of the iterations, the accumulated rotation angle is
the angle of the original input vector.

In vectoring mode, the CORDIC equations are:

3-55

3 Fixed-Point Topics

is the angle accumulator

where if , and otherwise;

, and is the total number of iterations.

As approaches :

As explained above, the arctangent can be directly computed using the
vectoring mode CORDIC rotator with the angle accumulator initialized to
zero, i.e., and .

Understanding the CORDICATAN2 Code

Introduction

The cordicatan2 function computes the four quadrant arctangent of the
elements of x and y, where . cordicatan2 calculates the arctangent using
the vectoring mode CORDIC algorithm, according to the above CORDIC
equations.

Initialization

The cordicatan2 function performs the following initialization steps:

• is set to the initial X input value.

• is set to the initial Y input value.

• is set to zero.

After iterations, these initial values lead to

3-56

Calculate Fixed-Point Arctangent

Shared Fixed-Point and Floating-Point CORDIC Kernel Code

The MATLAB code for the CORDIC algorithm (vectoring mode) kernel portion
is as follows (for the case of scalar x, y, and z). This same code is used for both
fixed-point and floating-point operations:

function [x, y, z] = cordic_vectoring_kernel(x, y, z, inpLUT, n)
% Perform CORDIC vectoring kernel algorithm for N kernel iterations.
xtmp = x;
ytmp = y;
for idx = 1:n

if y < 0
x(:) = x - ytmp;
y(:) = y + xtmp;
z(:) = z - inpLUT(idx);

else
x(:) = x + ytmp;
y(:) = y - xtmp;
z(:) = z + inpLUT(idx);

end
xtmp = bitsra(x, idx); % bit-shift-right for multiply by 2^(-idx)
ytmp = bitsra(y, idx); % bit-shift-right for multiply by 2^(-idx)

end

Visualizing the Vectoring Mode CORDIC Iterations

The CORDIC algorithm is usually run through a specified (constant) number
of iterations since ending the CORDIC iterations early would break pipelined
code, and the CORDIC gain would not be constant because would vary.

For very large values of , the CORDIC algorithm is guaranteed to converge,
but not always monotonically. As will be shown in the following example,
intermediate iterations occasionally rotate the vector closer to the positive
X-axis than the following iteration does. You can typically achieve greater
accuracy by increasing the total number of iterations.

Example

In the following example, iteration 5 provides a better estimate of the angle
than iteration 6, and the CORDIC algorithm converges in later iterations.

3-57

3 Fixed-Point Topics

Initialize the input vector with angle degrees, magnitude = 1

origFormat = get(0, 'format'); % store original format setting;
% restore this setting at the end.

format short
%
theta = 43*pi/180; % input angle in radians
Niter = 10; % number of iterations
inX = cos(theta); % x coordinate of the input vector
inY = sin(theta); % y coordinate of the input vector
%
% pre-allocate memories
zf = zeros(1, Niter);
xf = [inX, zeros(1, Niter)];
yf = [inY, zeros(1, Niter)];
angleLUT = atan(2.^-(0:Niter-1)); % pre-calculate the angle lookup table
%
% Call CORDIC vectoring kernel algorithm
for k = 1:Niter

[xf(k+1), yf(k+1), zf(k)] = fixed.internal.cordic_vectoring_kernel_priva
end

The following output shows the CORDIC angle accumulation (in degrees)
through 10 iterations. Note that the 5th iteration produced less error than
the 6th iteration, and that the calculated angle quickly converges to the
actual input angle afterward.

angleAccumulator = zf*180/pi; angleError = angleAccumulator - theta*180/pi;
fprintf('Iteration: %2d, Calculated angle: %7.3f, Error in degrees: %10g, E

[(1:Niter); angleAccumulator(:)'; angleError(:)';log2(abs(zf(:)'-th

Iteration: 1, Calculated angle: 45.000, Error in degrees: 2, Err
Iteration: 2, Calculated angle: 18.435, Error in degrees: -24.5651, Err
Iteration: 3, Calculated angle: 32.471, Error in degrees: -10.5288, Err
Iteration: 4, Calculated angle: 39.596, Error in degrees: -3.40379, Err
Iteration: 5, Calculated angle: 43.173, Error in degrees: 0.172543, Err
Iteration: 6, Calculated angle: 41.383, Error in degrees: -1.61737, Err
Iteration: 7, Calculated angle: 42.278, Error in degrees: -0.722194, Err
Iteration: 8, Calculated angle: 42.725, Error in degrees: -0.27458, Err
Iteration: 9, Calculated angle: 42.949, Error in degrees: -0.0507692, Err

3-58

Calculate Fixed-Point Arctangent

Iteration: 10, Calculated angle: 43.061, Error in degrees: 0.0611365, Err

As N approaches , the CORDIC rotator gain approaches 1.64676. In this
example, the input was on the unit circle, so the initial rotator magnitude is
1. The following output shows the rotator magnitude through 10 iterations:

rotatorMagnitude = sqrt(xf.^2+yf.^2); % CORDIC rotator gain through iterati
fprintf('Iteration: %2d, Rotator magnitude: %g\n',...

[(0:Niter); rotatorMagnitude(:)']);

Iteration: 0, Rotator magnitude: 1
Iteration: 1, Rotator magnitude: 1.41421
Iteration: 2, Rotator magnitude: 1.58114
Iteration: 3, Rotator magnitude: 1.6298
Iteration: 4, Rotator magnitude: 1.64248
Iteration: 5, Rotator magnitude: 1.64569
Iteration: 6, Rotator magnitude: 1.64649
Iteration: 7, Rotator magnitude: 1.64669
Iteration: 8, Rotator magnitude: 1.64674
Iteration: 9, Rotator magnitude: 1.64676
Iteration: 10, Rotator magnitude: 1.64676

Note that approaches 0, and approaches because .

y_n = yf(end)

y_n =

-0.0018

x_n = xf(end)

x_n =

1.6468

3-59

3 Fixed-Point Topics

figno = 1;
fidemo.fixpt_atan2_demo_plot(figno, xf, yf) %Vectoring Mode CORDIC Iteratio

figno = figno + 1; %Cumulative Angle and Rotator Magnitude Through Iteratio
fidemo.fixpt_atan2_demo_plot(figno,Niter, theta, angleAccumulator, rotatorM

Performing Overall Error Analysis of the CORDIC Algorithm

The overall error consists of two parts:

1 The algorithmic error that results from the CORDIC rotation angle being
represented by a finite number of basic angles.

2 The quantization or rounding error that results from the finite precision
representation of the angle lookup table, and from the finite precision
arithmetic used in fixed-point operations.

Calculate the CORDIC Algorithmic Error

theta = (-178:2:180)*pi/180; % angle in radians
inXflt = cos(theta); % generates input vector
inYflt = sin(theta);
Niter = 12; % total number of iterations
zflt = cordicatan2(inYflt, inXflt, Niter); % floating-point results

Calculate the maximum magnitude of the CORDIC algorithmic error by
comparing the CORDIC computation to the builtin atan2 function.

format long
cordic_algErr_real_world_value = max(abs((atan2(inYflt, inXflt) - zflt)))

cordic_algErr_real_world_value =

4.753112306290497e-04

3-60

Calculate Fixed-Point Arctangent

The log base 2 error is related to the number of iterations. In this example,
we use 12 iterations (i.e., accurate to 11 binary digits), so the magnitude of
the error is less than

cordic_algErr_bits = log2(cordic_algErr_real_world_value)

cordic_algErr_bits =

-11.038839889583048

Relationship Between Number of Iterations and Precision

Once the quantization error dominates the overall error, i.e., the quantization
error is greater than the algorithmic error, increasing the total number of
iterations won’t significantly decrease the overall error of the fixed-point
CORDIC algorithm. You should pick your fraction lengths and total number
of iterations to ensure that the quantization error is smaller than the
algorithmic error. In the CORDIC algorithm, the precision increases by one
bit every iteration. Thus, there is no reason to pick a number of iterations
greater than the precision of the input data.

Another way to look at the relationship between the number of iterations
and the precision is in the right-shift step of the algorithm. For example, on
the counter-clockwise rotation

x(:) = x0 - bitsra(y,i);
y(:) = y + bitsra(x0,i);

if i is equal to the word length of y and x0, then bitsra(y,i) and
bitsra(x0,i) shift all the way to zero and do not contribute anything to
the next step.

To measure the error from the fixed-point algorithm, and not the differences
in input values, compute the floating-point reference with the same inputs as
the fixed-point CORDIC algorithm.

inXfix = sfi(inXflt, 16, 14);
inYfix = sfi(inYflt, 16, 14);
zref = atan2(double(inYfix), double(inXfix));

3-61

3 Fixed-Point Topics

zfix8 = cordicatan2(inYfix, inXfix, 8);
zfix10 = cordicatan2(inYfix, inXfix, 10);
zfix12 = cordicatan2(inYfix, inXfix, 12);
zfix14 = cordicatan2(inYfix, inXfix, 14);
zfix15 = cordicatan2(inYfix, inXfix, 15);
cordic_err = bsxfun(@minus,zref,double([zfix8;zfix10;zfix12;zfix14;zfix15])

The error depends on the number of iterations and the precision of the input
data. In the above example, the input data is in the range [-1, +1], and the
fraction length is 14. From the following tables showing the maximum error
at each iteration, and the figure showing the overall error of the CORDIC
algorithm, you can see that the error decreases by about 1 bit per iteration
until the precision of the data is reached.

iterations = [8, 10, 12, 14, 15];
max_cordicErr_real_world_value = max(abs(cordic_err'));
fprintf('Iterations: %2d, Max error in real-world-value: %g\n',...

[iterations; max_cordicErr_real_world_value]);

Iterations: 8, Max error in real-world-value: 0.00773633
Iterations: 10, Max error in real-world-value: 0.00187695
Iterations: 12, Max error in real-world-value: 0.000501175
Iterations: 14, Max error in real-world-value: 0.000244621
Iterations: 15, Max error in real-world-value: 0.000244621

max_cordicErr_bits = log2(max_cordicErr_real_world_value);
fprintf('Iterations: %2d, Max error in bits: %g\n',[iterations; max_cordicE

Iterations: 8, Max error in bits: -7.01414
Iterations: 10, Max error in bits: -9.05739
Iterations: 12, Max error in bits: -10.9624
Iterations: 14, Max error in bits: -11.9972
Iterations: 15, Max error in bits: -11.9972

figno = figno + 1;
fidemo.fixpt_atan2_demo_plot(figno, theta, cordic_err)

Accelerating the Fixed-Point CORDICATAN2 Algorithm Using FIACCEL

3-62

Calculate Fixed-Point Arctangent

You can generate a MEX function from MATLAB code using the MATLAB®
fiaccel command. Typically, running a generated MEX function can improve
the simulation speed, although the actual speed improvement depends on
the simulation platform being used. The following example shows how to
accelerate the fixed-point cordicatan2 algorithm using fiaccel.

The fiaccel function compiles the MATLAB code into a MEX function. This
step requires the creation of a temporary directory and write permissions
in that directory.

tempdirObj = fidemo.fiTempdir('fixpt_atan2_demo');

When you declare the number of iterations to be a constant (e.g., 12) using
coder.newtype('constant',12), the compiled angle lookup table will also
be constant, and thus won’t be computed at each iteration. Also, when you
call the compiled MEX file cordicatan2_mex, you will not need to give it the
input argument for the number of iterations. If you pass in the number of
iterations, the MEX function will error.

The data type of the input parameters determines whether the cordicatan2
function performs fixed-point or floating-point calculations. When MATLAB
generates code for this file, code is only generated for the specific data type.
For example, if the inputs are fixed point, only fixed-point code is generated.

inp = {inYfix, inXfix, coder.newtype('constant',12)}; % example inputs for
fiaccel('cordicatan2', '-o', 'cordicatan2_mex', '-args', inp)

First, calculate a vector of 4 quadrant atan2 by calling cordicatan2.

tstart = tic;
cordicatan2(inYfix,inXfix,Niter);
telapsed_Mcordicatan2 = toc(tstart);

Next, calculate a vector of 4 quadrant atan2 by calling the MEX-function
cordicatan2_mex

cordicatan2_mex(inYfix,inXfix); % load the MEX file
tstart = tic;
cordicatan2_mex(inYfix,inXfix);
telapsed_MEXcordicatan2 = toc(tstart);

3-63

3 Fixed-Point Topics

Now, compare the speed. Type the following in the MATLAB command
window to see the speed improvement on your specific platform:

fiaccel_speedup = telapsed_Mcordicatan2/telapsed_MEXcordicatan2;

To clean up the temporary directory, run the following commands:

clear cordicatan2_mex;
status = tempdirObj.cleanUp;

Calculating atan2(y,x) Using Chebyshev Polynomial Approximation

Polynomial approximation is a multiply-accumulate (MAC) centric algorithm.
It can be a good choice for DSP implementations of non-linear functions like
atan(x).

For a given degree of polynomial, and a given function f(x) = atan(x)
evaluated over the interval of [-1, +1], the polynomial approximation theory
tries to find the polynomial that minimizes the maximum value of , where
P(x) is the approximating polynomial. In general, you can obtain polynomials
very close to the optimal one by approximating the given function in terms of
Chebyshev polynomials and cutting off the polynomial at the desired degree.

The approximation of arctangent over the interval of [-1, +1] using the
Chebyshev polynomial of the first kind is summarized in the following
formula:

where

3-64

Calculate Fixed-Point Arctangent

Therefore, the 3rd order Chebyshev polynomial approximation is

The 5th order Chebyshev polynomial approximation is

The 7th order Chebyshev polynomial approximation is

You can obtain four quadrant output through angle correction based on the
properties of the arctangent function.

Comparing the Algorithmic Error of the CORDIC and Polynomial Approximation
Algorithms

In general, higher degrees of polynomial approximation produce more
accurate final results. However, higher degrees of polynomial approximation
also increase the complexity of the algorithm and require more MAC
operations and more memory. To be consistent with the CORDIC algorithm
and the MATLAB atan2 function, the input arguments consist of both x and y
coordinates instead of the ratio y/x.

To eliminate quantization error, floating-point implementations of the
CORDIC and Chebyshev polynomial approximation algorithms are used in the
comparison below. An algorithmic error comparison reveals that increasing
the number of CORDIC iterations results in less error. It also reveals that
the CORDIC algorithm with 12 iterations provides a slightly better angle
estimation than the 5th order Chebyshev polynomial approximation. The
approximation error of the 3rd order Chebyshev Polynomial is about 8 times
larger than that of the 5th order Chebyshev polynomial. You should choose
the order or degree of the polynomial based on the required accuracy of the
angle estimation and the hardware constraints.

The coefficients of the Chebyshev polynomial approximation for atan(x)
are shown in ascending order of x.

constA3 = [0.970562748477141, -0.189514164974601]; % 3rd order

3-65

3 Fixed-Point Topics

constA5 = [0.994949366116654,-0.287060635532652,0.078037176446441]; % 5th o
constA7 = [0.999133448222780 -0.320533292381664 0.144982490144465...

-0.038254464970299]; % 7th order

theta = (-90:1:90)*pi/180; % angle in radians
inXflt = cos(theta);
inYflt = sin(theta);
zfltRef = atan2(inYflt, inXflt); % Ideal output from ATAN2 function
zfltp3 = fidemo.poly_atan2(inYflt,inXflt,3,constA3); % 3rd order polynomia
zfltp5 = fidemo.poly_atan2(inYflt,inXflt,5,constA5); % 5th order polynomia
zfltp7 = fidemo.poly_atan2(inYflt,inXflt,7,constA7); % 7th order polynomia
zflt8 = cordicatan2(inYflt, inXflt, 8); % CORDIC alg with 8 iterations
zflt12 = cordicatan2(inYflt, inXflt, 12); % CORDIC alg with 12 iterations

The maximum algorithmic error magnitude (or infinity norm of the
algorithmic error) for the CORDIC algorithm with 8 and 12 iterations is
shown below:

cordic_algErr = [zfltRef;zfltRef] - [zflt8;zflt12];
max_cordicAlgErr = max(abs(cordic_algErr'));
fprintf('Iterations: %2d, CORDIC algorithmic error in real-world-value: %g\

[[8,12]; max_cordicAlgErr(:)']);

Iterations: 8, CORDIC algorithmic error in real-world-value: 0.00772146
Iterations: 12, CORDIC algorithmic error in real-world-value: 0.000483258

The log base 2 error shows the number of binary digits of accuracy. The 12th
iteration of the CORDIC algorithm has an estimated angle accuracy of :

max_cordicAlgErr_bits = log2(max_cordicAlgErr);
fprintf('Iterations: %2d, CORDIC algorithmic error in bits: %g\n',...

[[8,12]; max_cordicAlgErr_bits(:)']);

Iterations: 8, CORDIC algorithmic error in bits: -7.01691
Iterations: 12, CORDIC algorithmic error in bits: -11.0149

The following code shows the magnitude of the maximum algorithmic error of
the polynomial approximation for orders 3, 5, and 7:

poly_algErr = [zfltRef;zfltRef;zfltRef] - [zfltp3;zfltp5;zfltp7];

3-66

Calculate Fixed-Point Arctangent

max_polyAlgErr = max(abs(poly_algErr'));
fprintf('Order: %d, Polynomial approximation algorithmic error in real-worl

[3:2:7; max_polyAlgErr(:)']);

Order: 3, Polynomial approximation algorithmic error in real-world-value: 0
Order: 5, Polynomial approximation algorithmic error in real-world-value: 0
Order: 7, Polynomial approximation algorithmic error in real-world-value: 9

The log base 2 error shows the number of binary digits of accuracy.

max_polyAlgErr_bits = log2(max_polyAlgErr);
fprintf('Order: %d, Polynomial approximation algorithmic error in bits: %g\

[3:2:7; max_polyAlgErr_bits(:)']);

Order: 3, Polynomial approximation algorithmic error in bits: -7.52843
Order: 5, Polynomial approximation algorithmic error in bits: -10.5235
Order: 7, Polynomial approximation algorithmic error in bits: -13.414

figno = figno + 1;
fidemo.fixpt_atan2_demo_plot(figno, theta, cordic_algErr, poly_algErr)

Converting the Floating-Point Chebyshev Polynomial Approximation Algorithm
to Fixed Point

Assume the input and output word lengths are constrained to 16 bits by
the hardware, and the 5th order Chebyshev polynomial is used in the
approximation. Because the dynamic range of inputs x, y and y/x are all
within [-1, +1], you can avoid overflow by picking a signed fixed-point input
data type with a word length of 16 bits and a fraction length of 14 bits. The
coefficients of the polynomial are purely fractional and within (-1, +1), so
we can pick their data types as signed fixed point with a word length of 16
bits and a fraction length of 15 bits (best precision). The algorithm is robust
because is within [-1, +1], and the multiplication of the coefficients and
is within (-1, +1). Thus, the dynamic range will not grow, and due to the
pre-determined fixed-point data types, overflow is not expected.

Similar to the CORDIC algorithm, the four quadrant polynomial
approximation-based atan2 algorithm outputs estimated angles within .

3-67

3 Fixed-Point Topics

Therefore, we can pick an output fraction length of 13 bits to avoid overflow
and provide a dynamic range of [-4, +3.9998779296875].

The basic floating-point Chebyshev polynomial approximation of arctangent
over the interval [-1, +1] is implemented as the chebyPoly_atan_fltpt local
function in the poly_atan2.m file.

function z = chebyPoly_atan_fltpt(y,x,N,constA,Tz,RoundingMethodStr)

tmp = y/x;
switch N

case 3
z = constA(1)*tmp + constA(2)*tmp^3;

case 5
z = constA(1)*tmp + constA(2)*tmp^3 + constA(3)*tmp^5;

case 7
z = constA(1)*tmp + constA(2)*tmp^3 + constA(3)*tmp^5 + constA(4

otherwise
disp('Supported order of Chebyshev polynomials are 3, 5 and 7');

end

The basic fixed-point Chebyshev polynomial approximation of arctangent
over the interval [-1, +1] is implemented as the chebyPoly_atan_fixpt local
function in the poly_atan2.m file.

function z = chebyPoly_atan_fixpt(y,x,N,constA,Tz,RoundingMethodStr)

z = fi(0,'numerictype', Tz, 'RoundingMethod', RoundingMethodStr);
Tx = numerictype(x);
tmp = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodStr);
tmp(:) = Tx.divide(y, x); % y/x;

tmp2 = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodStr);
tmp3 = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodStr);
tmp2(:) = tmp*tmp; % (y/x)^2
tmp3(:) = tmp2*tmp; % (y/x)^3

z(:) = constA(1)*tmp + constA(2)*tmp3; % for order N = 3

if (N == 5) || (N == 7)
tmp5 = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodStr);

3-68

Calculate Fixed-Point Arctangent

tmp5(:) = tmp3 * tmp2; % (y/x)^5
z(:) = z + constA(3)*tmp5; % for order N = 5

if N == 7
tmp7 = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodS
tmp7(:) = tmp5 * tmp2; % (y/x)^7
z(:) = z + constA(4)*tmp7; %for order N = 7

end
end

The universal four quadrant atan2 calculation using Chebyshev polynomial
approximation is implemented in the poly_atan2.m file.

function z = poly_atan2(y,x,N,constA,Tz,RoundingMethodStr)

if nargin < 5
% floating-point algorithm
fhandle = @chebyPoly_atan_fltpt;
Tz = [];
RoundingMethodStr = [];
z = zeros(size(y));

else
% fixed-point algorithm
fhandle = @chebyPoly_atan_fixpt;
%pre-allocate output
z = fi(zeros(size(y)), 'numerictype', Tz, 'RoundingMethod', Rounding

end

% Apply angle correction to obtain four quadrant output
for idx = 1:length(y)

% fist quadrant
if abs(x(idx)) >= abs(y(idx))

% (0, pi/4]
z(idx) = feval(fhandle, abs(y(idx)), abs(x(idx)), N, constA, Tz,

else
% (pi/4, pi/2)
z(idx) = pi/2 - feval(fhandle, abs(x(idx)), abs(y(idx)), N, const

end

if x(idx) < 0
% second and third quadrant

3-69

3 Fixed-Point Topics

if y(idx) < 0
z(idx) = -pi + z(idx);

else
z(idx) = pi - z(idx);

end
else % fourth quadrant

if y(idx) < 0
z(idx) = -z(idx);

end
end

end

Performing the Overall Error Analysis of the Polynomial Approximation
Algorithm

Similar to the CORDIC algorithm, the overall error of the polynomial
approximation algorithm consists of two parts - the algorithmic error and the
quantization error. The algorithmic error of the polynomial approximation
algorithm was analyzed and compared to the algorithmic error of the CORDIC
algorithm in a previous section.

Calculate the Quantization Error

Compute the quantization error by comparing the fixed-point polynomial
approximation to the floating-point polynomial approximation.

Quantize the inputs and coefficients with convergent rounding:

inXfix = fi(fi(inXflt, 1, 16, 14,'RoundingMethod','Convergent'),'fimath',[
inYfix = fi(fi(inYflt, 1, 16, 14,'RoundingMethod','Convergent'),'fimath',[
constAfix3 = fi(fi(constA3, 1, 16,'RoundingMethod','Convergent'),'fimath',[
constAfix5 = fi(fi(constA5, 1, 16,'RoundingMethod','Convergent'),'fimath',[
constAfix7 = fi(fi(constA7, 1, 16,'RoundingMethod','Convergent'),'fimath',[

Calculate the maximum magnitude of the quantization error using Floor
rounding:

ord = 3:2:7; % using 3rd, 5th, 7th order polynomials
Tz = numerictype(1, 16, 13); % output data type
zfix3p = fidemo.poly_atan2(inYfix,inXfix,ord(1),constAfix3,Tz,'Floor'); % 3

3-70

Calculate Fixed-Point Arctangent

zfix5p = fidemo.poly_atan2(inYfix,inXfix,ord(2),constAfix5,Tz,'Floor'); % 5
zfix7p = fidemo.poly_atan2(inYfix,inXfix,ord(3),constAfix7,Tz,'Floor'); % 7
poly_quantErr = bsxfun(@minus, [zfltp3;zfltp5;zfltp7], double([zfix3p;zfix5
max_polyQuantErr_real_world_value = max(abs(poly_quantErr'));
max_polyQuantErr_bits = log2(max_polyQuantErr_real_world_value);
fprintf('PolyOrder: %2d, Quant error in bits: %g\n',...

[ord; max_polyQuantErr_bits]);

PolyOrder: 3, Quant error in bits: -12.7101
PolyOrder: 5, Quant error in bits: -12.325
PolyOrder: 7, Quant error in bits: -11.8416

Calculate the Overall Error

Compute the overall error by comparing the fixed-point polynomial
approximation to the builtin atan2 function. The ideal reference output
is zfltRef. The overall error of the 7th order polynomial approximation is
dominated by the quantization error, which is due to the finite precision of
the input data, coefficients and the rounding effects from the fixed-point
arithmetic operations.

poly_err = bsxfun(@minus, zfltRef, double([zfix3p;zfix5p;zfix7p]));
max_polyErr_real_world_value = max(abs(poly_err'));
max_polyErr_bits = log2(max_polyErr_real_world_value);
fprintf('PolyOrder: %2d, Overall error in bits: %g\n',...

[ord; max_polyErr_bits]);

PolyOrder: 3, Overall error in bits: -7.51907
PolyOrder: 5, Overall error in bits: -10.2497
PolyOrder: 7, Overall error in bits: -11.5883

figno = figno + 1;
fidemo.fixpt_atan2_demo_plot(figno, theta, poly_err)

The Effect of Rounding Modes in Polynomial Approximation

Compared to the CORDIC algorithm with 12 iterations and a 13-bit fraction
length in the angle accumulator, the fifth order Chebyshev polynomial

3-71

3 Fixed-Point Topics

approximation gives a similar order of quantization error. In the following
example, Nearest, Round and Convergent rounding modes give smaller
quantization errors than the Floor rounding mode.

Maximum magnitude of the quantization error using Floor rounding

poly5_quantErrFloor = max(abs(poly_quantErr(2,:)));
poly5_quantErrFloor_bits = log2(poly5_quantErrFloor)

poly5_quantErrFloor_bits =

-12.324996933210334

For comparison, calculate the maximum magnitude of the quantization error
using Nearest rounding:

zfixp5n = fidemo.poly_atan2(inYfix,inXfix,5,constAfix5,Tz,'Nearest');
poly5_quantErrNearest = max(abs(zfltp5 - double(zfixp5n)));
poly5_quantErrNearest_bits = log2(poly5_quantErrNearest)
set(0, 'format', origFormat); % reset MATLAB output format

poly5_quantErrNearest_bits =

-13.175966487895451

Calculating atan2(y,x) Using Lookup Tables

There are many lookup table based approaches that may be used to implement
fixed-point argtangent approximations. The following is a low-cost approach
based on a single real-valued lookup table and simple nearest-neighbor linear
interpolation.

Single Lookup Table Based Approach

The atan2method of the fi object in the Fixed-Point Designer™ approximates
the MATLAB® builtin floating-point atan2 function, using a single lookup

3-72

Calculate Fixed-Point Arctangent

table based approach with simple nearest-neighbor linear interpolation
between values. This approach allows for a small real-valued lookup table
and uses simple arithmetic.

Using a single real-valued lookup table simplifies the index computation and
the overall arithmetic required to achieve very good accuracy of the results.
These simplifications yield a relatively high speed performance as well as
relatively low memory requirements.

Understanding the Lookup Table Based ATAN2 Implementation

Lookup Table Size and Accuracy

Two important design considerations of a lookup table are its size and its
accuracy. It is not possible to create a table for every possible input value.
It is also not possible to be perfectly accurate due to the quantization of the
lookup table values.

As a compromise, the atan2 method of the Fixed-Point Designer fi object
uses an 8-bit lookup table as part of its implementation. An 8-bit table is only
256 elements long, so it is small and efficient. Eight bits also corresponds
to the size of a byte or a word on many platforms. Used in conjunction
with linear interpolation, and 16-bit output (lookup table value) precision,
an 8-bit-addressable lookup table provides very good accuracy as well as
performance.

Overview of Algorithm Implementation

To better understand the Fixed-Point Designer implementation, first consider
the symmetry of the four-quadrant atan2(y,x) function. If you always
compute the arctangent in the first-octant of the x-y space (i.e., between
angles 0 and pi/4 radians), then you can perform octant correction on the
resulting angle for any y and x values.

As part of the pre-processing portion, the signs and relative magnitudes of
y and x are considered, and a division is performed. Based on the signs
and magnitudes of y and x, only one of the following values is computed:
y/x, x/y, -y/x, -x/y, -y/-x, -x/-y. The unsigned result that is guaranteed to
be non-negative and purely fractional is computed, based on the a priori

3-73

3 Fixed-Point Topics

knowledge of the signs and magnitudes of y and x. An unsigned 16-bit
fractional fixed-point type is used for this value.

The 8 most significant bits (MSBs) of the stored unsigned integer
representation of the purely-fractional unsigned fixed-point result is then
used to directly index an 8-bit (length-256) lookup table value containing
angle values between 0 and pi/4 radians. Two table lookups are performed,
one at the computed table index location lutValBelow, and one at the next
index location lutValAbove:

idxUint8MSBs = bitsliceget(idxUFIX16, 16, 9);
zeroBasedIdx = int16(idxUint8MSBs);
lutValBelow = FI_ATAN_LUT(zeroBasedIdx + 1);
lutValAbove = FI_ATAN_LUT(zeroBasedIdx + 2);

The remaining 8 least significant bits (LSBs) of idxUFIX16 are used to
interpolate between these two table values. The LSB values are treated as a
normalized scaling factor with 8-bit fractional data type rFracNT:

rFracNT = numerictype(0,8,8); % fractional remainder data type
idxFrac8LSBs = reinterpretcast(bitsliceget(idxUFIX16,8,1), rFracNT);
rFraction = idxFrac8LSBs;

The two lookup table values, with the remainder (rFraction) value, are used
to perform a simple nearest-neighbor linear interpolation. A real multiply
is used to determine the weighted difference between the two points. This
results in a simple calculation (equivalent to one product and two sums) to
obtain the interpolated fixed-point result:

temp = rFraction * (lutValAbove - lutValBelow);
rslt = lutValBelow + temp;

Finally, based on the original signs and relative magnitudes of y and x, the
output result is formed using simple octant-correction logic and arithmetic.
The first-octant [0, pi/4] angle value results are added or subtracted with
constants to form the octant-corrected angle outputs.

Computing Fixed-point Argtangent Using ATAN2

3-74

Calculate Fixed-Point Arctangent

You can call the atan2 function directly using fixed-point or floating-point
inputs. The lookup table based algorithm is used for the fixed-point atan2
implementation:

zFxpLUT = atan2(inYfix,inXfix);

Calculate the Overall Error

You can compute the overall error by comparing the fixed-point lookup table
based approximation to the builtin atan2 function. The ideal reference output
is zfltRef.

lut_err = bsxfun(@minus, zfltRef, double(zFxpLUT));
max_lutErr_real_world_value = max(abs(lut_err'));
max_lutErr_bits = log2(max_lutErr_real_world_value);
fprintf('Overall error in bits: %g\n', max_lutErr_bits);

Overall error in bits: -12.6743

figno = figno + 1;
fidemo.fixpt_atan2_demo_plot(figno, theta, lut_err)

Comparison of Overall Error Between the Fixed-Point Implementations

As was done previously, you can compute the overall error by comparing
the fixed-point approximation(s) to the builtin atan2 function. The ideal
reference output is zfltRef.

zfixCDC15 = cordicatan2(inYfix, inXfix, 15);
cordic_15I_err = bsxfun(@minus, zfltRef, double(zfixCDC15));
poly_7p_err = bsxfun(@minus, zfltRef, double(zfix7p));
figno = figno + 1;
fidemo.fixpt_atan2_demo_plot(figno, theta, cordic_15I_err, poly_7p_err, lut

Comparing the Costs of the Fixed-Point Approximation Algorithms

The fixed-point CORDIC algorithm requires the following operations:

3-75

3 Fixed-Point Topics

• 1 table lookup per iteration

• 2 shifts per iteration

• 3 additions per iteration

The N-th order fixed-point Chebyshev polynomial approximation algorithm
requires the following operations:

• 1 division

• (N+1) multiplications

• (N-1)/2 additions

The simplified single lookup table algorithm with nearest-neighbor linear
interpolation requires the following operations:

• 1 division

• 2 table lookups

• 1 multiplication

• 2 additions

In real world applications, selecting an algorithm for the fixed-point
arctangent calculation typically depends on the required accuracy, cost and
hardware constraints.

close all; % close all figure windows

References

1 Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE
Transactions on Electronic Computers, Volume EC-8, September 1959,
pp330-334.

2 Ray Andraka, A survey of CORDIC algorithm for FPGA based computers,
Proceedings of the 1998 ACM/SIGDA sixth international symposium on
Field programmable gate arrays, Feb. 22-24, 1998, pp191-200

3-76

Compute Sine and Cosine Using CORDIC Rotation Kernel

Compute Sine and Cosine Using CORDIC Rotation Kernel
This example shows how to compute sine and cosine using a CORDIC
rotation kernel in MATLAB®. CORDIC-based algorithms are critical to
many embedded applications, including motor controls, navigation, signal
processing, and wireless communications.

Introduction

CORDIC is an acronym for COordinate Rotation DIgital Computer. The
Givens rotation-based CORDIC algorithm (see [1,2]) is one of the most
hardware efficient algorithms because it only requires iterative shift-add
operations. The CORDIC algorithm eliminates the need for explicit
multipliers, and is suitable for calculating a variety of functions, such as sine,
cosine, arcsine, arccosine, arctangent, vector magnitude, divide, square root,
hyperbolic and logarithmic functions.

The fixed-point CORDIC algorithm requires the following operations:

• 1 table lookup per iteration

• 2 shifts per iteration

• 3 additions per iteration

CORDIC Kernel Algorithm Using the Rotation Computation Mode

You can use a CORDIC rotation computing mode algorithm to calculate sine
and cosine simultaneously, compute polar-to-cartesian conversions, and for
other operations. In the rotation mode, the vector magnitude and an angle
of rotation are known and the coordinate (X-Y) components are computed
after rotation.

The CORDIC rotation mode algorithm begins by initializing an angle
accumulator with the desired rotation angle. Next, the rotation decision at
each CORDIC iteration is done in a way that decreases the magnitude of the
residual angle accumulator. The rotation decision is based on the sign of the
residual angle in the angle accumulator after each iteration.

In rotation mode, the CORDIC equations are:

3-77

3 Fixed-Point Topics

where if , and otherwise;

, and is the total number of iterations.

This provides the following result as approaches :

Where:

.

Typically is chosen to be a large-enough constant value. Thus, may be
pre-computed.

In rotation mode, the CORDIC algorithm is limited to rotation angles between
and . To support angles outside of that range, quadrant correction is often
used.

Efficient MATLAB Implementation of a CORDIC Rotation Kernel Algorithm

A MATLAB code implementation example of the CORDIC Rotation Kernel
algorithm follows (for the case of scalar x, y, and z). This same code can be
used for both fixed-point and floating-point operation.

CORDIC Rotation Kernel

function [x, y, z] = cordic_rotation_kernel(x, y, z, inpLUT, n)
% Perform CORDIC rotation kernel algorithm for N iterations.
xtmp = x;

3-78

Compute Sine and Cosine Using CORDIC Rotation Kernel

ytmp = y;
for idx = 1:n

if z < 0
z(:) = accumpos(z, inpLUT(idx));
x(:) = accumpos(x, ytmp);
y(:) = accumneg(y, xtmp);

else
z(:) = accumneg(z, inpLUT(idx));
x(:) = accumneg(x, ytmp);
y(:) = accumpos(y, xtmp);

end
xtmp = bitsra(x, idx); % bit-shift-right for multiply by 2^(-idx)
ytmp = bitsra(y, idx); % bit-shift-right for multiply by 2^(-idx)

end

CORDIC-Based Sine and Cosine Computation Using Normalized Inputs

Sine and Cosine Computation Using the CORDIC Rotation Kernel

The judicious choice of initial values allows the CORDIC kernel rotation mode
algorithm to directly compute both sine and cosine simultaneously.

First, the following initialization steps are performed:

• The angle input look-up table inpLUT is set to atan(2 .^ -(0:N-1)).

• is set to the input argument value.

• is set to .

• is set to zero.

After iterations, these initial values lead to the following outputs as
approaches :

•

•

Other rotation-kernel-based function approximations are possible via pre- and
post-processing and using other initial conditions (see [1,2]).

3-79

3 Fixed-Point Topics

The CORDIC algorithm is usually run through a specified (constant) number
of iterations since ending the CORDIC iterations early would break pipelined
code, and the CORDIC gain would not be constant because would vary.

For very large values of , the CORDIC algorithm is guaranteed to converge,
but not always monotonically. You can typically achieve greater accuracy by
increasing the total number of iterations.

Example

Suppose that you have a rotation angle sensor (e.g. in a servo motor) that
uses formatted integer values to represent measured angles of rotation. Also
suppose that you have a 16-bit integer arithmetic unit that can perform
add, subtract, shift, and memory operations. With such a device, you could
implement the CORDIC rotation kernel to efficiently compute cosine and sine
(equivalently, cartesian X and Y coordinates) from the sensor angle values,
without the use of multiplies or large lookup tables.

sumWL = 16; % CORDIC sum word length
thNorm = -1.0:(2^-8):1.0; % Normalized [-1.0, 1.0] angle values
theta = fi(thNorm, 1, sumWL); % Fixed-point angle values (best precision)

z_NT = numerictype(theta); % Data type for Z
xyNT = numerictype(1, sumWL, sumWL-2); % Data type for X-Y
x_out = fi(zeros(size(theta)), xyNT); % X array pre-allocation
y_out = fi(zeros(size(theta)), xyNT); % Y array pre-allocation
z_out = fi(zeros(size(theta)), z_NT); % Z array pre-allocation

niters = 13; % Number of CORDIC iterations
inpLUT = fi(atan(2 .^ (-((0:(niters-1))'))) .* (2/pi), z_NT); % Normalized
AnGain = prod(sqrt(1+2.^(-2*(0:(niters-1))))); % CORDIC gain
inv_An = 1 / AnGain; % 1/A_n inverse of CORDIC gain

for idx = 1:length(theta)
% CORDIC rotation kernel iterations
[x_out(idx), y_out(idx), z_out(idx)] = ...

fidemo.cordic_rotation_kernel(...
fi(inv_An, xyNT), fi(0, xyNT), theta(idx), inpLUT, niters);

end

3-80

Compute Sine and Cosine Using CORDIC Rotation Kernel

% Plot the CORDIC-approximated sine and cosine values
figure;
subplot(411);
plot(thNorm, x_out);
axis([-1 1 -1 1]);
title('Normalized X Values from CORDIC Rotation Kernel Iterations');
subplot(412);
thetaRadians = pi/2 .* thNorm; % real-world range [-pi/2 pi/2] angle values
plot(thNorm, cos(thetaRadians) - double(x_out));
title('Error between MATLAB COS Reference Values and X Values');
subplot(413);
plot(thNorm, y_out);
axis([-1 1 -1 1]);
title('Normalized Y Values from CORDIC Rotation Kernel Iterations');
subplot(414);
plot(thNorm, sin(thetaRadians) - double(y_out));
title('Error between MATLAB SIN Reference Values and Y Values');

References

1 Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE
Transactions on Electronic Computers, Volume EC-8, September 1959,
pp330-334.

2 Ray Andraka, A survey of CORDIC algorithm for FPGA based computers,
Proceedings of the 1998 ACM/SIGDA sixth international symposium on
Field programmable gate arrays, Feb. 22-24, 1998, pp191-200

3-81

3 Fixed-Point Topics

Perform QR Factorization Using CORDIC
This example shows how to write MATLAB® code that works for both
floating-point and fixed-point data types. The algorithm used in this example
is the QR factorization implemented via CORDIC (Coordinate Rotation
Digital Computer).

A good way to write an algorithm intended for a fixed-point target is to write
it in MATLAB using builtin floating-point types so you can verify that the
algorithm works. When you refine the algorithm to work with fixed-point
types, then the best thing to do is to write it so that the same code continues
working with floating-point. That way, when you are debugging, then you
can switch the inputs back and forth between floating-point and fixed-point
types to determine if a difference in behavior is because of fixed-point effects
such as overflow and quantization versus an algorithmic difference. Even if
the algorithm is not well suited for a floating-point target (as is the case of
using CORDIC in the following example), it is still advantageous to have your
MATLAB code work with floating-point for debugging purposes.

In contrast, you may have a completely different strategy if your target is
floating point. For example, the QR algorithm is often done in floating-point
with Householder transformations and row or column pivoting. But in
fixed-point it is often more efficient to use CORDIC to apply Givens rotations
with no pivoting.

This example addresses the first case, where your target is fixed-point, and
you want an algorithm that is independent of data type because it is easier
to develop and debug.

In this example you will learn various coding methods that can be applied
across systems. The significant design patterns used in this example are
the following:

• Data Type Independence: the algorithm is written in such a way that
the MATLAB code is independent of data type, and will work equally
well for fixed-point, double-precision floating-point, and single-precision
floating-point.

• Overflow Prevention: method to guarantee not to overflow. This
demonstrates how to prevent overflows in fixed-point.

3-82

Perform QR Factorization Using CORDIC

• Solving Systems of Equations: method to use computational efficiency.
Narrow your code scope by isolating what you need to define.

The main part in this example is an implementation of the QR factorization in
fixed-point arithmetic using CORDIC for the Givens rotations. The algorithm
is written in such a way that the MATLAB code is independent of data type,
and will work equally well for fixed-point, double-precision floating-point,
and single-precision floating-point.

The QR factorization of M-by-N matrix A produces an M-by-N upper
triangular matrix R and an M-by-M orthogonal matrix Q such that A = Q*R.
A matrix is upper triangular if it has all zeros below the diagonal. An M-by-M
matrix Q is orthogonal if Q'*Q = eye (M), the identity matrix.

The QR factorization is widely used in least-squares problems, such as the
recursive least squares (RLS) algorithm used in adaptive filters.

The CORDIC algorithm is attractive for computing the QR algorithm in
fixed-point because you can apply orthogonal Givens rotations with CORDIC
using only shift and add operations.

Setup

So this example does not change your preferences or settings, we store the
original state here, and restore them at the end.

originalFormat = get(0, 'format'); format short
originalFipref = get(fipref); reset(fipref);
originalGlobalFimath = fimath; resetglobalfimath;

Defining the CORDIC QR Algorithm

The CORDIC QR algorithm is given in the following MATLAB function,
where A is an M-by-N real matrix, and niter is the number of CORDIC
iterations. Output Q is an M-by-M orthogonal matrix, and R is an M-by-N
upper-triangular matrix such that Q*R = A.

function [Q,R] = cordicqr(A,niter)
Kn = inverse_cordic_growth_constant(niter);
[m,n] = size(A);

3-83

3 Fixed-Point Topics

R = A;
Q = coder.nullcopy(repmat(A(:,1),1,m)); % Declare type and size of Q
Q(:) = eye(m); % Initialize Q
for j=1:n

for i=j+1:m
[R(j,j:end),R(i,j:end),Q(:,j),Q(:,i)] = ...

cordicgivens(R(j,j:end),R(i,j:end),Q(:,j),Q(:,i),niter,Kn);
end

end
end

This function was written to be independent of data type. It works equally
well with builtin floating-point types (double and single) and with the
fixed-point fi object.

One of the trickiest aspects of writing data-type independent code is to specify
data type and size for a new variable. In order to preserve data types without
having to explicitly specify them, the output R was set to be the same as
input A, like this:

R = A;

In addition to being data-type independent, this function was written in such
a way that MATLAB Coder™ will be able to generate efficient C code from
it. In MATLAB, you most often declare and initialize a variable in one step,
like this:

Q = eye(m)

However, Q=eye(m) would always produce Q as a double-precision floating
point variable. If A is fixed-point, then we want Q to be fixed-point; if A is
single, then we want Q to be single; etc.

Hence, you need to declare the type and size of Q in one step, and then
initialize it in a second step. This gives MATLAB Coder the information it
needs to create an efficient C program with the correct types and sizes. In
the finished code you initialize output Q to be an M-by-M identity matrix and
the same data type as A, like this:

Q = coder.nullcopy(repmat(A(:,1),1,m)); % Declare type and size of Q
Q(:) = eye(m); % Initialize Q

3-84

Perform QR Factorization Using CORDIC

The coder.nullcopy function declares the size and type of Q without
initializing it. The expansion of the first column of A with repmat won’t
appear in code generated by MATLAB; it is only used to specify the size. The
repmat function was used instead of A(:,1:m) because A may have more
rows than columns, which will be the case in a least-squares problem. You
have to be sure to always assign values to every element of an array when
you declare it with coder.nullcopy, because if you don’t then you will have
uninitialized memory.

You will notice this pattern of assignment again and again. This is another
key enabler of data-type independent code.

The heart of this function is applying orthogonal Givens rotations in-place
to the rows of R to zero out sub-diagonal elements, thus forming an
upper-triangular matrix. The same rotations are applied in-place to the
columns of the identity matrix, thus forming orthogonal Q. The Givens
rotations are applied using the cordicgivens function, as defined in the
next section. The rows of R and columns of Q are used as both input and
output to the cordicgivens function so that the computation is done in-place,
overwriting R and Q.

[R(j,j:end),R(i,j:end),Q(:,j),Q(:,i)] = ...
cordicgivens(R(j,j:end),R(i,j:end),Q(:,j),Q(:,i),niter,Kn);

Defining the CORDIC Givens Rotation

The cordicgivens function applies a Givens rotation by performing CORDIC
iterations to rows x=R(j,j:end), y=R(i,j:end) around the angle defined by
x(1)=R(j,j) and y(1)=R(i,j) where i>j, thus zeroing out R(i,j). The
same rotation is applied to columns u = Q(:,j) and v = Q(:,i), thus
forming the orthogonal matrix Q.

function [x,y,u,v] = cordicgivens(x,y,u,v,niter,Kn)
if x(1)<0

% Compensation for 3rd and 4th quadrants
x(:) = -x; u(:) = -u;
y(:) = -y; v(:) = -v;

end
for i=0:niter-1

x0 = x;

3-85

3 Fixed-Point Topics

u0 = u;
if y(1)<0

% Counter-clockwise rotation
% x and y form R, u and v form Q
x(:) = x - bitsra(y, i); u(:) = u - bitsra(v, i);
y(:) = y + bitsra(x0,i); v(:) = v + bitsra(u0,i);

else
% Clockwise rotation
% x and y form R, u and v form Q
x(:) = x + bitsra(y, i); u(:) = u + bitsra(v, i);
y(:) = y - bitsra(x0,i); v(:) = v - bitsra(u0,i);

end
end
% Set y(1) to exactly zero so R will be upper triangular without round of
% showing up in the lower triangle.
y(1) = 0;
% Normalize the CORDIC gain
x(:) = Kn * x; u(:) = Kn * u;
y(:) = Kn * y; v(:) = Kn * v;

end

The advantage of using CORDIC in fixed-point over the standard Givens
rotation is that CORDIC does not use square root or divide operations.
Only bit-shifts, addition, and subtraction are needed in the main loop, and
one scalar-vector multiply at the end to normalize the CORDIC gain. Also,
CORDIC rotations work well in pipelined architectures.

The bit shifts in each iteration are performed with the bit shift right
arithmetic (bitsra) function instead of bitshift, multiplication by 0.5, or
division by 2, because bitsra

• generates more efficient embedded code,

• works equally well with positive and negative numbers,

• works equally well with floating-point, fixed-point and integer types, and

• keeps this code independent of data type.

3-86

Perform QR Factorization Using CORDIC

It is worthwhile to note that there is a difference between sub-scripted
assignment (subsasgn) into a variable a(:) = b versus overwriting a
variable a = b. Sub-scripted assignment into a variable like this

x(:) = x + bitsra(y, i);

always preserves the type of the left-hand-side argument x. This is the
recommended programming style in fixed-point. For example fixed-point
types often grow their word length in a sum, which is governed by the SumMode
property of the fimath object, so that the right-hand-side x + bitsra(y,i)
can have a different data type than x.

If, instead, you overwrite the left-hand-side like this

x = x + bitsra(y, i);

then the left-hand-side x takes on the type of the right-hand-side sum. This
programming style leads to changing the data type of x in fixed-point code,
and is discouraged.

Defining the Inverse CORDIC Growth Constant

This function returns the inverse of the CORDIC growth factor after niter
iterations. It is needed because CORDIC rotations grow the values by a factor
of approximately 1.6468, depending on the number of iterations, so the gain
is normalized in the last step of cordicgivens by a multiplication by the
inverse Kn = 1/1.6468 = 0.60725.

function Kn = inverse_cordic_growth_constant(niter)
Kn = 1/prod(sqrt(1+2.^(-2*(0:double(niter)-1))));

end

Exploring CORDIC Growth as a Function of Number of Iterations

The function for CORDIC growth is defined as

growth = prod(sqrt(1+2.^(-2*(0:double(niter)-1))))

and the inverse is

inverse_growth = 1 ./ growth

3-87

3 Fixed-Point Topics

Growth is a function of the number of iterations niter, and quickly converges
to approximately 1.6468, and the inverse converges to approximately 0.60725.
You can see in the following table that the difference from one iteration to the
next ceases to change after 27 iterations. This is because the calculation hit
the limit of precision in double floating-point at 27 iterations.

niter growth diff(growth) 1./growth diff(1.
0 1.000000000000000 0 1.000000000000000
1 1.414213562373095 0.414213562373095 0.707106781186547 -0.292893
2 1.581138830084190 0.166925267711095 0.632455532033676 -0.074651
3 1.629800601300662 0.048661771216473 0.613571991077896 -0.018883
4 1.642484065752237 0.012683464451575 0.608833912517752 -0.004738
5 1.645688915757255 0.003204850005018 0.607648256256168 -0.001185
6 1.646492278712479 0.000803362955224 0.607351770141296 -0.000296
7 1.646693254273644 0.000200975561165 0.607277644093526 -0.000074
8 1.646743506596901 0.000050252323257 0.607259112298893 -0.000018
9 1.646756070204878 0.000012563607978 0.607254479332562 -0.000004

10 1.646759211139822 0.000003140934944 0.607253321089875 -0.000001
11 1.646759996375617 0.000000785235795 0.607253031529134 -0.000000
12 1.646760192684695 0.000000196309077 0.607252959138945 -0.000000
13 1.646760241761972 0.000000049077277 0.607252941041397 -0.000000
14 1.646760254031292 0.000000012269320 0.607252936517010 -0.000000
15 1.646760257098622 0.000000003067330 0.607252935385914 -0.000000
16 1.646760257865455 0.000000000766833 0.607252935103139 -0.000000
17 1.646760258057163 0.000000000191708 0.607252935032446 -0.000000
18 1.646760258105090 0.000000000047927 0.607252935014772 -0.000000
19 1.646760258117072 0.000000000011982 0.607252935010354 -0.000000
20 1.646760258120067 0.000000000002995 0.607252935009249 -0.000000
21 1.646760258120816 0.000000000000749 0.607252935008973 -0.000000
22 1.646760258121003 0.000000000000187 0.607252935008904 -0.000000
23 1.646760258121050 0.000000000000047 0.607252935008887 -0.000000
24 1.646760258121062 0.000000000000012 0.607252935008883 -0.000000
25 1.646760258121065 0.000000000000003 0.607252935008882 -0.000000
26 1.646760258121065 0.000000000000001 0.607252935008881 -0.000000
27 1.646760258121065 0 0.607252935008881
28 1.646760258121065 0 0.607252935008881
29 1.646760258121065 0 0.607252935008881
30 1.646760258121065 0 0.607252935008881
31 1.646760258121065 0 0.607252935008881

3-88

Perform QR Factorization Using CORDIC

32 1.646760258121065 0 0.607252935008881

Comparing CORDIC to the Standard Givens Rotation

The cordicgivens function is numerically equivalent to the following
standard Givens rotation algorithm from Golub & Van Loan, Matrix
Computations. In the cordicqr function, if you replace the call to
cordicgivens with a call to givensrotation, then you will have the standard
Givens QR algorithm.

function [x,y,u,v] = givensrotation(x,y,u,v)
a = x(1); b = y(1);
if b==0

% No rotation necessary. c = 1; s = 0;
return;

else
if abs(b) > abs(a)

t = -a/b; s = 1/sqrt(1+t^2); c = s*t;
else

t = -b/a; c = 1/sqrt(1+t^2); s = c*t;
end

end
x0 = x; u0 = u;
% x and y form R, u and v form Q
x(:) = c*x0 - s*y; u(:) = c*u0 - s*v;
y(:) = s*x0 + c*y; v(:) = s*u0 + c*v;

end

The givensrotation function uses division and square root, which are
expensive in fixed-point, but good for floating-point algorithms.

Example of CORDIC Rotations

Here is a 3-by-3 example that follows the CORDIC rotations through each
step of the algorithm. The algorithm uses orthogonal rotations to zero out
the subdiagonal elements of R using the diagonal elements as pivots. The
same rotations are applied to the identity matrix, thus producing orthogonal
Q such that Q*R = A.

Let A be a random 3-by-3 matrix, and initialize R = A, and Q = eye(3).

3-89

3 Fixed-Point Topics

R = A = [-0.8201 0.3573 -0.0100
-0.7766 -0.0096 -0.7048
-0.7274 -0.6206 -0.8901]

Q = [1 0 0
0 1 0
0 0 1]

The first rotation is about the first and second row of R and the first and
second column of Q. Element R(1,1) is the pivot and R(2,1) rotates to 0.

R before the first rotation R after the first rotation
x [-0.8201 0.3573 -0.0100] -> x [1.1294 -0.2528 0.4918]
y [-0.7766 -0.0096 -0.7048] -> y [0 0.2527 0.5049]

-0.7274 -0.6206 -0.8901 -0.7274 -0.6206 -0.8901

Q before the first rotation Q after the first rotation
u v u v

[1] [0] 0 [-0.7261] [0.6876] 0
[0] [1] 0 -> [-0.6876] [-0.7261] 0
[0] [0] 1 [0] [0] 1

In the following plot, you can see the growth in x in each of the CORDIC
iterations. The growth is factored out at the last step by multiplying it by Kn
= 0.60725. You can see that y(1) iterates to 0. Initially, the point [x(1),
y(1)] is in the third quadrant, and is reflected into the first quadrant before
the start of the CORDIC iterations.

The second rotation is about the first and third row of R and the first and
third column of Q. Element R(1,1) is the pivot and R(3,1) rotates to 0.

R before the second rotation R after the second rotation
x [1.1294 -0.2528 0.4918] -> x [1.3434 0.1235 0.8954]

0 0.2527 0.5049 0 0.2527 0.5049
y [-0.7274] -0.6206 -0.8901 -> y [0 -0.6586 -0.4820]

Q before the second rotation Q after the second rotation
u v u v

3-90

Perform QR Factorization Using CORDIC

[-0.7261] 0.6876 [0] [-0.6105] 0.6876 [-0.3932]
[-0.6876] -0.7261 [0] -> [-0.5781] -0.7261 [-0.3723]
[0] 0 [1] [-0.5415] 0 [0.8407]

The third rotation is about the second and third row of R and the second and
third column of Q. Element R(2,2) is the pivot and R(3,2) rotates to 0.

R before the third rotation R after the third rotation
1.3434 0.1235 0.8954 1.3434 0.1235 0.8954

x 0 [0.2527 0.5049] -> x 0 [0.7054 0.6308]
y 0 [-0.6586 -0.4820] -> y 0 [0 0.2987]

Q before the third rotation Q after the third rotation
u v u v

-0.6105 [0.6876] [-0.3932] -0.6105 [0.6134] [0.5011]
-0.5781 [-0.7261] [-0.3723] -> -0.5781 [0.0875] [-0.8113]
-0.5415 [0] [0.8407] -0.5415 [-0.7849] [0.3011]

This completes the QR factorization. R is upper triangular, and Q is
orthogonal.

R =
1.3434 0.1235 0.8954

0 0.7054 0.6308
0 0 0.2987

Q =
-0.6105 0.6134 0.5011
-0.5781 0.0875 -0.8113
-0.5415 -0.7849 0.3011

You can verify that Q is within roundoff error of being orthogonal by
multiplying and seeing that it is close to the identity matrix.

Q*Q' = 1.0000 0.0000 0.0000

3-91

3 Fixed-Point Topics

0.0000 1.0000 0
0.0000 0 1.0000

Q'*Q = 1.0000 0.0000 -0.0000
0.0000 1.0000 -0.0000

-0.0000 -0.0000 1.0000

You can see the error difference by subtracting the identity matrix.

Q*Q' - eye(size(Q)) = 0 2.7756e-16 3.0531e-16
2.7756e-16 4.4409e-16 0
3.0531e-16 0 6.6613e-16

You can verify that Q*R is close to A by subtracting to see the error difference.

Q*R - A = -3.7802e-11 -7.2325e-13 -2.7756e-17
-3.0512e-10 1.1708e-12 -4.4409e-16
3.6836e-10 -4.3487e-13 -7.7716e-16

Determining the Optimal Output Type of Q for Fixed Word Length

Since Q is orthogonal, you know that all of its values are between -1 and +1.
In floating-point, there is no decision about the type of Q: it should be the
same floating-point type as A. However, in fixed-point, you can do better than
making Q have the identical fixed-point type as A. For example, if A has word
length 16 and fraction length 8, and if we make Q also have word length 16
and fraction length 8, then you force Q to be less accurate than it could be and
waste the upper half of the fixed-point range.

The best type for Q is to make it have full range of its possible outputs, plus
accommodate the 1.6468 CORDIC growth factor in intermediate calculations.
Therefore, assuming that the word length of Q is the same as the word length
of input A, then the best fraction length for Q is 2 bits less than the word
length (one bit for 1.6468 and one bit for the sign).

Hence, our initialization of Q in cordicqr can be improved like this.

if isfi(A) && (isfixed(A) || isscaleddouble(A))
Q = fi(one*eye(m), get(A,'NumericType'), ...

'FractionLength',get(A,'WordLength')-2);
else

3-92

Perform QR Factorization Using CORDIC

Q = coder.nullcopy(repmat(A(:,1),1,m));
Q(:) = eye(m);

end

A slight disadvantage is that this section of code is dependent on data type.
However, you gain a major advantage by picking the optimal type for Q, and
the main algorithm is still independent of data type. You can do this kind of
input parsing in the beginning of a function and leave the main algorithm
data-type independent.

Preventing Overflow in Fixed Point R

This section describes how to determine a fixed-point output type for R in
order to prevent overflow. In order to pick an output type, you need to know
how much the magnitude of the values of R will grow.

Given real matrix A and its QR factorization computed by Givens rotations
without pivoting, an upper-bound on the magnitude of the elements of R
is the square-root of the number of rows of A times the magnitude of the
largest element in A. Furthermore, this growth will never be greater during
an intermediate computation. In other words, let [m,n]=size(A), and
[Q,R]=givensqr(A). Then

max(abs(R(:))) <= sqrt(m) * max(abs(A(:))).

This is true because the each element of R is formed from orthogonal rotations
from its corresponding column in A, so the largest that any element R(i,j)
can get is if all of the elements of its corresponding column A(:,j) were
rotated to a single value. In other words, the largest possible value will be
bounded by the 2-norm of A(:,j). Since the 2-norm of A(:,j) is equal to the
square-root of the sum of the squares of the m elements, and each element is
less-than-or-equal-to the largest element of A, then

norm(A(:,j)) <= sqrt(m) * max(abs(A(:))).

That is, for all j

norm(A(:,j)) = sqrt(A(1,j)^2 + A(2,j)^2 + ... + A(m,j)^2)
<= sqrt(m * max(abs(A(:)))^2)
= sqrt(m) * max(abs(A(:))).

3-93

3 Fixed-Point Topics

and so for all i,j

abs(R(i,j)) <= norm(A(:,j)) <= sqrt(m) * max(abs(A(:))).

Hence, it is also true for the largest element of R

max(abs(R(:))) <= sqrt(m) * max(abs(A(:))).

This becomes useful in fixed-point where the elements of A are often very
close to the maximum value attainable by the data type, so we can set a tight
upper bound without knowing the values of A. This is important because
we want to set an output type for R with a minimum number of bits, only
knowing the upper bound of the data type of A. You can use fi method
upperbound to get this value.

Therefore, for all i,j

abs(R(i,j)) <= sqrt(m) * upperbound(A)

Note that sqrt(m)*upperbound(A) is also an upper bound for the elements
of A:

abs(A(i,j)) <= upperbound(A) <= sqrt(m)*upperbound(A)

Therefore, when picking fixed-point data types, sqrt(m)*upperbound(A) is
an upper bound that will work for both A and R.

Attaining the maximum is easy and common. The maximum will occur when
all elements get rotated into a single element, like the following matrix with
orthogonal columns:

A = [7 -7 7 7
7 7 -7 7
7 -7 -7 -7
7 7 7 -7];

Its maximum value is 7 and its number of rows is m=4, so we expect that
the maximum value in R will be bounded by max(abs(A(:)))*sqrt(m) =
7*sqrt(4) = 14. Since A in this example is orthogonal, each column gets
rotated to the max value on the diagonal.

niter = 52;

3-94

Perform QR Factorization Using CORDIC

[Q,R] = cordicqr(A,niter)

Q =

0.5000 -0.5000 0.5000 0.5000
0.5000 0.5000 -0.5000 0.5000
0.5000 -0.5000 -0.5000 -0.5000
0.5000 0.5000 0.5000 -0.5000

R =

14.0000 0.0000 -0.0000 -0.0000
0 14.0000 -0.0000 0.0000
0 0 14.0000 0.0000
0 0 0 14.0000

Another simple example of attaining maximum growth is a matrix that has
all identical elements, like a matrix of all ones. A matrix of ones will get
rotated into 1*sqrt(m) in the first row and zeros elsewhere. For example,
this 9-by-5 matrix will have all 1*sqrt(9)=3 in the first row of R.

m = 9; n = 5;
A = ones(m,n)
niter = 52;
[Q,R] = cordicqr(A,niter)

A =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

3-95

3 Fixed-Point Topics

1 1 1 1 1

Q =

Columns 1 through 7

0.3333 0.5567 -0.6784 0.3035 -0.1237 0.0503 0.0158
0.3333 0.0296 0.2498 -0.1702 -0.6336 0.1229 -0.3012
0.3333 0.2401 0.0562 -0.3918 0.4927 0.2048 -0.5395
0.3333 0.0003 0.0952 -0.1857 0.2148 0.4923 0.7080
0.3333 0.1138 0.0664 -0.2263 0.1293 -0.8348 0.2510
0.3333 -0.3973 -0.0143 0.3271 0.4132 -0.0354 -0.2165
0.3333 0.1808 0.3538 -0.1012 -0.2195 0 0.0824
0.3333 -0.6500 -0.4688 -0.2380 -0.2400 0 0
0.3333 -0.0740 0.3400 0.6825 -0.0331 0 0

Columns 8 through 9

0.0056 -0.0921
-0.5069 -0.1799
0.0359 0.3122

-0.2351 -0.0175
-0.2001 0.0610
-0.0939 -0.6294
0.7646 -0.2849
0.2300 0.2820

0 0.5485

R =

3.0000 3.0000 3.0000 3.0000 3.0000
0 0.0000 0.0000 0.0000 0.0000
0 0 0.0000 0.0000 0.0000
0 0 0 0.0000 0.0000
0 0 0 0 0.0000
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3-96

Perform QR Factorization Using CORDIC

0 0 0 0 0

As in the cordicqr function, the Givens QR algorithm is often written by
overwriting A in-place with R, so being able to cast A into R’s data type at the
beginning of the algorithm is convenient.

In addition, if you compute the Givens rotations with CORDIC, there is a
growth-factor that converges quickly to approximately 1.6468. This growth
factor gets normalized out after each Givens rotation, but you need to
accommodate it in the intermediate calculations. Therefore, the number of
additional bits that are required including the Givens and CORDIC growth
are log2(1.6468* sqrt(m)). The additional bits of head-room can be added
either by increasing the word length, or decreasing the fraction length.

A benefit of increasing the word length is that it allows for the maximum
possible precision for a given word length. A disadvantage is that the optimal
word length may not correspond to a native type on your processor (e.g.
increasing from 16 to 18 bits), or you may have to increase to the next larger
native word size which could be quite large (e.g. increasing from 16 to 32 bits,
when you only needed 18).

A benefit of decreasing fraction length is that you can do the computation
in-place in the native word size of A. A disadvantage is that you lose precision.

Another option is to pre-scale the input by right-shifting. This is equivalent to
decreasing the fraction length, with the additional disadvantage of changing
the scaling of your problem. However, this may be an attractive option to you
if you prefer to only work in fractional arithmetic or integer arithmetic.

Example of Fixed Point Growth in R

If you have a fixed-point input matrix A, you can define fixed-point output R
with the growth defined in the previous section.

Start with a random matrix X.

X = [0.0513 -0.2097 0.9492 0.2614
0.8261 0.6252 0.3071 -0.9415
1.5270 0.1832 0.1352 -0.1623

3-97

3 Fixed-Point Topics

0.4669 -1.0298 0.5152 -0.1461];

Create a fixed-point A from X.

A = sfi(X)

A =

0.0513 -0.2097 0.9492 0.2614
0.8261 0.6252 0.3071 -0.9415
1.5270 0.1832 0.1352 -0.1623
0.4669 -1.0298 0.5152 -0.1461

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 14

m = size(A,1)

m =

4

The growth factor is 1.6468 times the square-root of the number of rows of A.
The bit growth is the next integer above the base-2 logarithm of the growth.

bit_growth = ceil(log2(cordic_growth_constant * sqrt(m)))

bit_growth =

2

Initialize R with the same values as A, and a word length increased by the bit
growth.

3-98

Perform QR Factorization Using CORDIC

R = sfi(A, get(A,'WordLength')+bit_growth, get(A,'FractionLength'))

R =

0.0513 -0.2097 0.9492 0.2614
0.8261 0.6252 0.3071 -0.9415
1.5270 0.1832 0.1352 -0.1623
0.4669 -1.0298 0.5152 -0.1461

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18

FractionLength: 14

Use R as input and overwrite it.

niter = get(R,'WordLength') - 1
[Q,R] = cordicqr(R, niter)

niter =

17

Q =

0.0284 -0.1753 0.9110 0.3723
0.4594 0.4470 0.3507 -0.6828
0.8490 0.0320 -0.2169 0.4808
0.2596 -0.8766 -0.0112 -0.4050

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18

FractionLength: 16

R =

3-99

3 Fixed-Point Topics

1.7989 0.1694 0.4166 -0.6008
0 1.2251 -0.4764 -0.3438
0 0 0.9375 -0.0555
0 0 0 0.7214

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18

FractionLength: 14

Verify that Q*Q' is near the identity matrix.

double(Q)*double(Q')

ans =

1.0000 -0.0001 0.0000 0.0000
-0.0001 1.0001 0.0000 -0.0000
0.0000 0.0000 1.0000 -0.0000
0.0000 -0.0000 -0.0000 1.0000

Verify that Q*R - A is small relative to the precision of A.

err = double(Q)*double(R) - double(A)

err =

1.0e-03 *

-0.1048 -0.2355 0.1829 -0.2146
0.3472 0.2949 0.0260 -0.2570
0.2776 -0.1740 -0.1007 0.0966
0.0138 -0.1558 0.0417 -0.0362

Increasing Precision in R

3-100

Perform QR Factorization Using CORDIC

The previous section showed you how to prevent overflow in R while
maintaining the precision of A. If you leave the fraction length of R the
same as A, then R cannot have more precision than A, and your precision
requirements may be such that the precision of R must be greater.

An extreme example of this is to define a matrix with an integer fixed-point
type (i.e. fraction length is zero). Let matrix X have elements that are the full
range for signed 8 bit integers, between -128 and +127.

X = [-128 -128 -128 127
-128 127 127 -128
127 127 127 127
127 127 -128 -128];

Define fixed-point A to be equivalent to an 8-bit integer.

A = sfi(X,8,0)

A =

-128 -128 -128 127
-128 127 127 -128
127 127 127 127
127 127 -128 -128

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8

FractionLength: 0

m = size(A,1)

m =

4

3-101

3 Fixed-Point Topics

The necessary growth is 1.6468 times the square-root of the number of rows
of A.

bit_growth = ceil(log2(cordic_growth_constant*sqrt(m)))

bit_growth =

2

Initialize R with the same values as A, and allow for bit growth like you did in
the previous section.

R = sfi(A, get(A,'WordLength')+bit_growth, get(A,'FractionLength'))

R =

-128 -128 -128 127
-128 127 127 -128
127 127 127 127
127 127 -128 -128

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 10

FractionLength: 0

Compute the QR factorization, overwriting R.

niter = get(R,'WordLength') - 1;
[Q,R] = cordicqr(R, niter)

Q =

-0.5039 -0.2930 -0.4062 -0.6914
-0.5039 0.8750 0.0039 0.0078
0.5000 0.2930 0.3984 -0.7148

3-102

Perform QR Factorization Using CORDIC

0.4922 0.2930 -0.8203 0.0039

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 10

FractionLength: 8

R =

257 126 -1 -1
0 225 151 -148
0 0 211 104
0 0 0 -180

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 10

FractionLength: 0

Notice that R is returned with integer values because you left the fraction
length of R at 0, the same as the fraction length of A.

The scaling of the least-significant bit (LSB) of A is 1, and you can see that
the error is proportional to the LSB.

err = double(Q)*double(R)-double(A)

err =

-1.5039 -1.4102 -1.4531 -0.9336
-1.5039 6.3828 6.4531 -1.9961
1.5000 1.9180 0.8086 -0.7500

-0.5078 0.9336 -1.3398 -1.8672

You can increase the precision in the QR factorization by increasing the
fraction length. In this example, you needed 10 bits for the integer part (8 bits
to start with, plus 2 bits growth), so when you increase the fraction length
you still need to keep the 10 bits in the integer part. For example, you can

3-103

3 Fixed-Point Topics

increase the word length to 32 and set the fraction length to 22, which leaves
10 bits in the integer part.

R = sfi(A, 32, 22)

R =

-128 -128 -128 127
-128 127 127 -128
127 127 127 127
127 127 -128 -128

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 22

niter = get(R,'WordLength') - 1;
[Q,R] = cordicqr(R, niter)

Q =

-0.5020 -0.2913 -0.4088 -0.7043
-0.5020 0.8649 0.0000 0.0000
0.4980 0.2890 0.4056 -0.7099
0.4980 0.2890 -0.8176 0.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 30

R =

255.0020 127.0029 0.0039 0.0039
0 220.5476 146.8413 -147.9930
0 0 208.4793 104.2429
0 0 0 -179.6037

3-104

Perform QR Factorization Using CORDIC

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 22

Now you can see fractional parts in R, and Q*R-A is small.

err = double(Q)*double(R)-double(A)

err =

1.0e-05 *

-0.1234 -0.0014 -0.0845 0.0267
-0.1234 0.2574 0.1260 -0.1094
0.0720 0.0289 -0.0400 -0.0684
0.0957 0.0818 -0.1034 0.0095

The number of bits you choose for fraction length will depend on the precision
requirements for your particular algorithm.

Picking Default Number of Iterations

The number of iterations is dependent on the desired precision, but limited
by the word length of A. With each iteration, the values are right-shifted one
bit. After the last bit gets shifted off and the value becomes 0, then there is
no additional value in continuing to rotate. Hence, the most precision will be
attained by choosing niter to be one less than the word length.

For floating-point, the number of iterations is bounded by the size of the
mantissa. In double, 52 iterations is the most you can do to continue adding
to something with the same exponent. In single, it is 23. See the reference
page for eps for more information about floating-point accuracy.

Thus, we can make our code more usable by not requiring the number of
iterations to be input, and assuming that we want the most precision possible
by changing cordicqr to use this default for niter.

3-105

3 Fixed-Point Topics

function [Q,R] = cordicqr(A,varargin)
if nargin>=2 && ~isempty(varargin{1})

niter = varargin{1};
elseif isa(A,'double') || isfi(A) && isdouble(A)

niter = 52;
elseif isa(A,'single') || isfi(A) && issingle(A)

niter = single(23);
elseif isfi(A)

niter = int32(get(A,'WordLength') - 1);
else

assert(0,'First input must be double, single, or fi.');
end

A disadvantage of doing this is that this makes a section of our code dependent
on data type. However, an advantage is that the function is much more
convenient to use because you don’t have to specify niter if you don’t want
to, and the main algorithm is still data-type independent. Similar to picking
an optimal output type for Q, you can do this kind of input parsing in the
beginning of a function and leave the main algorithm data-type independent.

Here is an example from a previous section, without needing to specify an
optimal niter.

A = [7 -7 7 7
7 7 -7 7
7 -7 -7 -7
7 7 7 -7];

[Q,R] = cordicqr(A)

Q =

0.5000 -0.5000 0.5000 0.5000
0.5000 0.5000 -0.5000 0.5000
0.5000 -0.5000 -0.5000 -0.5000
0.5000 0.5000 0.5000 -0.5000

R =

3-106

Perform QR Factorization Using CORDIC

14.0000 0.0000 -0.0000 -0.0000
0 14.0000 -0.0000 0.0000
0 0 14.0000 0.0000
0 0 0 14.0000

Example: QR Factorization Not Unique

When you compare the results from cordicqr and the QR function in
MATLAB, you will notice that the QR factorization is not unique. It is only
important that Q is orthogonal, R is upper triangular, and Q*R - A is small.

Here is a simple example that shows the difference.

m = 3;
A = ones(m)

A =

1 1 1
1 1 1
1 1 1

The built-in QR function in MATLAB uses a different algorithm and produces:

[Q0,R0] = qr(A)

Q0 =

-0.5774 -0.5774 -0.5774
-0.5774 0.7887 -0.2113
-0.5774 -0.2113 0.7887

R0 =

-1.7321 -1.7321 -1.7321

3-107

3 Fixed-Point Topics

0 0 0
0 0 0

And the cordicqr function produces:

[Q,R] = cordicqr(A)

Q =

0.5774 0.7495 0.3240
0.5774 -0.6553 0.4871
0.5774 -0.0942 -0.8110

R =

1.7321 1.7321 1.7321
0 0.0000 0.0000
0 0 -0.0000

Notice that the elements of Q from function cordicqr are different from Q0
from built-in QR. However, both results satisfy the requirement that Q is
orthogonal:

Q0*Q0'

ans =

1.0000 0.0000 0
0.0000 1.0000 0

0 0 1.0000

Q*Q'

3-108

Perform QR Factorization Using CORDIC

ans =

1.0000 0.0000 0.0000
0.0000 1.0000 -0.0000
0.0000 -0.0000 1.0000

And they both satisfy the requirement that Q*R - A is small:

Q0*R0 - A

ans =

1.0e-15 *

-0.1110 -0.1110 -0.1110
-0.1110 -0.1110 -0.1110
-0.1110 -0.1110 -0.1110

Q*R - A

ans =

1.0e-15 *

-0.2220 0.2220 0.2220
0.4441 0 0
0.2220 0.2220 0.2220

Solving Systems of Equations Without Forming Q

Given matrices A and B, you can use the QR factorization to solve for X in
the following equation:

A*X = B.

3-109

3 Fixed-Point Topics

If A has more rows than columns, then X will be the least-squares solution. If
X and B have more than one column, then several solutions can be computed
at the same time. If A = Q*R is the QR factorization of A, then the solution
can be computed by back-solving

R*X = C

where C = Q'*B. Instead of forming Q and multiplying to get C = Q'*B, it is
more efficient to compute C directly. You can compute C directly by applying
the rotations to the rows of B instead of to the columns of an identity matrix.
The new algorithm is formed by the small modification of initializing C = B,
and operating along the rows of C instead of the columns of Q.

function [R,C] = cordicrc(A,B,niter)
Kn = inverse_cordic_growth_constant(niter);
[m,n] = size(A);
R = A;
C = B;
for j=1:n

for i=j+1:m
[R(j,j:end),R(i,j:end),C(j,:),C(i,:)] = ...

cordicgivens(R(j,j:end),R(i,j:end),C(j,:),C(i,:),niter,Kn);
end

end
end

You can verify the algorithm with this example. Let A be a random 3-by-3
matrix, and B be a random 3-by-2 matrix.

A = [-0.8201 0.3573 -0.0100
-0.7766 -0.0096 -0.7048
-0.7274 -0.6206 -0.8901];

B = [-0.9286 0.3575
0.6983 0.5155
0.8680 0.4863];

Compute the QR factorization of A.

[Q,R] = cordicqr(A)

3-110

Perform QR Factorization Using CORDIC

Q =

-0.6105 0.6133 0.5012
-0.5781 0.0876 -0.8113
-0.5415 -0.7850 0.3011

R =

1.3434 0.1235 0.8955
0 0.7054 0.6309
0 0 0.2988

Compute C = Q'*B directly.

[R,C] = cordicrc(A,B)

R =

1.3434 0.1235 0.8955
0 0.7054 0.6309
0 0 0.2988

C =

-0.3068 -0.7795
-1.1897 -0.1173
-0.7706 -0.0926

Subtract, and you will see that the error difference is on the order of roundoff.

Q'*B - C

ans =

3-111

3 Fixed-Point Topics

1.0e-15 *

-0.0555 0.3331
0 0

0.1110 0.2914

Now try the example in fixed-point. Declare A and B to be fixed-point types.

A = sfi(A)

A =

-0.8201 0.3573 -0.0100
-0.7766 -0.0096 -0.7048
-0.7274 -0.6206 -0.8901

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

B = sfi(B)

B =

-0.9286 0.3575
0.6983 0.5155
0.8680 0.4863

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

The necessary growth is 1.6468 times the square-root of the number of rows
of A.

3-112

Perform QR Factorization Using CORDIC

bit_growth = ceil(log2(cordic_growth_constant*sqrt(m)))

bit_growth =

2

Initialize R with the same values as A, and allow for bit growth.

R = sfi(A, get(A,'WordLength')+bit_growth, get(A,'FractionLength'))

R =

-0.8201 0.3573 -0.0100
-0.7766 -0.0096 -0.7048
-0.7274 -0.6206 -0.8901

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18

FractionLength: 15

The growth in C is the same as R, so initialize C and allow for bit growth
the same way.

C = sfi(B, get(B,'WordLength')+bit_growth, get(B,'FractionLength'))

C =

-0.9286 0.3575
0.6983 0.5155
0.8680 0.4863

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18

FractionLength: 15

3-113

3 Fixed-Point Topics

Compute C = Q’*B directly, overwriting R and C.

[R,C] = cordicrc(R,C)

R =

1.3435 0.1233 0.8954
0 0.7055 0.6308
0 0 0.2988

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18

FractionLength: 15

C =

-0.3068 -0.7796
-1.1898 -0.1175
-0.7706 -0.0926

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18

FractionLength: 15

An interesting use of this algorithm is that if you initialize B to be the identity
matrix, then output argument C is Q’. You may want to use this feature to
have more control over the data type of Q. For example,

A = [-0.8201 0.3573 -0.0100
-0.7766 -0.0096 -0.7048
-0.7274 -0.6206 -0.8901];

B = eye(size(A,1))

B =

3-114

Perform QR Factorization Using CORDIC

1 0 0
0 1 0
0 0 1

[R,C] = cordicrc(A,B)

R =

1.3434 0.1235 0.8955
0 0.7054 0.6309
0 0 0.2988

C =

-0.6105 -0.5781 -0.5415
0.6133 0.0876 -0.7850
0.5012 -0.8113 0.3011

Then C is orthogonal

C'*C

ans =

1.0000 0.0000 0.0000
0.0000 1.0000 -0.0000
0.0000 -0.0000 1.0000

and R = C*A

R - C*A

ans =

3-115

3 Fixed-Point Topics

1.0e-15 *

0.6661 -0.0139 -0.1110
0.5551 -0.2220 0.6661

-0.2220 -0.1110 0.2776

Links to the Documentation

Fixed-Point Designer™

• bitsra Bit shift right arithmetic

• fi Construct fixed-point numeric object

• fimath Construct fimath object

• fipref Construct fipref object

• get Property values of object

• globalfimath Configure global fimath and return handle object

• isfi Determine whether variable is fi object

• sfi Construct signed fixed-point numeric object

• upperbound Upper bound of range of fi object

• fiaccel Accelerate fixed-point code

MATLAB

• bitshift Shift bits specified number of places

• ceil Round toward positive infinity

• double Convert to double precision floating point

• eps Floating-point relative accuracy

• eye Identity matrix

• log2 Base 2 logarithm and dissect floating-point numbers into exponent
and mantissa

3-116

Perform QR Factorization Using CORDIC

• prod Product of array elements

• qr Orthogonal-triangular factorization

• repmat Replicate and tile array

• single Convert to single precision floating point

• size Array dimensions

• sqrt Square root

• subsasgn Subscripted assignment

Functions Used in this Example

These are the MATLAB functions used in this example.

CORDICQR computes the QR factorization using CORDIC.

• [Q,R] = cordicqr(A) chooses the number of CORDIC iterations based
on the type of A.

• [Q,R] = cordicqr(A,niter) uses niter number of CORDIC iterations.

CORDICRC computes R from the QR factorization of A, and also returns C =
Q'*B without computing Q.

• [R,C] = cordicrc(A,B) chooses the number of CORDIC iterations based
on the type of A.

• [R,C] = cordicrc(A,B,niter) uses niter number of CORDIC iterations.

CORDIC_GROWTH_CONSTANT returns the CORDIC growth constant.

• cordic_growth = cordic_growth_constant(niter) returns the CORDIC
growth constant as a function of the number of CORDIC iterations, niter.

GIVENSQR computes the QR factorization using standard Givens rotations.

• [Q,R] = givensqr(A), where A is M-by-N, produces an M-by-N upper
triangular matrix R and an M-by-M orthogonal matrix Q so that A = Q*R.

3-117

3 Fixed-Point Topics

CORDICQR_MAKEPLOTS makes the plots in this example by executing
the following from the MATLAB command line.

load A_3_by_3_for_cordicqr_demo.mat
niter=32;
[Q,R] = cordicqr_makeplots(A,niter)

References

1 Ray Andraka, "A survey of CORDIC algorithms for FPGA based
computers," 1998, ACM 0-89791-978-5/98/01.

2 Anthony J Cox and Nicholas J Higham, "Stability of Householder QR
factorization for weighted least squares problems," in Numerical Analysis,
1997, Proceedings of the 17th Dundee Conference, Griffiths DF, Higham
DJ, Watson GA (eds). Addison-Wesley, Longman: Harlow, Essex, U.K.,
1998; 57-73.

3 Gene H. Golub and Charles F. Van Loan, Matrix Computations, 3rd ed,
Johns Hopkins University Press, 1996, section 5.2.3 Givens QR Methods.

4 Daniel V. Rabinkin, William Song, M. Michael Vai, and Huy T. Nguyen,
"Adaptive array beamforming with fixed-point arithmetic matrix
inversion using Givens rotations," Proceedings of Society of Photo-Optical
Instrumentation Engineers (SPIE) -- Volume 4474 Advanced Signal
Processing Algorithms, Architectures, and Implementations XI, Franklin
T. Luk, Editor, November 2001, pp. 294--305.

5 Jack E. Volder, "The CORDIC Trigonometric Computing Technique,"
Institute of Radio Engineers (IRE) Transactions on Electronic Computers,
September, 1959, pp. 330-334.

6 Musheng Wei and Qiaohua Liu, "On growth factors of the modified
Gram-Schmidt algorithm," Numerical Linear Algebra with Applications,
Vol. 15, issue 7, September 2008, pp. 621-636.

Cleanup

fipref(originalFipref);
globalfimath(originalGlobalFimath);
close all

3-118

Perform QR Factorization Using CORDIC

set(0, 'format', originalFormat);

3-119

3 Fixed-Point Topics

Compute Square Root Using CORDIC
This example shows how to compute square root using a CORDIC kernel
algorithm in MATLAB®. CORDIC-based algorithms are critical to many
embedded applications, including motor controls, navigation, signal
processing, and wireless communications.

Introduction

CORDIC is an acronym for COordinate Rotation DIgital Computer. The
Givens rotation-based CORDIC algorithm (see [1,2]) is one of the most
hardware efficient algorithms because it only requires iterative shift-add
operations. The CORDIC algorithm eliminates the need for explicit
multipliers, and is suitable for calculating a variety of functions, such as sine,
cosine, arcsine, arccosine, arctangent, vector magnitude, divide, square root,
hyperbolic and logarithmic functions.

The fixed-point CORDIC algorithm requires the following operations:

• 1 table lookup per iteration

• 2 shifts per iteration

• 3 additions per iteration

Note that for hyperbolic CORDIC-based algorithms, such as square root,
certain iterations (i = 4, 13, 40, 121, ..., k, 3k+1, ...) are repeated to achieve
result convergence.

CORDIC Kernel Algorithms Using Hyperbolic Computation Modes

You can use a CORDIC computing mode algorithm to calculate hyperbolic
functions, such as hyperbolic trigonometric, square root, log, exp, etc.

CORDIC EQUATIONS IN HYPERBOLIC VECTORING MODE

The hyperbolic vectoring mode is used for computing square root.

For the vectoring mode, the CORDIC equations are as follows:

3-120

Compute Square Root Using CORDIC

where

if , and otherwise.

This mode provides the following result as approaches :

•

•

•

where

.

Typically is chosen to be a large-enough constant value. Thus, may be
pre-computed.

Note also that for square root we will use only the result.

MATLAB Implementation of a CORDIC Hyperbolic Vectoring Algorithm

A MATLAB code implementation example of the CORDIC Hyperbolic
Vectoring Kernel algorithm follows (for the case of scalar x, y, and z). This
same code can be used for both fixed-point and floating-point data types.

CORDIC Hyperbolic Vectoring Kernel

k = 4; % Used for the repeated (3*k + 1) iteration steps

for idx = 1:n
xtmp = bitsra(x, idx); % multiply by 2^(-idx)
ytmp = bitsra(y, idx); % multiply by 2^(-idx)
if y < 0

x(:) = x + ytmp;
y(:) = y + xtmp;

3-121

3 Fixed-Point Topics

z(:) = z - atanhLookupTable(idx);
else

x(:) = x - ytmp;
y(:) = y - xtmp;
z(:) = z + atanhLookupTable(idx);

end

if idx==k
xtmp = bitsra(x, idx); % multiply by 2^(-idx)
ytmp = bitsra(y, idx); % multiply by 2^(-idx)
if y < 0

x(:) = x + ytmp;
y(:) = y + xtmp;
z(:) = z - atanhLookupTable(idx);

else
x(:) = x - ytmp;
y(:) = y - xtmp;
z(:) = z + atanhLookupTable(idx);

end
k = 3*k + 1;

end
end % idx loop

CORDIC-Based Square Root Computation

Square Root Computation Using the CORDIC Hyperbolic Vectoring
Kernel

The judicious choice of initial values allows the CORDIC kernel hyperbolic
vectoring mode algorithm to compute square root.

First, the following initialization steps are performed:

• is set to .

• is set to .

After iterations, these initial values lead to the following output as
approaches :

3-122

Compute Square Root Using CORDIC

This may be further simplified as follows:

where is the CORDIC gain as defined above.

Note: for square root, and atanhLookupTable have no impact on the result.
Hence, and atanhLookupTable are not used.

MATLAB Implementation of a CORDIC Square Root Kernel

A MATLAB code implementation example of the CORDIC Square Root Kernel
algorithm follows (for the case of scalar x and y). This same code can be used
for both fixed-point and floating-point data types.

CORDIC Square Root Kernel

k = 4; % Used for the repeated (3*k + 1) iteration steps

for idx = 1:n
xtmp = bitsra(x, idx); % multiply by 2^(-idx)
ytmp = bitsra(y, idx); % multiply by 2^(-idx)
if y < 0

x(:) = x + ytmp;
y(:) = y + xtmp;

else
x(:) = x - ytmp;
y(:) = y - xtmp;

end

if idx==k
xtmp = bitsra(x, idx); % multiply by 2^(-idx)
ytmp = bitsra(y, idx); % multiply by 2^(-idx)
if y < 0

x(:) = x + ytmp;
y(:) = y + xtmp;

else
x(:) = x - ytmp;

3-123

3 Fixed-Point Topics

y(:) = y - xtmp;
end
k = 3*k + 1;

end
end % idx loop

This code is identical to the CORDIC Hyperbolic Vectoring Kernel
implementation above, except that z and atanhLookupTable are not used.
This is a cost savings of 1 table lookup and 1 addition per iteration.

Example

Use the CORDICSQRT function to compute the approximate square root of
v_fix using ten CORDIC kernel iterations:

step = 2^-7;
v_fix = fi(0.5:step:(2-step), 1, 20); % fixed-point inputs in range [.5, 2)
niter = 10; % number of CORDIC iterations
x_sqr = cordicsqrt(v_fix, niter);

% Get the Real World Value (RWV) of the CORDIC outputs for comparison
% and plot the error between the MATLAB reference and CORDIC sqrt values
x_cdc = double(x_sqr); % CORDIC results (scaled by An_hp)
v_ref = double(v_fix); % Reference floating-point input values
x_ref = sqrt(v_ref); % MATLAB reference floating-point results
figure;
subplot(211);
plot(v_ref, x_cdc, 'r.', v_ref, x_ref, 'b-');
legend('CORDIC', 'Reference', 'Location', 'SouthEast');
title('CORDIC Square Root (In-Range) and MATLAB Reference Results');
subplot(212);
absErr = abs(x_ref - x_cdc);
plot(v_ref, absErr);
title('Absolute Error (vs. MATLAB SQRT Reference Results)');

Overcoming Algorithm Input Range Limitations

3-124

Compute Square Root Using CORDIC

Many square root algorithms normalize the input value, , to within the range
of [0.5, 2) range. This pre-processing is typically done using a fixed word
length normalization, and can be used to support small as well as large input
value ranges.

The CORDIC-based square root algorithm implementation is particularly
sensitive to inputs outside of this range. The function CORDICSQRT
overcomes this algorithm range limitation through a normalization approach
based on the following mathematical relationships:

, for some and some even integer .

Thus:

In the CORDICSQRT function, the values for and , described above, are
found during normalization of the input . is the number of leading zero most
significant bits (MSBs) in the binary representation of the input . These
values are found through a series of bitwise logic and shifts. Note: because
must be even, if the number of leading zero MSBs is odd, one additional bit
shift is made to make even. The resulting value after these shifts is the
value .

becomes the input to the CORDIC-based square root kernel, where an
approximation to is calculated. The result is then scaled by so that it is back
in the correct output range. This is achieved through a simple bit shift by
bits. The (left or right) shift direction dependends on the sign of .

Example

Compute the square root of 10-bit fixed-point input data with a small
non-negative range using CORDIC. Compare the CORDIC-based algorithm
results to the floating-point MATLAB reference results over the same input
range.

step = 2^-8;
u_ref = 0:step:(0.5-step); % Input array (small range of values)
u_in_arb = fi(u_ref,0,10); % 10-bit unsigned fixed-point input data values
u_len = numel(u_ref);

3-125

3 Fixed-Point Topics

sqrt_ref = sqrt(double(u_in_arb)); % MATLAB sqrt reference results
niter = 10;
results = zeros(u_len, 2);
results(:,2) = sqrt_ref(:);

% Compute the equivalent Real World Value result for plotting.
% Plot the Real World Value (RWV) of CORDIC and MATLAB reference results.
x_out = cordicsqrt(u_in_arb, niter);
results(:,1) = double(x_out);
figure;
subplot(211);
plot(u_ref, results(:,1), 'r.', u_ref, results(:,2), 'b-');
legend('CORDIC', 'Reference', 'Location', 'SouthEast');
title('CORDIC Square Root (Small Input Range) and MATLAB Reference Results'
axis([0 0.5 0 0.75]);
subplot(212);
absErr = abs(results(:,2) - results(:,1));
plot(u_ref, absErr);
title('Absolute Error (vs. MATLAB SQRT Reference Results)');

Example

Compute the square root of 16-bit fixed-point input data with a large positive
range using CORDIC. Compare the CORDIC-based algorithm results to the
floating-point MATLAB reference results over the same input range.

u_ref = 0:5:2500; % Input array (larger range of values)
u_in_arb = fi(u_ref,0,16); % 16-bit unsigned fixed-point input data values
u_len = numel(u_ref);
sqrt_ref = sqrt(double(u_in_arb)); % MATLAB sqrt reference results
niter = 16;
results = zeros(u_len, 2);
results(:,2) = sqrt_ref(:);

% Compute the equivalent Real World Value result for plotting.
% Plot the Real World Value (RWV) of CORDIC and MATLAB reference results.
x_out = cordicsqrt(u_in_arb, niter);
results(:,1) = double(x_out);

3-126

Compute Square Root Using CORDIC

figure;
subplot(211);
plot(u_ref, results(:,1), 'r.', u_ref, results(:,2), 'b-');
legend('CORDIC', 'Reference', 'Location', 'SouthEast');
title('CORDIC Square Root (Large Input Range) and MATLAB Reference Results'
axis([0 2500 0 55]);
subplot(212);
absErr = abs(results(:,2) - results(:,1));
plot(u_ref, absErr);
title('Absolute Error (vs. MATLAB SQRT Reference Results)');

References

1 Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE
Transactions on Electronic Computers, Volume EC-8, September 1959,
pp330-334.

2 Ray Andraka, A survey of CORDIC algorithm for FPGA based computers,
Proceedings of the 1998 ACM/SIGDA sixth international symposium on
Field programmable gate arrays, Feb. 22-24, 1998, pp191-200

3-127

3 Fixed-Point Topics

Convert Cartesian to Polar Using CORDIC Vectoring Kernel
This example shows how to convert Cartesian to polar coordinates using
a CORDIC vectoring kernel algorithm in MATLAB®. CORDIC-based
algorithms are critical to many embedded applications, including motor
controls, navigation, signal processing, and wireless communications.

Introduction

CORDIC is an acronym for COordinate Rotation DIgital Computer. The
Givens rotation-based CORDIC algorithm (see [1,2]) is one of the most
hardware efficient algorithms because it only requires iterative shift-add
operations. The CORDIC algorithm eliminates the need for explicit
multipliers, and is suitable for calculating a variety of functions, such as sine,
cosine, arcsine, arccosine, arctangent, vector magnitude, divide, square root,
hyperbolic and logarithmic functions.

The fixed-point CORDIC algorithm requires the following operations:

• 1 table lookup per iteration

• 2 shifts per iteration

• 3 additions per iteration

CORDIC Kernel Algorithm Using the Vectoring Computation Mode

You can use a CORDIC vectoring computing mode algorithm to calculate
atan(y/x), compute cartesian-polar to cartesian conversions, and for other
operations. In vectoring mode, the CORDIC rotator rotates the input vector
towards the positive X-axis to minimize the component of the residual vector.
For each iteration, if the coordinate of the residual vector is positive, the
CORDIC rotator rotates clockwise (using a negative angle); otherwise, it
rotates counter-clockwise (using a positive angle). Each rotation uses a
progressively smaller angle value. If the angle accumulator is initialized to
0, at the end of the iterations, the accumulated rotation angle is the angle
of the original input vector.

In vectoring mode, the CORDIC equations are:

3-128

Convert Cartesian to Polar Using CORDIC Vectoring Kernel

is the angle accumulator

where if , and otherwise;

, and is the total number of iterations.

As approaches :

Where:

.

Typically is chosen to be a large-enough constant value. Thus, may be
pre-computed.

Efficient MATLAB Implementation of a CORDIC Vectoring Kernel Algorithm

A MATLAB code implementation example of the CORDIC Vectoring Kernel
algorithm follows (for the case of scalar x, y, and z). This same code can be
used for both fixed-point and floating-point operation.

CORDIC Vectoring Kernel

function [x, y, z] = cordic_vectoring_kernel(x, y, z, inpLUT, n)
% Perform CORDIC vectoring kernel algorithm for N iterations.
xtmp = x;
ytmp = y;
for idx = 1:n

if y < 0
x(:) = accumneg(x, ytmp);
y(:) = accumpos(y, xtmp);
z(:) = accumneg(z, inpLUT(idx));

3-129

3 Fixed-Point Topics

else
x(:) = accumpos(x, ytmp);
y(:) = accumneg(y, xtmp);
z(:) = accumpos(z, inpLUT(idx));

end
xtmp = bitsra(x, idx); % bit-shift-right for multiply by 2^(-idx)
ytmp = bitsra(y, idx); % bit-shift-right for multiply by 2^(-idx)

end

CORDIC-Based Cartesian to Polar Conversion Using Normalized Input Units

Cartesian to Polar Computation Using the CORDIC Vectoring Kernel

The judicious choice of initial values allows the CORDIC kernel vectoring
mode algorithm to directly compute the magnitude and angle .

The input accumulators are initialized to the input coordinate values:

•

•

The angle accumulator is initialized to zero:

•

After iterations, these initial values lead to the following outputs as
approaches :

•

•

Other vectoring-kernel-based function approximations are possible via pre-
and post-processing and using other initial conditions (see [1,2]).

Example

Suppose that you have some measurements of Cartesian (X,Y) data,
normalized to values between [-1, 1), that you want to convert into polar
(magnitude, angle) coordinates. Also suppose that you have a 16-bit integer

3-130

Convert Cartesian to Polar Using CORDIC Vectoring Kernel

arithmetic unit that can perform add, subtract, shift, and memory operations.
With such a device, you could implement the CORDIC vectoring kernel to
efficiently compute magnitude and angle from the input (X,Y) coordinate
values, without the use of multiplies or large lookup tables.

sumWL = 16; % CORDIC sum word length
thNorm = -1.0:(2^-8):1.0; % Also using normalized [-1.0, 1.0] angle values
theta = fi(thNorm, 1, sumWL); % Fixed-point angle values (best precision)
z_NT = numerictype(theta); % Data type for Z
xyCPNT = numerictype(1,16,15); % Using normalized X-Y range [-1.0, 1.0)
thetaRadians = pi/2 .* thNorm; % real-world range [-pi/2 pi/2] angle values
inXfix = fi(0.50 .* cos(thetaRadians), xyCPNT); % X coordinate values
inYfix = fi(0.25 .* sin(thetaRadians), xyCPNT); % Y coordinate values

niters = 13; % Number of CORDIC iterations
inpLUT = fi(atan(2 .^ (-((0:(niters-1))'))) .* (2/pi), z_NT); % Normalized
z_c2p = fi(zeros(size(theta)), z_NT); % Z array pre-allocation
x_c2p = fi(zeros(size(theta)), xyCPNT); % X array pre-allocation
y_c2p = fi(zeros(size(theta)), xyCPNT); % Y array pre-allocation

for idx = 1:length(inXfix)
% CORDIC vectoring kernel iterations
[x_c2p(idx), y_c2p(idx), z_c2p(idx)] = ...

fidemo.cordic_vectoring_kernel(...
inXfix(idx), inYfix(idx), fi(0, z_NT), inpLUT, niters);

end

% Get the Real World Value (RWV) of the CORDIC outputs for comparison
% and plot the error between the (magnitude, angle) values
AnGain = prod(sqrt(1+2.^(-2*(0:(niters-1))))); % CORDIC gain
x_c2p_RWV = (1/AnGain) .* double(x_c2p); % Magnitude (scaled by CORDIC g
z_c2p_RWV = (pi/2) .* double(z_c2p); % Angles (in radian units)
[thRWV,rRWV] = cart2pol(double(inXfix), double(inYfix)); % MATLAB reference
magnitudeErr = rRWV - x_c2p_RWV;
angleErr = thRWV - z_c2p_RWV;
figure;
subplot(411);
plot(thNorm, x_c2p_RWV);
axis([-1 1 0.25 0.5]);
title('CORDIC Magnitude (X) Values');

3-131

3 Fixed-Point Topics

subplot(412);
plot(thNorm, magnitudeErr);
title('Error between Magnitude Reference Values and X Values');
subplot(413);
plot(thNorm, z_c2p_RWV);
title('CORDIC Angle (Z) Values');
subplot(414);
plot(thNorm, angleErr);
title('Error between Angle Reference Values and Z Values');

References

1 Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE
Transactions on Electronic Computers, Volume EC-8, September 1959,
pp330-334.

2 Ray Andraka, A survey of CORDIC algorithm for FPGA based computers,
Proceedings of the 1998 ACM/SIGDA sixth international symposium on
Field programmable gate arrays, Feb. 22-24, 1998, pp191-200

3-132

Set Data Types Using Min/Max Instrumentation

Set Data Types Using Min/Max Instrumentation
This example shows how to set fixed-point data types by instrumenting
MATLAB® code for min/max logging and using the tools to propose data types.

The functions you will use are:

• buildInstrumentedMex - Build MEX function with instrumentation
enabled

• showInstrumentationResults - Show instrumentation results

• clearInstrumentationResults - Clear instrumentation results

The Unit Under Test

The function that you convert to fixed-point in this example is a second-order
direct-form 2 transposed filter. You can substitute your own function in place
of this one to reproduce these steps in your own work.

function [y,z] = fi_2nd_order_df2t_filter(b,a,x,y,z)
for i=1:length(x)

y(i) = b(1)*x(i) + z(1);
z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
z(2) = b(3)*x(i) - a(3) * y(i);

end
end

For a MATLAB® function to be instrumented, it must be suitable for code
generation. For information on code generation, see the reference page for
buildInstrumentedMex. A MATLAB® Coder™ license is not required to
use buildInstrumentedMex.

In this function the variables y and z are used as both inputs and outputs.
This is an important pattern because:

• You can set the data type of y and z outside the function, thus allowing you
to re-use the function for both fixed-point and floating-point types.

• The generated C code will create y and z as references in the function
argument list. For more information about this pattern, see the

3-133

3 Fixed-Point Topics

documentation under Code Generation from MATLAB® > User’s Guide >
Generating Efficient and Reusable Code > Generating Efficient Code >
Eliminating Redundant Copies of Function Inputs.

Run the following code to copy the test function into a temporary directory so
this example doesn’t interfere with your own work.

tempdirObj = fidemo.fiTempdir('fi_instrumentation_fixed_point_filter_demo')

copyfile(fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo',...
'fi_2nd_order_df2t_filter.m'),'.','f');

Run the following code to capture current states, and reset the global states.

FIPREF_STATE = get(fipref);
reset(fipref)

Data Types Determined by the Requirements of the Design

In this example, the requirements of the design determine the data type of
input x. These requirements are signed, 16-bit, and fractional.

N = 256;
x = fi(zeros(N,1),1,16,15);

The requirements of the design also determine the fixed-point math for a DSP
target with a 40-bit accumulator. This example uses floor rounding and wrap
overflow to produce efficient generated code.

F = fimath('RoundingMethod','Floor',...
'OverflowAction','Wrap',...
'ProductMode','KeepLSB',...
'ProductWordLength',40,...
'SumMode','KeepLSB',...
'SumWordLength',40);

The following coefficients correspond to a second-order lowpass filter created
by

[num,den] = butter(2,0.125)

3-134

Set Data Types Using Min/Max Instrumentation

The values of the coefficients influence the range of the values that will be
assigned to the filter output and states.

num = [0.0299545822080925 0.0599091644161849 0.0299545822080925];
den = [1 -1.4542435862515900 0.5740619150839550];

The data type of the coefficients, determined by the requirements of the
design, are specified as 16-bit word length and scaled to best-precision. A
pattern for creating fi objects from constant coefficients is:

1. Cast the coefficients to fi objects using the default round-to-nearest and
saturate overflow settings, which gives the coefficients better accuracy.

2. Attach fimath with floor rounding and wrap overflow settings to control
arithmetic, which leads to more efficient C code.

b = fi(num,1,16); b.fimath = F;
a = fi(den,1,16); a.fimath = F;

Hard-code the filter coefficients into the implementation of this filter by
passing them as constants to the buildInstrumentedMex command.

B = coder.Constant(b);
A = coder.Constant(a);

Data Types Determined by the Values of the Coefficients and Inputs

The values of the coefficients and values of the inputs determine the data
types of output y and state vector z. Create them with a scaled double
datatype so their values will attain full range and you can identify potential
overflows and propose data types.

yisd = fi(zeros(N,1),1,16,15,'DataType','ScaledDouble','fimath',F);
zisd = fi(zeros(2,1),1,16,15,'DataType','ScaledDouble','fimath',F);

Instrument the MATLAB® Function as a Scaled-Double MEX Function

To instrument the MATLAB® code, you create a MEX function from the
MATLAB® function using the buildInstrumentedMex command. The
inputs to buildInstrumentedMex are the same as the inputs to fiaccel,
but buildInstrumentedMex has no fi-object restrictions. The output of

3-135

3 Fixed-Point Topics

buildInstrumentedMex is a MEX function with instrumentation inserted, so
when the MEX function is run, the simulated minimum and maximum values
are recorded for all named variables and intermediate values.

Use the '-o' option to name the MEX function that is generated. If you
do not use the '-o' option, then the MEX function is the name of the
MATLAB® function with '_mex' appended. You can also name the MEX
function the same as the MATLAB® function, but you need to remember that
MEX functions take precedence over MATLAB® functions and so changes
to the MATLAB® function will not run until either the MEX function is
re-generated, or the MEX function is deleted and cleared.

buildInstrumentedMex fi_2nd_order_df2t_filter ...
-o filter_scaled_double ...
-args {B,A,x,yisd,zisd}

Test Bench with Chirp Input

The test bench for this system is set up to run chirp and step signals. In
general, test benches for systems should cover a wide range of input signals.

The first test bench uses a chirp input. A chirp signal is a good representative
input because it covers a wide range of frequencies.

t = linspace(0,1,N); % Time vector from 0 to 1 second
f1 = N/2; % Target frequency of chirp set to Nyquist
xchirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x(:) = xchirp; % Cast the chirp to fixed-point

Run the Instrumented MEX Function to Record Min/Max Values

The instrumented MEX function must be run to record minimum
and maximum values for that simulation run. Subsequent runs
accumulate the instrumentation results until they are cleared with
clearInstrumentationResults.

Note that the numerator and denominator coefficients were compiled as
constants so they are not provided as input to the generated MEX function.

ychirp = filter_scaled_double(x,yisd,zisd);

3-136

Set Data Types Using Min/Max Instrumentation

The plot of the filtered chirp signal shows the lowpass behavior of the filter
with these particular coefficients. Low frequencies are passed through and
higher frequencies are attenuated.

clf
plot(t,x,'c',t,ychirp,'bo-')
title('Chirp')
legend('Input','Scaled-double output')
figure(gcf); drawnow;

Show Instrumentation Results with Proposed Fraction Lengths for Chirp

The showInstrumentationResults command displays the code generation
report with instrumented values. The input to showInstrumentationResults
is the name of the instrumented MEX function for which you wish to show
results.

This is the list of options to the showInstrumentationResults command:

• -defaultDT T Default data type to propose for doubles, where T is a
numerictype object, or one of the strings {remainFloat, double,
single, int8, int16, int32, int64, uint8, uint16, uint32,
uint64}. The default is remainFloat.

• -nocode Do not show MATLAB code in the printable report. Display only
the logged variables tables. This option only has effect in combination
with the -printable option.

• -optimizeWholeNumbers Optimize the word length of variables whose
simulation min/max logs indicate that they were always whole numbers.

• -percentSafetyMargin N Safety margin for simulation min/max, where N
represents a percent value.

• -printable Create a printable report and open in the system browser.

• -proposeFL Propose fraction lengths for specified word lengths.

• -proposeWL Propose word lengths for specified fraction lengths.

3-137

3 Fixed-Point Topics

Potential overflows are only displayed for fi objects with Scaled Double data
type.

This particular design is for a DSP, where the word lengths are fixed, so use
the proposeFL flag to propose fraction lengths.

showInstrumentationResults filter_scaled_double -proposeFL

Hover over expressions or variables in the instrumented code generation
report to see the simulation minimum and maximum values. In this design,
the inputs fall between -1 and +1, and the values of all variables and
intermediate results also fall between -1 and +1. This suggests that the data
types can all be fractional (fraction length one bit less than the word length).
However, this will not always be true for this function for other kinds of
inputs and it is important to test many types of inputs before setting final
fixed-point data types.

Test Bench with Step Input

The next test bench is run with a step input. A step input is a good
representative input because it is often used to characterize the behavior
of a system.

xstep = [ones(N/2,1);-ones(N/2,1)];
x(:) = xstep;

Run the Instrumented MEX Function with Step Input

The instrumentation results are accumulated until they are cleared with
clearInstrumentationResults.

ystep = filter_scaled_double(x,yisd,zisd);

clf
plot(t,x,'c',t,ystep,'bo-')
title('Step')
legend('Input','Scaled-double output')
figure(gcf); drawnow;

3-138

Set Data Types Using Min/Max Instrumentation

Show Accumulated Instrumentation Results

Even though the inputs for step and chirp inputs are both full range as
indicated by x at 100 percent current range in the instrumented code
generation report, the step input causes overflow while the chirp input did
not. This is an illustration of the necessity to have many different inputs for
your test bench. For the purposes of this example, only two inputs were used,
but real test benches should be more thorough.

showInstrumentationResults filter_scaled_double -proposeFL

Apply Proposed Fixed-Point Properties

To prevent overflow, set proposed fixed-point properties based on the proposed
fraction lengths of 14-bits for y and z from the instrumented code generation
report.

At this point in the workflow, you use true fixed-point types (as opposed to
the scaled double types that were used in the earlier step of determining
data types).

yi = fi(zeros(N,1),1,16,14,'fimath',F);
zi = fi(zeros(2,1),1,16,14,'fimath',F);

Instrument the MATLAB® Function as a Fixed-Point MEX Function

Create an instrumented fixed-point MEX function by using fixed-point inputs
and the buildInstrumentedMex command.

buildInstrumentedMex fi_2nd_order_df2t_filter ...
-o filter_fixed_point ...
-args {B,A,x,yi,zi}

Validate the Fixed-Point Algorithm

3-139

3 Fixed-Point Topics

After converting to fixed-point, run the test bench again with fixed-point
inputs to validate the design.

Validate with Chirp Input

Run the fixed-point algorithm with a chirp input to validate the design.

x(:) = xchirp;
[y,z] = filter_fixed_point(x,yi,zi);
[ysd,zsd] = filter_scaled_double(x,yisd,zisd);
err = double(y) - double(ysd);

Compare the fixed-point outputs to the scaled-double outputs to verify that
they meet your design criteria.

clf
subplot(211);plot(t,x,'c',t,ysd,'bo-',t,y,'mx')
xlabel('Time (s)');
ylabel('Amplitude')
legend('Input','Scaled-double output','Fixed-point output');
title('Fixed-Point Chirp')
subplot(212);plot(t,err,'r');title('Error');xlabel('t'); ylabel('err');
figure(gcf); drawnow;

Inspect the variables and intermediate results to ensure that the min/max
values are within range.

showInstrumentationResults filter_fixed_point

Validate with Step Inputs

Run the fixed-point algorithm with a step input to validate the design.

Run the following code to clear the previous instrumentation results to see
only the effects of running the step input.

3-140

Set Data Types Using Min/Max Instrumentation

clearInstrumentationResults filter_fixed_point

Run the step input through the fixed-point filter and compare with the output
of the scaled double filter.

x(:) = xstep;
[y,z] = filter_fixed_point(x,yi,zi);
[ysd,zsd] = filter_scaled_double(x,yisd,zisd);
err = double(y) - double(ysd);

Plot the fixed-point outputs against the scaled-double outputs to verify that
they meet your design criteria.

clf
subplot(211);plot(t,x,'c',t,ysd,'bo-',t,y,'mx')
title('Fixed-Point Step');
legend('Input','Scaled-double output','Fixed-point output')
subplot(212);plot(t,err,'r');title('Error');xlabel('t'); ylabel('err');
figure(gcf); drawnow;

Inspect the variables and intermediate results to ensure that the min/max
values are within range.

showInstrumentationResults filter_fixed_point

Run the following code to restore the global states.

fipref(FIPREF_STATE);
clearInstrumentationResults filter_fixed_point
clearInstrumentationResults filter_scaled_double
clear fi_2nd_order_df2t_filter_fixed_instrumented
clear fi_2nd_order_df2t_filter_float_instrumented

Run the following code to delete the temporary directory.

tempdirObj.cleanUp;

3-141

3 Fixed-Point Topics

3-142

Convert Fast Fourier Transform (FFT) to Fixed Point

Convert Fast Fourier Transform (FFT) to Fixed Point
This example shows how to convert a textbook version of the Fast Fourier
Transform (FFT) algorithm into fixed-point MATLAB® code.

Run the following code to copy functions from the Fixed-Point Designer™
examples directory into a temporary directory so this example doesn’t
interfere with your own work.

tempdirObj = fidemo.fiTempdir('fi_radix2fft_demo');

copyfile(fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo',...
'fi_m_radix2fft_algorithm1_6_2.m'),'.','f');

copyfile(fullfile(matlabroot,'toolbox','fixedpoint','fidemos',...
'fi_m_radix2fft_withscaling.m'),'.','f');

Run the following code to capture current states, and reset the global states.

FIPREF_STATE = get(fipref);
reset(fipref)

Textbook FFT Algorithm

FFT is a complex-valued linear transformation from the time domain to
the frequency domain. For example, if you construct a vector as the sum of
two sinusoids and transform it with the FFT, you can see the peaks of the
frequencies in the FFT magnitude plot.

n = 64; % Number of points
Fs = 4; % Sampling frequency in Hz
t = (0:(n-1))/Fs; % Time vector
f = linspace(0,Fs,n); % Frequency vector
f0 = .2; f1 = .5; % Frequencies, in Hz
x0 = cos(2*pi*f0*t) + 0.55*cos(2*pi*f1*t); % Time-domain signal
x0 = complex(x0); % The textbook algorithm requir

% the input to be complex
y = fft(x0); % Frequency-domain transformati

figure(gcf); clf
subplot(211); plot(t,real(x0),'b.-'); xlabel('Time (s)'); ylabel('Amplitude

3-143

3 Fixed-Point Topics

subplot(212); plot(f,abs(y),'m.-'); xlabel('Frequency (Hz)'); ylabel('Magni

The peaks at 0.2 and 0.5 Hz in the frequency plot correspond to the two
sinusoids of the time-domain signal at those frequencies.

Note the reflected peaks at 3.5 and 3.8 Hz. When the input to an FFT is
real-valued, as it is in this case, then the output y is conjugate-symmetric:

There are many different implementations of the FFT, each having its own
costs and benefits. You may find that a different algorithm is better for your
application than the one given here. This algorithm is used to provide you
with an example of how you might begin your own exploration.

This example uses the decimation-in-time unit-stride FFT shown in Algorithm
1.6.2 on page 45 of the book Computational Frameworks for the Fast Fourier
Transform by Charles Van Loan.

In pseudo-code, the algorithm in the textbook is as follows.

Algorithm 1.6.2. If is a complex vector of length and , then the following
algorithm overwrites with .

The textbook algorithm uses zero-based indexing. is an n-by-n
Fourier-transform matrix, is an n-by-n bit-reversal permutation matrix, and
is a complex vector of twiddle factors. The twiddle factors, , are complex roots
of unity computed by the following algorithm:

function w = fi_radix2twiddles(n)
t = log2(n);
if floor(t) ~= t

error('N must be an exact power of two.');
end
w = zeros(n-1,1);
k=1;

3-144

Convert Fast Fourier Transform (FFT) to Fixed Point

L=2;
% Equation 1.4.11, p. 34
while L<=n

theta = 2*pi/L;
% Algorithm 1.4.1, p. 23
for j=0:(L/2 - 1)

w(k) = complex(cos(j*theta), -sin(j*theta));
k = k + 1;

end
L = L*2;

end

figure(gcf);clf
w0 = fidemo.fi_radix2twiddles(n);
polar(angle(w0),abs(w0),'o')
title('Twiddle Factors: Complex roots of unity')

Verify Floating-Point Code

To implement the algorithm in MATLAB, you can use the
fidemo.fi_bitreverse function to bit-reverse the input sequence, and you
must add one to the indices to convert them from zero-based to one-based.

function x = fi_m_radix2fft_algorithm1_6_2(x, w)
n = length(x); t = log2(n);
x = fidemo.fi_bitreverse(x,n);
for q=1:t

L = 2^q; r = n/L; L2 = L/2;
for k=0:(r-1)

for j=0:(L2-1)
temp = w(L2-1+j+1) * x(k*L+j+L2+1);
x(k*L+j+L2+1) = x(k*L+j+1) - temp;
x(k*L+j+1) = x(k*L+j+1) + temp;

end
end

end

3-145

3 Fixed-Point Topics

To verify that you correctly implemented the algorithm in MATLAB, run a
known signal through it and compare the results to the results produced by
the MATLAB FFT function.

y = fi_m_radix2fft_algorithm1_6_2(x0, w0);

y0 = fft(x0); % MATLAB's built-in FFT for comparison

fidemo.fi_fft_demo_plot(real(x0),y,y0,Fs,'Double data', {'FFT Algorithm 1.6

Because the error is within tolerance of the MATLAB built-in FFT function,
you know you have correctly implemented the algorithm.

Identify Fixed-Point Issues

Now, try converting the data to fixed-point and see if the algorithm still looks
good. In this first pass, you use all the defaults for signed fixed-point data
by using the sfi constructor.

x = sfi(x0); % Convert to signed fixed-point
w = sfi(w0); % Convert to signed fixed-point

% Re-run the same algorithm with the fixed-point inputs
y = fi_m_radix2fft_algorithm1_6_2(x,w);
fidemo.fi_fft_demo_plot(real(x),y,y0,Fs,'Fixed-point data', ...

{'Fixed-point FFT Algorithm 1.6.2','Built-in'});

Note that the magnitude plot (center) of the fixed-point FFT does not resemble
the plot of the built-in FFT. The error (bottom plot) is much larger than what
you would expect to see for round off error, so it is likely that overflow has
occurred.

Use Min/Max Instrumentation to Identify Overflows

To instrument the MATLAB® code, you create a MEX function from the
MATLAB® function using the buildInstrumentedMex command. The
inputs to buildInstrumentedMex are the same as the inputs to fiaccel,

3-146

Convert Fast Fourier Transform (FFT) to Fixed Point

but buildInstrumentedMex has no fi-object restrictions. The output of
buildInstrumentedMex is a MEX function with instrumentation inserted, so
when the MEX function is run, the simulated minimum and maximum values
are recorded for all named variables and intermediate values.

The '-o' option is used to name the MEX function that is generated. If
the '-o' option is not used, then the MEX function is the name of the
MATLAB® function with '_mex' appended. You can also name the MEX
function the same as the MATLAB® function, but you need to remember that
MEX functions take precedence over MATLAB® functions and so changes
to the MATLAB® function will not run until either the MEX function is
re-generated, or the MEX function is deleted and cleared.

Create the input with a scaled double datatype so its values will attain full
range and you can identify potential overflows.

x_scaled_double = fi(x0,'DataType','ScaledDouble');
buildInstrumentedMex fi_m_radix2fft_algorithm1_6_2 ...

-o fft_instrumented -args {x_scaled_double w}

Run the instrumented MEX function to record min/max values.

y_scaled_double = fft_instrumented(x_scaled_double,w);

Show the instrumentation results.

showInstrumentationResults fft_instrumented

You can see from the instrumentation results that there were overflows when
assigning into the variable x.

Modify the Algorithm to Address Fixed-Point Issues

The magnitude of an individual bin in the FFT grows, at most, by a factor of
n, where n is the length of the FFT. Hence, by scaling your data by 1/n, you
can prevent overflow from occurring for any input.

3-147

3 Fixed-Point Topics

When you scale only the input to the first stage of a length-n FFT by 1/n,
you obtain a noise-to-signal ratio proportional to n^2 [Oppenheim & Schafer
1989, equation 9.101], [Welch 1969].

However, if you scale the input to each of the stages of the FFT by 1/2,
you can obtain an overall scaling of 1/n and produce a noise-to-signal ratio
proportional to n [Oppenheim & Schafer 1989, equation 9.105], [Welch 1969].

An efficient way to scale by 1/2 in fixed-point is to right-shift the data. To do
this, you use the bit shift right arithmetic function bitsra. After scaling
each stage of the FFT, and optimizing the index variable computation, your
algorithm becomes:

function x = fi_m_radix2fft_withscaling(x, w)
n = length(x); t = log2(n);
x = fidemo.fi_bitreverse(x,n);
% Generate index variables as integer constants so they are not computed in
% the loop.
LL = int32(2.^(1:t)); rr = int32(n./LL); LL2 = int32(LL./2);
for q=1:t

L = LL(q); r = rr(q); L2 = LL2(q);
for k=0:(r-1)

for j=0:(L2-1)
temp = w(L2-1+j+1) * x(k*L+j+L2+1);
x(k*L+j+L2+1) = bitsra(x(k*L+j+1) - temp, 1);
x(k*L+j+1) = bitsra(x(k*L+j+1) + temp, 1);

end
end

end

Run the scaled algorithm with fixed-point data.

x = sfi(x0);
w = sfi(w0);

y = fi_m_radix2fft_withscaling(x,w);

fidemo.fi_fft_demo_plot(real(x), y, y0/n, Fs, 'Fixed-point data', ...
{'Fixed-point FFT with scaling','Scaled built-in'})

3-148

Convert Fast Fourier Transform (FFT) to Fixed Point

You can see that the scaled fixed-point FFT algorithm now matches the
built-in FFT to a tolerance that is expected for 16-bit fixed-point data.

References

Charles Van Loan, Computational Frameworks for the Fast Fourier
Transform, SIAM, 1992.

Cleve Moler, Numerical Computing with MATLAB, SIAM, 2004, Chapter 8
Fourier Analysis.

Alan V. Oppenheim and Ronald W. Schafer, Discrete-Time Signal Processing,
Prentice Hall, 1989.

Peter D. Welch, "A Fixed-Point Fast Fourier Transform Error Analysis,"
IEEE® Transactions on Audio and Electroacoustics, Vol. AU-17, No. 2, June
1969, pp. 151-157.

Run the following code to restore the global states.

fipref(FIPREF_STATE);
clearInstrumentationResults fft_instrumented
clear fft_instrumented

Run the following code to delete the temporary directory.

tempdirObj.cleanUp;

3-149

3 Fixed-Point Topics

Detect Limit Cycles in Fixed-Point State-Space Systems
This example shows how to analyze a fixed-point state-space system to detect
limit cycles.

The example focuses on detecting large scale limit cycles due to overflow
with zero inputs and highlights the conditions that are sufficient to prevent
such oscillations.

References:

[1] Richard A. Roberts and Clifford T. Mullis, "Digital Signal Processing",
Addison-Wesley, Reading, Massachusetts, 1987, ISBN 0-201-16350-0, Section
9.3.

[2] S. K. Mitra, "Digital Signal Processing: A Computer Based Approach",
McGraw-Hill, New York, 1998, ISBN 0-07-042953-7.

Select a State-Space Representation of the System.

We observe that the system is stable by observing that the eigenvalues of the
state-transition matrix A have magnitudes less than 1.

originalFormat = get(0, 'format');
format
A = [0 1; -.5 1]; B = [0; 1]; C = [1 0]; D = 0;
eig(A)

ans =

0.5000 + 0.5000i
0.5000 - 0.5000i

Filter Implementation

type(fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo','fisiso

3-150

Detect Limit Cycles in Fixed-Point State-Space Systems

function [y,z] = fisisostatespacefilter(A,B,C,D,x,z)
%FISISOSTATESPACEFILTER Single-input, single-output statespace filter
% [Y,Zf] = FISISOSTATESPACEFILTER(A,B,C,D,X,Zi) filters data X with
% initial conditions Zi with the state-space filter defined by matrices
% A, B, C, D. Output Y and final conditions Zf are returned.

% Copyright 2004-2011 The MathWorks, Inc.

y = x;
z(:,2:length(x)+1) = 0;
for k=1:length(x)

y(k) = C*z(:,k) + D*x(k);
z(:,k+1) = A*z(:,k) + B*x(k);

end

Floating-Point Filter

Create a floating-point filter and observe the trajectory of the states.

First, we choose random states within the unit square and observe where
they are projected after one step of being multiplied by the state-transition
matrix A.

rng('default');
clf
x1 = [-1 1 1 -1 -1];
y1 = [-1 -1 1 1 -1];
plot(x1,y1,'c')
axis([-1.5 1.5 -1.5 1.5]); axis square; grid;
hold on

% Plot the projection of the square
p = A*[x1;y1];
plot(p(1,:),p(2,:),'r')

r = 2*rand(2,1000)-1;
pr = A*r;
plot(pr(1,:),pr(2,:),'.')

3-151

3 Fixed-Point Topics

Random Initial States Followed Through Time

Drive the filter with a random initial state, normalized to be inside the unit
square, with the input all zero, and run the filter.

Note that some of the states wander outside the unit square, and that they
eventually wind down to the zero state at the origin, z=[0;0].

x = zeros(10,1);
zi = [0;0];
q = quantizer([16 15]);
for k=1:20

y = x;
zi(:) = randquant(q,size(A,1),1);
[y,zf] = fidemo.fisisostatespacefilter(A,B,C,D,x,zi);
plot(zf(1,:), zf(2,:),'go-','markersize',8);

end
title('Double-Precision State Sequence Plot');
xlabel('z1'); ylabel('z2')

State Trajectory

Because the eigenvalues are less than one in magnitude, the system is stable,
and all initial states wind down to the origin with zero input. However, the
eigenvalues don’t tell the whole story about the trajectory of the states, as
in this example, where the states were projected outward first, before they
start to contract.

The singular values of A give us a better indication of the overall state
trajectory. The largest singular value is about 1.46, which indicates that
states aligned with the corresponding singular vector will be projected away
from the origin.

svd(A)

ans =

3-152

Detect Limit Cycles in Fixed-Point State-Space Systems

1.4604
0.3424

Fixed-Point Filter Creation

Create a fixed-point filter and check for limit cycles.

The MATLAB® code for the filter remains the same. It becomes a fixed-point
filter because we drive it with fixed-point inputs.

For the sake of illustrating overflow oscillation, we are choosing product and
sum data types that will overflow.

rng('default');
F = fimath('OverflowAction','Wrap',...

'ProductMode','SpecifyPrecision',...
'ProductWordLength',16,'ProductFractionLength',15,...
'SumMode','SpecifyPrecision',...
'SumWordLength',16,'SumFractionLength',15);

A = fi(A,'fimath',F)
B = fi(B,'fimath',F)
C = fi(C,'fimath',F)
D = fi(D,'fimath',F)

A =

0 1.0000
-0.5000 1.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 14

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: SpecifyPrecision

3-153

3 Fixed-Point Topics

ProductWordLength: 16
ProductFractionLength: 15

SumMode: SpecifyPrecision
SumWordLength: 16

SumFractionLength: 15
CastBeforeSum: true

B =

0
1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 14

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: SpecifyPrecision
ProductWordLength: 16

ProductFractionLength: 15
SumMode: SpecifyPrecision

SumWordLength: 16
SumFractionLength: 15

CastBeforeSum: true

C =

1 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 14

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: SpecifyPrecision
ProductWordLength: 16

3-154

Detect Limit Cycles in Fixed-Point State-Space Systems

ProductFractionLength: 15
SumMode: SpecifyPrecision

SumWordLength: 16
SumFractionLength: 15

CastBeforeSum: true

D =

0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: SpecifyPrecision
ProductWordLength: 16

ProductFractionLength: 15
SumMode: SpecifyPrecision

SumWordLength: 16
SumFractionLength: 15

CastBeforeSum: true

Plot the Projection of the Square in Fixed-Point

Again, we choose random states within the unit square and observe where
they are projected after one step of being multiplied by the state-transition
matrix A. The difference is that this time matrix A is fixed-point.

Note that the triangles that projected out of the square before in floating-point,
are now wrapped back into the interior of the square.

clf
r = 2*rand(2,1000)-1;
pr = A*r;
plot([-1 1 1 -1 -1],[-1 -1 1 1 -1],'c')
axis([-1.5 1.5 -1.5 1.5]); axis square; grid;
hold on

3-155

3 Fixed-Point Topics

plot(pr(1,:),pr(2,:),'.')

Execute the Fixed-Point Filter.

The only difference between this and the previous code is that we are driving
it with fixed-point data types.

x = fi(zeros(10,1),1,16,15,'fimath',F);
zi = fi([0;0],1,16,15,'fimath',F);
q = assignmentquantizer(zi);
e = double(eps(zi));
rng('default');
for k=1:20

y = x;
zi(:) = randquant(q,size(A,1),1);
[y,zf] = fidemo.fisisostatespacefilter(A,B,C,D,x,zi);
if abs(double(zf(end)))>0.5, c='ro-'; else, c='go-'; end
plot(zf(1,:), zf(2,:),c,'markersize',8);

end
title('Fixed-Point State Sequence Plot');
xlabel('z1'); ylabel('z2')

Trying this for other randomly chosen initial states illustrates that once a
state enters one of the triangular regions, then it is projected into the other
triangular region, and back and forth, and never escapes.

Sufficient Conditions for Preventing Overflow Limit Cycles

There are two sufficient conditions to prevent overflow limit cycles in a system:

• the system is stable i.e., abs(eig(A))<1,

• the matrix A is normal i.e., A’*A = A*A’.

Note that for the current representation, the second condition does not hold.

Apply Similarity Transform to Create a Normal A

3-156

Detect Limit Cycles in Fixed-Point State-Space Systems

We now apply a similarity transformation to the original system that will
create a normal state-transition matrix A2.

T = [-2 0;-1 1];
Tinv = [-.5 0;-.5 1];
A2 = Tinv*A*T; B2 = Tinv*B; C2 = C*T; D2 = D;

Similarity transformations preserve eigenvalues, as a result of which the
system transfer function of the transformed system remains same as before.
However, the transformed state transformation matrix A2 is normal.

Check for Limit Cycles on the Transformed System.

Plot the Projection of the Square of the Normal-Form System

Now the projection of random initial states inside the unit square all contract
uniformly. This is the result of the state transition matrix A2 being normal.
The states are also rotated by 90 degrees counterclockwise.

clf
r = 2*rand(2,1000)-1;
pr = A2*r;
plot([-1 1 1 -1 -1],[-1 -1 1 1 -1],'c')
axis([-1.5 1.5 -1.5 1.5]); axis square; grid;
hold on
plot(pr(1,:),pr(2,:),'.')

Plot the State Sequence

Plotting the state sequences again for the same initial states as before we see
that the outputs now spiral towards the origin.

x = fi(zeros(10,1),1,16,15,'fimath',F);
zi = fi([0;0],1,16,15,'fimath',F);
q = assignmentquantizer(zi);
e = double(eps(zi));
rng('default');
for k=1:20

y = x;

3-157

3 Fixed-Point Topics

zi(:) = randquant(q,size(A,1),1);
[y,zf] = fidemo.fisisostatespacefilter(A2,B2,C2,D2,x,zi);
if abs(double(zf(end)))>0.5, c='ro-'; else, c='go-'; end
plot(zf(1,:), zf(2,:),c,'markersize',8);

end
title('Normal-Form Fixed-Point State Sequence Plot');
xlabel('z1'); ylabel('z2')

Trying this for other randomly chosen initial states illustrates that there is no
region from which the filter is unable to recover.

set(0, 'format', originalFormat);

3-158

Compute Quantization Error

Compute Quantization Error
This example shows how to compute and compare the statistics of the signal
quantization error when using various rounding methods.

First, a random signal is created that spans the range of the quantizer.

Next, the signal is quantized, respectively, with rounding methods ’fix’, ’floor’,
’ceil’, ’nearest’, and ’convergent’, and the statistics of the signal are estimated.

The theoretical probability density function of the quantization error will
be computed with ERRPDF, the theoretical mean of the quantization error
will be computed with ERRMEAN, and the theoretical variance of the
quantization error will be computed with ERRVAR.

Uniformly Distributed Random Signal

First we create a uniformly distributed random signal that spans the domain
-1 to 1 of the fixed-point quantizers that we will look at.

q = quantizer([8 7]);
r = realmax(q);
u = r*(2*rand(50000,1) - 1); % Uniformly distributed (-1,1)
xi=linspace(-2*eps(q),2*eps(q),256);

Fix: Round Towards Zero.

Notice that with ’fix’ rounding, the probability density function is twice as wide
as the others. For this reason, the variance is four times that of the others.

q = quantizer('fix',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t = errvar(q);
% Theoretical variance = eps(q)^2 / 3
% Theoretical mean = 0
fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

Estimated error variance (dB) = -46.8586

3-159

3 Fixed-Point Topics

Theoretical error variance (dB) = -46.9154
Estimated mean = 7.788e-06
Theoretical mean = 0

Floor: Round Towards Minus Infinity.

Floor rounding is often called truncation when used with integers and
fixed-point numbers that are represented in two’s complement. It is the most
common rounding mode of DSP processors because it requires no hardware to
implement. Floor does not produce quantized values that are as close to the
true values as ROUND will, but it has the same variance, and small signals
that vary in sign will be detected, whereas in ROUND they will be lost.

q = quantizer('floor',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t = errvar(q);
% Theoretical variance = eps(q)^2 / 12
% Theoretical mean = -eps(q)/2
fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

Estimated error variance (dB) = -52.9148
Theoretical error variance (dB) = -52.936
Estimated mean = -0.0038956
Theoretical mean = -0.0039062

Ceil: Round Towards Plus Infinity.

q = quantizer('ceil',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t = errvar(q);
% Theoretical variance = eps(q)^2 / 12
% Theoretical mean = eps(q)/2
fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

3-160

Compute Quantization Error

Estimated error variance (dB) = -52.9148
Theoretical error variance (dB) = -52.936
Estimated mean = 0.0039169
Theoretical mean = 0.0039062

Round: Round to Nearest. In a Tie, Round to Largest Magnitude.

Round is more accurate than floor, but all values smaller than eps(q) get
rounded to zero and so are lost.

q = quantizer('nearest',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t = errvar(q);
% Theoretical variance = eps(q)^2 / 12
% Theoretical mean = 0
fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

Estimated error variance (dB) = -52.9579
Theoretical error variance (dB) = -52.936
Estimated mean = -2.212e-06
Theoretical mean = 0

Convergent: Round to Nearest. In a Tie, Round to Even.

Convergent rounding eliminates the bias introduced by ordinary "round"
caused by always rounding the tie in the same direction.

q = quantizer('convergent',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t = errvar(q);
% Theoretical variance = eps(q)^2 / 12
% Theoretical mean = 0

3-161

3 Fixed-Point Topics

fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

Estimated error variance (dB) = -52.9579
Theoretical error variance (dB) = -52.936
Estimated mean = -2.212e-06
Theoretical mean = 0

Comparison of Nearest vs. Convergent

The error probability density function for convergent rounding is difficult to
distinguish from that of round-to-nearest by looking at the plot.

The error p.d.f. of convergent is

f(err) = 1/eps(q), for -eps(q)/2 <= err <= eps(q)/2, and 0 otherwise

while the error p.d.f. of round is

f(err) = 1/eps(q), for -eps(q)/2 < err <= eps(q)/2, and 0 otherwise

Note that the error p.d.f. of convergent is symmetric, while round is slightly
biased towards the positive.

The only difference is the direction of rounding in a tie.

x=[-3.5:3.5]';
[x convergent(x) nearest(x)]

ans =

-3.5000 -4.0000 -3.0000
-2.5000 -2.0000 -2.0000
-1.5000 -2.0000 -1.0000
-0.5000 0 0
0.5000 0 1.0000
1.5000 2.0000 2.0000
2.5000 2.0000 3.0000
3.5000 4.0000 4.0000

3-162

Compute Quantization Error

Plot Helper Function

The helper function that was used to generate the plots in this example is
listed below.

type(fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo','qerror

function qerrordemoplot(q,f_t,xi,mu_t,v_t,err)
%QERRORDEMOPLOT Plot function for QERRORDEMO.
% QERRORDEMOPLOT(Q,F_T,XI,MU_T,V_T,ERR) produces the plot and display us
% the example function QERRORDEMO, where Q is the quantizer whos attribu
% being analyzed; F_T is the theoretical quantization error probability
% density function for quantizer Q computed by ERRPDF; XI is the domain
% values being evaluated by ERRPDF; MU_T is the theoretical quantization
% error mean of quantizer Q computed by ERRMEAN; V_T is the theoretical
% quantization error variance of quantizer Q computed by ERRVAR; and ERR
% is the error generated by quantizing a random signal by quantizer Q.
%
% See QERRORDEMO for examples of use.

% Copyright 1999-2012 The MathWorks, Inc.

v=10*log10(var(err));
disp(['Estimated error variance (dB) = ',num2str(v)]);
disp(['Theoretical error variance (dB) = ',num2str(10*log10(v_t))]);
disp(['Estimated mean = ',num2str(mean(err))]);
disp(['Theoretical mean = ',num2str(mu_t)]);
[n,c]=hist(err);
figure(gcf)
bar(c,n/(length(err)*(c(2)-c(1))),'hist');
line(xi,f_t,'linewidth',2,'color','r');
% Set the ylim uniformly on all plots
set(gca,'ylim',[0 max(errpdf(quantizer(q.format,'nearest'),xi)*1.1)])
legend('Estimated','Theoretical')
xlabel('err'); ylabel('errpdf')

3-163

3 Fixed-Point Topics

Normalize Data for Lookup Tables
This example shows how to normalize data for use in lookup tables.

Lookup tables are a very efficient way to write computationally-intense
functions for fixed-point embedded devices. For example, you can efficiently
implement logarithm, sine, cosine, tangent, and square-root using lookup
tables. You normalize the inputs to these functions to produce a smaller
lookup table, and then you scale the outputs by the normalization factor. This
example shows how to implement the normalization function that is used
in examples Implement Fixed-Point Square Root Using Lookup Table and
Implement Fixed-Point Log2 Using Lookup Table.

Setup

To assure that this example does not change your preferences or settings, this
code stores the original state, and you will restore it at the end.

originalFormat = get(0, 'format'); format long g
originalWarningState = warning('off','fixed:fi:underflow');
originalFiprefState = get(fipref); reset(fipref)

Function to Normalize Unsigned Data

This algorithm normalizes unsigned data with 8-bit bytes. Given input u > 0,
the output x is normalized such that

u = x * 2^n

where 1 <= x < 2 and n is an integer. Note that n may be positive, negative,
or zero.

Function fi_normalize_unsigned_8_bit_byte looks at the 8
most-significant-bits of the input at a time, and left shifts the bits until the
most-significant bit is a 1. The number of bits to shift for each 8-bit byte is
read from the number-of-leading-zeros lookup table, NLZLUT.

function [x,n] = fi_normalize_unsigned_8_bit_byte(u) %#codegen
assert(isscalar(u),'Input must be scalar');
assert(all(u>0),'Input must be positive.');

3-164

Normalize Data for Lookup Tables

assert(isfi(u) && isfixed(u),'Input must be a fi object with fixed-poin
u = removefimath(u);
NLZLUT = number_of_leading_zeros_look_up_table();
word_length = u.WordLength;
u_fraction_length = u.FractionLength;
B = 8;
leftshifts=int8(0);
% Reinterpret the input as an unsigned integer.
T_unsigned_integer = numerictype(0, word_length, 0);
v = reinterpretcast(u,T_unsigned_integer);
F = fimath('OverflowAction','Wrap',...

'RoundingMethod','Floor',...
'SumMode','KeepLSB',...
'SumWordLength',v.WordLength);

v = setfimath(v,F);
% Unroll the loop in generated code so there will be no branching.
for k = coder.unroll(1:ceil(word_length/B))

% For each iteration, see how many leading zeros are in the high
% byte of V, and shift them out to the left. Continue with the
% shifted V for as many bytes as it has.
%
% The index is the high byte of the input plus 1 to make it a
% one-based index.
index = int32(bitsra(v, word_length - B) + uint8(1));
% Index into the number-of-leading-zeros lookup table. This lookup
% table takes in a byte and returns the number of leading zeros in
% binary representation.
shiftamount = NLZLUT(index);
% Left-shift out all the leading zeros in the high byte.
v = bitsll(v,shiftamount);
% Update the total number of left-shifts
leftshifts = leftshifts+shiftamount;

end
% The input has been left-shifted so the most-significant-bit is a 1.
% Reinterpret the output as unsigned with one integer bit, so
% that 1 <= x < 2.
T_x = numerictype(0,word_length,word_length-1);
x = reinterpretcast(v, T_x);
x = removefimath(x);
% Let Q = int(u). Then u = Q*2^(-u_fraction_length),

3-165

3 Fixed-Point Topics

% and x = Q*2^leftshifts * 2^(1-word_length). Therefore,
% u = x*2^n, where n is defined as:
n = word_length - u_fraction_length - leftshifts - 1;

end

Number-of-Leading-Zeros Lookup Table

Function number_of_leading_zeros_look_up_table is used by
fi_normalize_unsigned_8_bit_byte and returns a table of the number
of leading zero bits in an 8-bit word.

The first element of NLZLUT is 8 and corresponds to u=0. In 8-bit value u =
00000000_2, where subscript 2 indicates base-2, there are 8 leading zero bits.

The second element of NLZLUT is 7 and corresponds to u=1. There are 7
leading zero bits in 8-bit value u = 00000001_2.

And so forth, until the last element of NLZLUT is 0 and corresponds to u=255.
There are 0 leading zero bits in the 8-bit value u=11111111_2.

The NLZLUT table was generated by:

>> B = 8; % Number of bits in a byte
>> NLZLUT = int8(B-ceil(log2((1:2^B))))

function NLZLUT = number_of_leading_zeros_look_up_table()
% B = 8; % Number of bits in a byte
% NLZLUT = int8(B-ceil(log2((1:2^B))))

NLZLUT = int8([8 7 6 6 5 5 5 5 ...
4 4 4 4 4 4 4 4 ...
3 3 3 3 3 3 3 3 ...
3 3 3 3 3 3 3 3 ...
2 2 2 2 2 2 2 2 ...
2 2 2 2 2 2 2 2 ...
2 2 2 2 2 2 2 2 ...
2 2 2 2 2 2 2 2 ...
1 1 1 1 1 1 1 1 ...
1 1 1 1 1 1 1 1 ...
1 1 1 1 1 1 1 1 ...
1 1 1 1 1 1 1 1 ...

3-166

Normalize Data for Lookup Tables

1 1 1 1 1 1 1 1 ...
1 1 1 1 1 1 1 1 ...
1 1 1 1 1 1 1 1 ...
1 1 1 1 1 1 1 1 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0]);

end

Example

For example, let

u = fi(0.3, 1, 16, 8);

In binary, u = 00000000.01001101_2 = 0.30078125 (the fixed-point value is
not exactly 0.3 because of roundoff to 8 bits). The goal is to normalize such that

u = 1.001101000000000_2 * 2^(-2) = x * 2^n.

Start with u represented as an unsigned integer.

High byte Low byte
00000000 01001101 Start: u as unsigned integer.

3-167

3 Fixed-Point Topics

The high byte is 0 = 00000000_2. Add 1 to make an index out of it: index
= 0 + 1 = 1. The number-of-leading-zeros lookup table at index 1 indicates
that there are 8 leading zeros: NLZLUT(1) = 8. Left shift by this many bits.

High byte Low byte
01001101 00000000 Left-shifted by 8 bits.

Iterate once more to remove the leading zeros from the next byte.

The high byte is 77 = 01001101_2. Add 1 to make an index out of it: index =
77 + 1 = 78. The number-of-leading-zeros lookup table at index 78 indicates
that there is 1 leading zero: NLZLUT(78) = 1. Left shift by this many bits.

High byte Low byte
100110100 0000000 Left-shifted by 1 additional bit, for a total of 9.

Reinterpret these bits as unsigned fixed-point with 15 fractional bits.

x = 1.001101000000000_2 = 1.203125

The value for n is the word-length of u, minus the fraction length of u, minus
the number of left shifts, minus 1.

n = 16 - 8 - 9 - 1 = -2.

And so your result is:

[x,n] = fi_normalize_unsigned_8_bit_byte(u)

x =

1.203125

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16

FractionLength: 15

n =

-2

3-168

Normalize Data for Lookup Tables

Comparing binary values, you can see that x has the same bits as u,
left-shifted by 9 bits.

binary_representation_of_u = bin(u)
binary_representation_of_x = bin(x)

binary_representation_of_u =

0000000001001101

binary_representation_of_x =

1001101000000000

Cleanup

Restore original state.

set(0, 'format', originalFormat);
warning(originalWarningState);
fipref(originalFiprefState);

3-169

3 Fixed-Point Topics

Implement Fixed-Point Log2 Using Lookup Table
This example shows how to implement fixed-point log2 using a lookup table.
Lookup tables generate efficient code for embedded devices.

Setup

To assure that this example does not change your preferences or settings, this
code stores the original state, and you will restore it at the end.

originalFormat = get(0, 'format'); format long g
originalWarningState = warning('off','fixed:fi:underflow');
originalFiprefState = get(fipref); reset(fipref)

Log2 Implementation

The log2 algorithm is summarized here.

1 Declare the number of bits in a byte, B, as a constant. In this example, B=8.

2 Use function fi_normalize_unsigned_8_bit_byte() described in example
Normalize Data for Lookup Tables to normalize the input u>0 such that u
= x * 2^n and 1 <= x < 2.

3 Extract the upper B-bits of x. Let x_B denote the upper B-bits of x.

4 Generate lookup table, LOG2LUT, such that the integer i = x_B -
2^(B-1) + 1 is used as an index to LOG2LUT so that log2(x_B) can be
evaluated by looking up the index log2(x_B) = LOG2LUT(i).

5 Use the remainder, r = x - x_B, interpreted as a fraction, to linearly
interpolate between LOG2LUT(i) and the next value in the table
LOG2LUT(i+1). The remainder, r, is created by extracting the lower w -
B bits of x, where w denotes the word length of x. It is interpreted as a
fraction by using function reinterpretcast().

6 Finally, compute the output using the lookup table and linear interpolation:

log2(u) = log2(x * 2^n)
= n + log2(x)

3-170

Implement Fixed-Point Log2 Using Lookup Table

= n + LOG2LUT(i) + r * (LOG2LUT(i+1) - LOG2LUT(i))

function y = fi_log2lookup_8_bit_byte(u) %#codegen
% Load the lookup table
LOG2LUT = log2_lookup_table();
% Remove fimath from the input to insulate this function from math
% settings declared outside this function.
u = removefimath(u);
% Declare the output
y = coder.nullcopy(fi(zeros(size(u)), numerictype(LOG2LUT), fimath(LOG2
B = 8; % Number of bits in a byte
w = u.WordLength;
for k = 1:numel(u)

assert(u(k)>0,'Input must be positive.');
% Normalize the input such that u = x * 2^n and 1 <= x < 2
[x,n] = fi_normalize_unsigned_8_bit_byte(u(k));
% Extract the high byte of x
high_byte = storedInteger(bitsliceget(x, w, w - B + 1));
% Convert the high byte into an index for LOG2LUT
i = high_byte - 2^(B-1) + 1;
% Interpolate between points.
% The upper byte was used for the index into LOG2LUT
% The remaining bits make up the fraction between points.
T_unsigned_fraction = numerictype(0, w-B, w-B);
r = reinterpretcast(bitsliceget(x,w-B,1), T_unsigned_fraction);
y(k) = n + LOG2LUT(i) + ...

r*(LOG2LUT(i+1) - LOG2LUT(i)) ;
end
% Remove fimath from the output to insulate the caller from math settin
% declared inside this function.
y = removefimath(y);

end

Log2 Lookup Table

Function log2_lookup_table loads the lookup table of log2 values. You can
create the table by running:

B = 8;
log2_table = log2((2^(B-1) : 2^(B)) / 2^(B - 1))

3-171

3 Fixed-Point Topics

function LOG2LUT = log2_lookup_table()
B = 8; % Number of bits in a byte
% log2_table = log2((2^(B-1) : 2^(B)) / 2^(B - 1))
log2_table = [0.000000000000000 0.011227255423254 0.022367813028454

0.044394119358453 0.055282435501190 0.066089190457773
0.087462841250339 0.098032082960527 0.108524456778169
0.129283016944966 0.139551352398794 0.149747119504682
0.169925001442312 0.179909090014934 0.189824558880017
0.209453365628950 0.219168520462162 0.228818690495881
0.247927513443586 0.257387842692652 0.266786540694901
0.285402218862248 0.294620748891627 0.303780748177103
0.321928094887362 0.330916878114617 0.339850002884625
0.357552004618084 0.366322214245816 0.375039431346925
0.392317422778760 0.400879436282184 0.409390936137702
0.426264754702098 0.434628227636725 0.442943495848728
0.459431618637297 0.467605550082997 0.475733430966398
0.491853096329675 0.499845887083205 0.507794640198696
0.523561956057013 0.531381460516312 0.539158811108031
0.554588851677637 0.562242424221073 0.569855608330948
0.584962500721156 0.592457037268080 0.599912842187128
0.614709844115208 0.622051819456376 0.629356620079610
0.643856189774725 0.651051691178929 0.658211482751795
0.672425341971496 0.679480099505446 0.686500527183218
0.700439718141092 0.707359132080883 0.714245517666123
0.727920454563199 0.734709620225838 0.741466986401147
0.754887502163469 0.761551232444479 0.768184324776926
0.781359713524660 0.787902559391432 0.794415866350106
0.807354922057604 0.813781191217037 0.820178962415188
0.832890014164742 0.839203788096944 0.845490050944375
0.857980995127572 0.864186144654280 0.870364719583405
0.882643049361841 0.888743248898259 0.894817763307943
0.906890595608518 0.912889336229962 0.918863237274595
0.930737337562886 0.936637939002571 0.942514505339240
0.954196310386875 0.960001932068081 0.965784284662087
0.977279923499916 0.982993574694310 0.988684686772166
1.000000000000000];

% Cast to fixed point with the most accurate rounding method
WL = 4*B; % Word length

3-172

Implement Fixed-Point Log2 Using Lookup Table

FL = 2*B; % Fraction length
LOG2LUT = fi(log2_table,1,WL,FL,'RoundingMethod','Nearest');
% Set fimath for the most efficient math operations
F = fimath('OverflowAction','Wrap',...

'RoundingMethod','Floor',...
'SumMode','SpecifyPrecision',...
'SumWordLength',WL,...
'SumFractionLength',FL,...
'ProductMode','SpecifyPrecision',...
'ProductWordLength',WL,...
'ProductFractionLength',2*FL);

LOG2LUT = setfimath(LOG2LUT,F);
end

Example

u = fi(linspace(0.001,20,100));

y = fi_log2lookup_8_bit_byte(u);

y_expected = log2(double(u));
%%3
clf
subplot(211)
plot(u,y,u,y_expected)
legend('Output','Expected output','Location','Best')

subplot(212)
plot(u,double(y)-y_expected,'r')
legend('Error')
figure(gcf)

Cleanup

Restore original state.

set(0, 'format', originalFormat);
warning(originalWarningState);

3-173

3 Fixed-Point Topics

fipref(originalFiprefState);

3-174

Implement Fixed-Point Square Root Using Lookup Table

Implement Fixed-Point Square Root Using Lookup Table
This example shows how to implement fixed-point square root using a lookup
table. Lookup tables generate efficient code for embedded devices.

Setup

To assure that this example does not change your preferences or settings, this
code stores the original state, and you will restore it at the end.

originalFormat = get(0, 'format'); format long g
originalWarningState = warning('off','fixed:fi:underflow');
originalFiprefState = get(fipref); reset(fipref)

Square Root Implementation

The square root algorithm is summarized here.

1 Declare the number of bits in a byte, B, as a constant. In this example, B=8.

2 Use function fi_normalize_unsigned_8_bit_byte() described in example
Normalize Data for Lookup Tables to normalize the input u>0 such that u
= x * 2^n, 0.5 <= x < 2, and n is even.

3 Extract the upper B-bits of x. Let x_B denote the upper B-bits of x.

4 Generate lookup table, SQRTLUT, such that the integer i = x_B-
2^(B-2) + 1 is used as an index to SQRTLUT so that sqrt(x_B) can be
evaluated by looking up the index sqrt(x_B) = SQRTLUT(i).

5 Use the remainder, r = x - x_B, interpreted as a fraction, to linearly
interpolate between SQRTLUT(i) and the next value in the table
SQRTLUT(i+1). The remainder, r, is created by extracting the lower w -
B bits of x, where w denotes the word-length of x. It is interpreted as a
fraction by using function reinterpretcast().

6 Finally, compute the output using the lookup table and linear interpolation:

sqrt(u) = sqrt(x * 2^n)
= sqrt(x) * 2^(n/2)

3-175

3 Fixed-Point Topics

= (SQRTLUT(i) + r * (SQRTLUT(i+1) - SQRTLUT(i))) * 2^(n

function y = fi_sqrtlookup_8_bit_byte(u) %#codegen
% Load the lookup table
SQRTLUT = sqrt_lookup_table();
% Remove fimath from the input to insulate this function from math
% settings declared outside this function.
u = removefimath(u);
% Declare the output
y = coder.nullcopy(fi(zeros(size(u)), numerictype(SQRTLUT), fimath(SQRT
B = 8; % Number of bits in a byte
w = u.WordLength;
for k = 1:numel(u)

assert(u(k)>=0,'Input must be non-negative.');
if u(k)==0

y(k)=0;
else

% Normalize the input such that u = x * 2^n and 0.5 <= x < 2
[x,n] = fi_normalize_unsigned_8_bit_byte(u(k));
isodd = storedInteger(bitand(fi(1,1,8,0),fi(n)));
x = bitsra(x,isodd);
n = n + isodd;
% Extract the high byte of x
high_byte = storedInteger(bitsliceget(x, w, w - B + 1));
% Convert the high byte into an index for SQRTLUT
i = high_byte - 2^(B-2) + 1;
% The upper byte was used for the index into SQRTLUT.
% The remainder, r, interpreted as a fraction, is used to
% linearly interpolate between points.
T_unsigned_fraction = numerictype(0, w-B, w-B);
r = reinterpretcast(bitsliceget(x,w-B,1), T_unsigned_fraction);
y(k) = bitshift((SQRTLUT(i) + r*(SQRTLUT(i+1) - SQRTLUT(i))),..

bitsra(n,1));
end

end
% Remove fimath from the output to insulate the caller from math settin
% declared inside this function.
y = removefimath(y);

end

3-176

Implement Fixed-Point Square Root Using Lookup Table

Square Root Lookup Table

Function sqrt_lookup_table loads the lookup table of square-root values.
You can create the table by running:

sqrt_table = sqrt((2^(B-2):2^(B))/2^(B-1));

function SQRTLUT = sqrt_lookup_table()
B = 8; % Number of bits in a byte
% sqrt_table = sqrt((2^(B-2):2^(B))/2^(B-1))
sqrt_table = [0.707106781186548 0.712609640686961 0.718070330817254

0.728868986855663 0.734208757779421 0.739509972887452
0.750000000000000 0.755190373349661 0.760345316287277
0.770551750371122 0.775604602874429 0.780624749799800
0.790569415042095 0.795495128834866 0.800390529679106
0.810092587300983 0.814900300650331 0.819679815537750
0.829156197588850 0.833854004007896 0.838525491562421
0.847791247890659 0.852386356061616 0.856956825050130
0.866025403784439 0.870524267324007 0.875000000000000
0.883883476483184 0.888291900221993 0.892678553567856
0.901387818865997 0.905711046636840 0.910013736160065
0.918558653543692 0.922801441264588 0.927024810886958
0.935414346693485 0.939581023648307 0.943729304408844
0.951971638232989 0.956066158798647 0.960143218483576
0.968245836551854 0.972271824131503 0.976281209488332
0.984250984251476 0.988211768802619 0.992156741649222
1.000000000000000 1.003898650263063 1.007782218537319
1.015504800579495 1.019344151893756 1.023169096484056
1.030776406404415 1.034559084827928 1.038327982864759
1.045825033167594 1.049553476484167 1.053268721647045
1.060660171779821 1.064336647870400 1.068000468164691
1.075290658380328 1.078917281352004 1.082531754730548
1.089724735885168 1.093303480283494 1.096870548424015
1.103970108290981 1.107502821666834 1.111024302164449
1.118033988749895 1.121522402807898 1.125000000000000
1.131923142267177 1.135368882786559 1.138804197393037
1.145643923738960 1.149048519428140 1.152443057161611
1.159202311936963 1.162567202358642 1.165922381636102
1.172603939955857 1.175930482639174 1.179247641507075
1.185854122563142 1.189143599402528 1.192424001771182

3-177

3 Fixed-Point Topics

1.198957880828180 1.202211503854459 1.205456345124119
1.211919964354082 1.215138880951474 1.218349293101120
1.224744871391589 1.227930169024281 1.231107225224513
1.237436867076458 1.240589577579950 1.243734296383275
1.250000000000000 1.253121103485214 1.256234452640111
1.262438117295260 1.265528545707287 1.268611445636527
1.274754878398196 1.277815518766305 1.280868845744950
1.286953767623375 1.289985465034393 1.293010054098575
1.299038105676658 1.302041665999979 1.305038313613819
1.311011060212689 1.313987252601790 1.316956719106592
1.322875655532295 1.325825214724777 1.328768226591831
1.334634781503914 1.337558409939543 1.340475661845451
1.346291201783626 1.349189571557681 1.352081728298996
1.357847561400027 1.360721316067327 1.363589014329464
1.369306393762915 1.372156150006259 1.375000000000000
1.380670127148408 1.383496476323666 1.386317063301177
1.391941090707505 1.394744600276337 1.397542485937369
1.403121520040228 1.405902734900249 1.408678458698081
1.414213562373095];

% Cast to fixed point with the most accurate rounding method
WL = 4*B; % Word length
FL = 2*B; % Fraction length
SQRTLUT = fi(sqrt_table, 1, WL, FL, 'RoundingMethod','Nearest');
% Set fimath for the most efficient math operations
F = fimath('OverflowAction','Wrap',...

'RoundingMethod','Floor',...
'SumMode','KeepLSB',...
'SumWordLength',WL,...
'ProductMode','KeepLSB',...
'ProductWordLength',WL);

SQRTLUT = setfimath(SQRTLUT, F);
end

Example

u = fi(linspace(0,128,1000),0,16,12);

y = fi_sqrtlookup_8_bit_byte(u);

y_expected = sqrt(double(u));

3-178

Implement Fixed-Point Square Root Using Lookup Table

clf
subplot(211)
plot(u,y,u,y_expected)
legend('Output','Expected output','Location','Best')

subplot(212)
plot(u,double(y)-y_expected,'r')
legend('Error')
figure(gcf)

Cleanup

Restore original state.

set(0, 'format', originalFormat);
warning(originalWarningState);
fipref(originalFiprefState);

3-179

3 Fixed-Point Topics

Set Fixed-Point Math Attributes
This example shows how to set fixed point math attributes in MATLAB® code.

You can control fixed-point math attributes for assignment, addition,
subtraction, and multiplication using the fimath object. You can attach a
fimath object to a fi object using setfimath. You can remove a fimath object
from a fi object using removefimath.

You can generate C code from the examples if you have MATLAB Coder™
software.

Set and Remove Fixed Point Math Attributes

You can insulate your fixed-point operations from global and local fimath
settings by using the setfimath and removefimath functions. You can also
return from functions with no fimath attached to output variables. This gives
you local control over fixed-point math settings without interfering with the
settings in other functions.

MATLAB Code

function y = user_written_sum(u)
% Setup
F = fimath('RoundingMethod','Floor',...

'OverflowAction','Wrap',...
'SumMode','KeepLSB',...
'SumWordLength',32);

u = setfimath(u,F);
y = fi(0,true,32,get(u,'FractionLength'),F);
% Algorithm
for i=1:length(u)

y(:) = y + u(i);
end
% Cleanup
y = removefimath(y);

end

Output has no Attached FIMATH

3-180

Set Fixed-Point Math Attributes

When you run the code, the fimath controls the arithmetic inside the
function, but the return value has no attached fimath. This is due to the use
of setfimath and removefimath inside the function user_written_sum.

>> u = fi(1:10,true,16,11);
>> y = user_written_sum(u)

y =
55

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 11

Generated C Code

If you have MATLAB Coder software, you can generate C code using the
following commands.

>> u = fi(1:10,true,16,11);
>> codegen user_written_sum -args {u} -config:lib -launchreport

Functions fimath, setfimath and removefimath control the fixed-point
math, but the underlying data contained in the variables does not change and
so the generated C code does not produce any data copies.

int32_T user_written_sum(const int16_T u[10])
{

int32_T y;
int32_T i;
/* Setup */
y = 0;
/* Algorithm */
for (i = 0; i < 10; i++) {

y += u[i];
}
/* Cleanup */
return y;

}

Mismatched FIMATH

3-181

3 Fixed-Point Topics

When you operate on fi objects, their fimath properties must be equal, or
you get an error.

>> A = fi(pi,'ProductMode','KeepLSB');
>> B = fi(2,'ProductMode','SpecifyPrecision');
>> C = A * B

Error using embedded.fi/mtimes
The embedded.fimath of both operands must be equal.

To avoid this error, you can remove fimath from one of the variables in the
expression. In this example, the fimath is removed from B in the context of
the expression without modifying B itself, and the product is computed using
the fimath attached to A.

>> C = A * removefimath(B)

C =

6.283203125

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 26

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: KeepLSB
ProductWordLength: 32

SumMode: FullPrecision

Changing FIMATH on Temporary Variables

If you have variables with no attached fimath, but you want to control a
particular operation, then you can attach a fimath in the context of the
expression without modifying the variables.

For example, the product is computed with the fimath defined by F.

>> F = fimath('ProductMode','KeepLSB','OverflowAction','Wrap','RoundingMeth

3-182

Set Fixed-Point Math Attributes

>> A = fi(pi);
>> B = fi(2);
>> C = A * setfimath(B,F)

C =

6.2832

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 26

RoundingMethod: Floor
OverflowAction: Wrap

ProductMode: KeepLSB
ProductWordLength: 32

SumMode: FullPrecision
MaxSumWordLength: 128

Note that variable B is not changed.

>> B

B =

2

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

Removing FIMATH Conflict in a Loop

You can compute products and sums to match the accumulator of a DSP with
floor rounding and wrap overflow, and use nearest rounding and saturate
overflow on the output. To avoid mismatched fimath errors, you can remove
the fimath on the output variable when it is used in a computation with the
other variables.

3-183

3 Fixed-Point Topics

MATLAB Code

In this example, the products are 32-bits, and the accumulator is 40-bits,
keeping the least-significant-bits with floor rounding and wrap overflow like
C’s native integer rules. The output uses nearest rounding and saturate
overflow.

function [y,z] = setfimath_removefimath_in_a_loop(b,a,x,z)
% Setup
F_floor = fimath('RoundingMethod','Floor',...

'OverflowAction','Wrap',...
'ProductMode','KeepLSB',...
'ProductWordLength',32,...
'SumMode','KeepLSB',...
'SumWordLength',40);

F_nearest = fimath('RoundingMethod','Nearest',...
'OverflowAction','Wrap');

% Set fimaths that are local to this function
b = setfimath(b,F_floor);
a = setfimath(a,F_floor);
x = setfimath(x,F_floor);
z = setfimath(z,F_floor);
% Create y with nearest rounding
y = coder.nullcopy(fi(zeros(size(x)),true,16,14,F_nearest));
% Algorithm
for j=1:length(x)

% Nearest assignment into y
y(j) = b(1)*x(j) + z(1);
% Remove y's fimath conflict with other fimaths
z(1) = (b(2)*x(j) + z(2)) - a(2) * removefimath(y(j));
z(2) = b(3)*x(j) - a(3) * removefimath(y(j));

end
% Cleanup: Remove fimath from outputs
y = removefimath(y);
z = removefimath(z);

end

Code Generation Instructions

3-184

Set Fixed-Point Math Attributes

If you have MATLAB Coder software, you can generate C code with the
specificed hardware characteristics using the following commands.

N = 256;
t = 1:N;
xstep = [ones(N/2,1);-ones(N/2,1)];
num = [0.0299545822080925 0.0599091644161849 0.0299545822080925];
den = [1 -1.4542435862515900 0.5740619150839550];

b = fi(num,true,16);
a = fi(den,true,16);
x = fi(xstep,true,16,15);
zi = fi(zeros(2,1),true,16,14);

B = coder.Constant(b);
A = coder.Constant(a);

config_obj = coder.config('lib');
config_obj.GenerateReport = true;
config_obj.LaunchReport = true;
config_obj.TargetLang = 'C';
config_obj.GenerateComments = true;
config_obj.GenCodeOnly = true;
config_obj.HardwareImplementation.ProdBitPerChar=8;
config_obj.HardwareImplementation.ProdBitPerShort=16;
config_obj.HardwareImplementation.ProdBitPerInt=32;
config_obj.HardwareImplementation.ProdBitPerLong=40;

codegen -config config_obj setfimath_removefimath_in_a_loop -args {B,A,x,zi

Generated C Code

Functions fimath, setfimath and removefimath control the fixed-point
math, but the underlying data contained in the variables does not change and
so the generated C code does not produce any data copies.

void setfimath_removefimath_in_a_loop(const int16_T x[256], int16_T z[2],
int16_T y[256])

{
int32_T j;

3-185

3 Fixed-Point Topics

int40_T i0;
int16_T b_y;

/* Setup */
/* Set fimaths that are local to this function */
/* Create y with nearest rounding */
/* Algorithm */
for (j = 0; j < 256; j++) {

/* Nearest assignment into y */
i0 = 15705 * x[j] + ((int40_T)z[0] << 20);
b_y = (int16_T)((int32_T)(i0 >> 20) + ((i0 & 524288L) != 0L));

/* Remove y's fimath conflict with other fimaths */
z[0] = (int16_T)(((31410 * x[j] + ((int40_T)z[1] << 20)) - ((int40_T)(-

* b_y) << 6)) >> 20);
z[1] = (int16_T)((15705 * x[j] - ((int40_T)(9405 * b_y) << 6)) >> 20);
y[j] = b_y;

}

/* Cleanup: Remove fimath from outputs */
}

Polymorphic Code

You can write MATLAB code that can be used for both floating-point and
fixed-point types using setfimath and removefimath.

function y = user_written_function(u)
% Setup
F = fimath('RoundingMethod','Floor',...

'OverflowAction','Wrap',...
'SumMode','KeepLSB');

u = setfimath(u,F);
% Algorithm
y = u + u;
% Cleanup
y = removefimath(y);

end

Fixed Point Inputs

3-186

Set Fixed-Point Math Attributes

When the function is called with fixed-point inputs, then fimath F is used for
the arithmetic, and the output has no attached fimath.

>> u = fi(pi/8,true,16,15,'RoundingMethod','Convergent');
>> y = user_written_function(u)

y =

0.785400390625

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 15

Generated C Code for Fixed Point

If you have MATLAB Coder software, you can generate C code using the
following commands.

>> u = fi(pi/8,true,16,15,'RoundingMethod','Convergent');
>> codegen user_written_function -args {u} -config:lib -launchreport

Functions fimath, setfimath and removefimath control the fixed-point
math, but the underlying data contained in the variables does not change and
so the generated C code does not produce any data copies.

int32_T user_written_function(int16_T u)
{

/* Setup */
/* Algorithm */
/* Cleanup */
return u + u;

}

Double Inputs

Since setfimath and removefimath are pass-through for floating-point types,
the user_written_function example works with floating-point types, too.

function y = user_written_function(u)

3-187

3 Fixed-Point Topics

% Setup
F = fimath('RoundingMethod','Floor',...

'OverflowAction','Wrap',...
'SumMode','KeepLSB');

u = setfimath(u,F);
% Algorithm
y = u + u;
% Cleanup
y = removefimath(y);

end

Generated C Code for Double

When compiled with floating-point input, you get the following generated
C code.

>> codegen user_written_function -args {0} -config:lib -launchreport

real_T user_written_function(real_T u)
{

return u + u;
}

Where the real_T type is defined as a double:

typedef double real_T;

More Polymorphic Code

This function is written so that the output is created to be the same type as
the input, so both floating-point and fixed-point can be used with it.

function y = user_written_sum_polymorphic(u)
% Setup
F = fimath('RoundingMethod','Floor',...

'OverflowAction','Wrap',...
'SumMode','KeepLSB',...
'SumWordLength',32);

u = setfimath(u,F);

3-188

Set Fixed-Point Math Attributes

if isfi(u)
y = fi(0,true,32,get(u,'FractionLength'),F);

else
y = zeros(1,1,class(u));

end

% Algorithm
for i=1:length(u)

y(:) = y + u(i);
end

% Cleanup
y = removefimath(y);

end

Fixed Point Generated C Code

If you have MATLAB Coder software, you can generate fixed-point C code
using the following commands.

>> u = fi(1:10,true,16,11);
>> codegen user_written_sum_polymorphic -args {u} -config:lib -launchreport

Functions fimath, setfimath and removefimath control the fixed-point
math, but the underlying data contained in the variables does not change and
so the generated C code does not produce any data copies.

int32_T user_written_sum_polymorphic(const int16_T u[10])
{

int32_T y;
int32_T i;

/* Setup */
y = 0;

/* Algorithm */
for (i = 0; i < 10; i++) {

y += u[i];
}

3-189

3 Fixed-Point Topics

/* Cleanup */
return y;

}

Floating Point Generated C Code

If you have MATLAB Coder software, you can generate floating-point C code
using the following commands.

>> u = 1:10;
>> codegen user_written_sum_polymorphic -args {u} -config:lib -launchreport

real_T user_written_sum_polymorphic(const real_T u[10])
{

real_T y;
int32_T i;

/* Setup */
y = 0.0;

/* Algorithm */
for (i = 0; i < 10; i++) {

y += u[i];
}

/* Cleanup */
return y;

}

Where the real_T type is defined as a double:

typedef double real_T;

SETFIMATH on Integer Types

Following the established pattern of treating built-in integers like fi objects,
setfimath converts integer input to the equivalent fi with attached fimath.

>> u = int8(5);
>> codegen user_written_u_plus_u -args {u} -config:lib -launchreport

function y = user_written_u_plus_u(u)

3-190

Set Fixed-Point Math Attributes

% Setup
F = fimath('RoundingMethod','Floor',...

'OverflowAction','Wrap',...
'SumMode','KeepLSB',...
'SumWordLength',32);

u = setfimath(u,F);
% Algorithm
y = u + u;
% Cleanup
y = removefimath(y);

end

The output type was specified by the fimath to be 32-bit.

int32_T user_written_u_plus_u(int8_T u)
{

/* Setup */
/* Algorithm */
/* Cleanup */
return u + u;

}

3-191

3 Fixed-Point Topics

3-192

4

Working with fimath
Objects

• “fimath Object Construction” on page 4-2

• “fimath Object Properties” on page 4-6

• “fimath Properties Usage for Fixed-Point Arithmetic” on page 4-15

• “fimath for Rounding and Overflow Modes” on page 4-24

• “fimath for Sharing Arithmetic Rules” on page 4-26

• “fimath ProductMode and SumMode” on page 4-29

• “How Functions Use fimath” on page 4-36

4 Working with fimath Objects

fimath Object Construction

In this section...

“fimath Object Syntaxes” on page 4-2

“Building fimath Object Constructors in a GUI” on page 4-4

fimath Object Syntaxes
The arithmetic attributes of a fi object are defined by a local fimath object,
which is attached to that fi object. If a fi object has no local fimath, the
following default fimath values are used:

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

You can create fimath objects in Fixed-Point Designer software in one of
two ways:

• You can use the fimath constructor function to create new fimath objects.

• You can use the fimath constructor function to copy an existing fimath
object.

To get started, type

F = fimath

to create a fimath object.

F =

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

To copy a fimath object, simply use assignment as in the following example:

4-2

fimath Object Construction

F = fimath;
G = F;
isequal(F,G)

ans =

1

4-3

4 Working with fimath Objects

The syntax

F = fimath(...'PropertyName',PropertyValue...)

allows you to set properties for a fimath object at object creation with
property name/property value pairs. Refer to “Setting fimath Properties at
Object Creation” on page 4-13.

Building fimath Object Constructors in a GUI
When you are working with files in MATLAB, you can build your fimath
object constructors using the Insert fimath Constructor dialog box. After
specifying the properties of the fimath object in the dialog box, you can insert
the prepopulated fimath object constructor string at a specific location in
your file.

For example, to create a fimath object that uses convergent rounding and
wraps on overflow, perform the following steps:

1 On the Home tab, in the File section, click New > Script to open the
MATLAB Editor

2 On the Editor tab, in the Edit section, click in the Insert button
group. Click the Insert fimath... to open the Insert fimath Constructor
dialog box.

3 Use the edit boxes and drop-down menus to specify the following properties
of the fimath object:

• Rounding method = Floor

• Overflow action = Wrap

• Product mode = FullPrecision

• Sum mode = FullPrecision

4-4

fimath Object Construction

4 To insert the fimath object constructor string in your file, place your
cursor at the desired location in the file. Then click OK on the Insert
fimath Constructor dialog box. Clicking OK closes the Insert fimath
Constructor dialog box and automatically populates the fimath object
constructor string in your file:

4-5

4 Working with fimath Objects

fimath Object Properties

In this section...

“Math, Rounding, and Overflow Properties” on page 4-6

“How Properties are Related” on page 4-11

“Setting fimath Object Properties” on page 4-13

Math, Rounding, and Overflow Properties
You can always write to the following properties of fimath objects:

Property Description Valid Values

CastBeforeSum Whether both
operands are
cast to the sum
data type before
addition

• 0 (default) — do not cast before sum

• 1 — cast before sum

Note This property is hidden when the SumMode is set to
FullPrecision.

MaxProduct
WordLength

Maximum
allowable word
length for the
product data
type

• 65535 (default)

• Any positive integer

MaxSum
WordLength

Maximum
allowable word
length for the
sum data type

• 65535 (default)

• Any positive integer

OverflowAction Action to take on
overflow

• Saturate (default) — Saturate to maximum or
minimum value of the fixed-point range on overflow.

• Wrap—Wrap on overflow. This mode is also known as
two’s complement overflow.

4-6

fimath Object Properties

Property Description Valid Values

ProductBias Bias of the
product data
type

• 0 (default)

• Any floating-point number

ProductFixedExponentFixed exponent
of the product
data type

• -30 (default)

• Any positive or negative integer

Note The ProductFractionLength is the negative of the
ProductFixedExponent. Changing one property changes
the other.

ProductFractionLengthFraction length,
in bits, of the
product data
type

• 30 (default)

• Any positive or negative integer

Note The ProductFractionLength is the negative of the
ProductFixedExponent. Changing one property changes
the other.

ProductMode Defines how
the product
data type is
determined

• FullPrecision (default) — The full precision of the
result is kept.

• KeepLSB— Keep least significant bits. Specify the
product word length, while the fraction length is set to
maintain the least significant bits of the product.

• KeepMSB — Keep most significant bits. Specify the
product word length, while the fraction length is set to
maintain the most significant bits of the product.

• SpecifyPrecision— specify the word and fraction
lengths or slope and bias of the product.

4-7

4 Working with fimath Objects

Property Description Valid Values

ProductSlope Slope of the
product data
type

• 9.3132e-010 (default)

• Any floating-point number

Note

ProductSlope ProductSlopeAdjustmentFactor ProductFixedExp 2 oonent

Changing one of these properties affects the others.

ProductSlope
AdjustmentFactor

Slope
adjustment
factor of the
product data
type

• 1 (default)

• Any floating-point number greater than or equal to 1
and less than 2

Note

ProductSlope ProductSlopeAdjustmentFactor ProductFixedExp 2 oonent

Changing one of these properties affects the others.

ProductWordLengthWord length,
in bits, of the
product data
type

• 32 (default)

• Any positive integer

RoundingMethod Rounding
method

• Nearest (default) — Round toward nearest. Ties round
toward positive infinity.

• Ceiling— Round toward positive infinity.

• Convergent — Round toward nearest. Ties round to
the nearest even stored integer (least biased).

• Zero — Round toward zero.

• Floor— Round toward negative infinity.

4-8

fimath Object Properties

Property Description Valid Values

• Round — Round toward nearest. Ties round toward
negative infinity for negative numbers, and toward
positive infinity for positive numbers.

SumBias Bias of the sum
data type

• 0 (default)

• Any floating-point number

SumFixedExponentFixed exponent
of the sum data
type

• -30 (default)

• Any positive or negative integer

Note The SumFractionLength is the negative of the
SumFixedExponent. Changing one property changes the
other.

SumFractionLengthFraction length,
in bits, of the
sum data type

• 30 (default)

• Any positive or negative integer

Note The SumFractionLength is the negative of the
SumFixedExponent. Changing one property changes the
other.

4-9

4 Working with fimath Objects

Property Description Valid Values

SumMode Defines how the
sum data type is
determined

• FullPrecision (default) — The full precision of the
result is kept.

• KeepLSB— Keep least significant bits. Specify the sum
data type word length, while the fraction length is set
to maintain the least significant bits of the sum.

• KeepMSB— Keep most significant bits. Specify the sum
data type word length, while the fraction length is set
to maintain the most significant bits of the sum and no
more fractional bits than necessary

• SpecifyPrecision — Specify the word and fraction
lengths or the slope and bias of the sum data type.

SumSlope Slope of the sum
data type

• 9.3132e-010 (default)

• Any floating-point number

Note

SumSlope SumSlopeAdjustmentFactor SumFixedExponent= 2
Changing one of these properties affects the others.

SumSlope
AdjustmentFactor

Slope
adjustment
factor of the sum
data type

• 1 (default)

• Any floating-point number greater than or equal to 1
and less than 2

Note

SumSlope SumSlopeAdjustmentFactor SumFixedExponent= 2
Changing one of these properties affects the others.

SumWordLength Word length, in
bits, of the sum
data type

• 32 (default)

• Any positive integer

4-10

fimath Object Properties

For details about these properties, refer to the “fi Object Properties” on page
2-19. To learn how to specify properties for fimath objects in Fixed-Point
Designer software, refer to “Setting fimath Object Properties” on page 4-13.

How Properties are Related

Sum data type properties
The slope of the sum of two fi objects is related to the
SumSlopeAdjustmentFactor and SumFixedExponent properties
by

SumSlope SumSlopeAdjustmentFactor SumFixedExponent= 2

If any of these properties are updated, the others are modified accordingly.

In a FullPrecision sum, the resulting word length is represented by

W Fs s integer length

where

integer length max , ceil logW F W F NumberOfSummandsa a b b 2
and

F F Fs a b max(,)

When the SumMode is set to KeepLSB, the resulting word length and fraction
length is determined by

W
F F F

s

s a b

specified in the property SumWordLength

max(,)

When the SumMode is set to KeepMSB, the resulting word length and fraction
length is determined by

W
F W

s

s s

specified in the property
integer le

SumWordLength

nngth

4-11

4 Working with fimath Objects

where

integer length max , ceil logW F W F NumberOfSummandsa a b b 2

When the SumMode is set to SpecifyPrecision, you specify both the word and
fraction length or slope and bias of the sum data type with the SumWordLength
and SumFractionLength, or SumSlope and SumBias properties respectively.

Product data type properties
The slope of the product of two fi objects is related to the
ProductSlopeAdjustmentFactor and ProductFixedExponent properties by

ProductSlope ProductSlopeAdjustmentFactor ProductFixedExp 2 oonent

If any of these properties are updated, the others are modified accordingly.

In a FullPrecision multiply, the resulting word length and fraction length
are represented by

W W W

F F F
p a b

p a b

When the ProductMode is KeepLSB the word length and fraction length are
determined by

W

F F F
p

p a b

specified in the propertyProductWordLength

When the ProductMode is KeepMSB the word length and fraction length are

W

F W
p

p p

specified in the property

intege

ProductWordLength

rr length

where

integer length () ()W W F Fa b a b

4-12

fimath Object Properties

When the ProductMode is set to SpecifyPrecision, you specify both the
word and fraction length or slope and bias of the product data type with the
ProductWordLength and ProductFractionLength, or ProductSlope and
ProductBias properties respectively.

For more information about how certain functions use the fimath properties,
see

Setting fimath Object Properties

• “Setting fimath Properties at Object Creation” on page 4-13

• “Using Direct Property Referencing with fimath” on page 4-14

Setting fimath Properties at Object Creation
You can set properties of fimath objects at the time of object creation by
including properties after the arguments of the fimath constructor function.

For example, to set the overflow action to Saturate and the rounding method
to Convergent,

F = fimath('OverflowAction','Saturate','RoundingMethod','Convergent')

F =

RoundingMethod: Convergent
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: FullPrecision

In addition to creating a fimath object at the command line, you can also
set fimath properties using the Insert fimath Constructor dialog box.
For an example of this approach, see “Building fimath Object Constructors
in a GUI” on page 4-4.

4-13

4 Working with fimath Objects

Using Direct Property Referencing with fimath
You can reference directly into a property for setting or retrieving fimath
object property values using MATLAB structure-like referencing. You do so
by using a period to index into a property by name.

For example, to get the RoundingMethod of F,

F.RoundingMethod

ans =

Convergent

To set the OverflowAction of F,

F.OverflowAction = 'Wrap'

F =

RoundingMethod: Convergent
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

4-14

fimath Properties Usage for Fixed-Point Arithmetic

fimath Properties Usage for Fixed-Point Arithmetic

In this section...

“fimath Rules for Fixed-Point Arithmetic” on page 4-15

“Binary-Point Arithmetic” on page 4-17

“[Slope Bias] Arithmetic” on page 4-20

fimath Rules for Fixed-Point Arithmetic
fimath properties define the rules for performing arithmetic operations on fi
objects. The fimath properties that govern fixed-point arithmetic operations
can come from a local fimath object or the fimath default values.

To determine whether a fi object has a local fimath object, use the
isfimathlocal function.

The following sections discuss how fi objects with local fimath objects
interact with fi objects without local fimath.

Binary Operations
In binary fixed-point operations such as c = a + b, the following rules apply:

• If both a and b have no local fimath, the operation uses default fimath
values to perform the fixed-point arithmetic. The output fi object c also
has no local fimath.

• If either a or b has a local fimath object, the operation uses that fimath
object to perform the fixed-point arithmetic. The output fi object c has the
same local fimath object as the input.

Unary Operations
In unary fixed-point operations such as b = abs(a), the following rules apply:

• If a has no local fimath, the operation uses default fimath values to perform
the fixed-point arithmetic. The output fi object b has no local fimath.

4-15

4 Working with fimath Objects

• If a has a local fimath object, the operation uses that fimath object to
perform the fixed-point arithmetic. The output fi object b has the same
local fimath object as the input a.

When you specify a fimath object in the function call of a unary fixed-point
operation, the operation uses the fimath object you specify to perform the
fixed-point arithmetic. For example, when you use a syntax such as b =
abs(a,F) or b = sqrt(a,F), the abs and sqrt operations use the fimath
object F to compute intermediate quantities. The output fi object b always
has no local fimath.

Concatenation Operations
In fixed-point concatenation operations such as c = [a b], c = [a;b] and
c = bitconcat(a,b), the following rule applies:

• The fimath properties of the leftmost fi object in the operation determine
the fimath properties of the output fi object c.

For example, consider the following scenarios for the operation d = [a b c]:

• If a is a fi object with no local fimath, the output fi object d also has no
local fimath.

• If a has a local fimath object, the output fi object d has the same local
fimath object.

• If a is not a fi object, the output fi object d inherits the fimath properties
of the next leftmost fi object. For example, if b is a fi object with a local
fimath object, the output fi object d has the same local fimath object as
the input fi object b.

fimath Object Operations: add, mpy, sub
The output of the fimath object operations add, mpy, and sub always have no
local fimath. The operations use the fimath object you specify in the function
call, but the output fi object never has a local fimath object.

MATLAB Function Block Operations
Fixed-point operations performed with the MATLAB Function block use the
same rules as fixed-point operations performed in MATLAB.

4-16

fimath Properties Usage for Fixed-Point Arithmetic

All input signals to the MATLAB Function block that you treat as fi objects
associate with whatever you specify for the MATLAB Function block
fimath parameter. When you set this parameter to Same as MATLAB, your
fi objects do not have local fimath. When you set the MATLAB Function
block fimath parameter to Specify other, you can define your own set
of fimath properties for all fi objects in the MATLAB Function block to
associate with. You can choose to treat only fixed-point input signals as fi
objects or both fixed-point and integer input signals as fi objects. See “Using
fimath Objects in MATLAB Function Blocks” on page 9-71.

Binary-Point Arithmetic
The fimath object encapsulates the math properties of Fixed-Point Designer
software.

fi objects only have a local fimath object when you explicitly specify fimath
properties in the fi constructor. When you use the sfi or ufi constructor or
do not specify any fimath properties in the fi constructor, the resulting fi
object does not have any local fimath and uses default fimath values.

a = fi(pi)

a =
3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

a.fimath
isfimathlocal(a)

ans =

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: FullPrecision

4-17

4 Working with fimath Objects

ans =
0

To perform arithmetic with +, -, .*, or * on two fi operands with local fimath
objects, the local fimath objects must be identical. If one of the fi operands
does not have a local fimath, the fimath properties of the two operands need
not be identical. See “fimath Rules for Fixed-Point Arithmetic” on page 4-15
for more information.

a = fi(pi);
b = fi(8);
isequal(a.fimath, b.fimath)

ans =

1

a + b

ans =

11.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 19

FractionLength: 13

To perform arithmetic with +, -, .*, or *, two fi operands must also have the
same data type. For example, you can add two fi objects with data type
double, but you can not add an object with data type double and one with
data type single:

a = fi(3, 'DataType', 'double')

a =

3

DataTypeMode: Double

4-18

fimath Properties Usage for Fixed-Point Arithmetic

b = fi(27, 'DataType', 'double')

b =

27

DataTypeMode: Double

a + b

ans =

30

DataTypeMode: Double

c = fi(12, 'DataType', 'single')

c =

12

DataTypeMode: Single

a + c

Math operations are not allowed on FI objects with different data types.

Fixed-point fi object operands do not have to have the same scaling. You can
perform binary math operations on a fi object with a fixed-point data type
and a fi object with a scaled doubles data type. In this sense, the scaled
double data type acts as a fixed-point data type:

a = fi(pi)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling

4-19

4 Working with fimath Objects

Signedness: Signed
WordLength: 16

FractionLength: 13

b = fi(magic(2), ...
'DataTypeMode', 'Scaled double: binary point scaling')

b =

1 3
4 2

DataTypeMode: Scaled double: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 12

a + b

ans =

4.1416 6.1416
7.1416 5.1416

DataTypeMode: Scaled double: binary point scaling
Signedness: Signed
WordLength: 18

FractionLength: 13

Use the divide function to perform division with doubles, singles, or binary
point-only scaling fi objects.

[Slope Bias] Arithmetic
Fixed-Point Designer software supports fixed-point arithmetic using the
local fimath object or default fimath for all binary point-only signals. The
toolbox also supports arithmetic for [Slope Bias] signals with the following
restrictions:

4-20

fimath Properties Usage for Fixed-Point Arithmetic

• [Slope Bias] signals must be real.

• You must set the SumMode and ProductMode properties of the governing
fimath to 'SpecifyPrecision' for sum and multiply operations,
respectively.

• You must set the CastBeforeSum property of the governing fimath to
'true'.

• Fixed-Point Designer does not support the divide function for [Slope Bias]
signals.

f = fimath('SumMode', 'SpecifyPrecision', ...
'SumFractionLength', 16)

f =

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: SpecifyPrecision

SumWordLength: 32
SumFractionLength: 16

CastBeforeSum: true

a = fi(pi, 'fimath', f)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: SpecifyPrecision

SumWordLength: 32

4-21

4 Working with fimath Objects

SumFractionLength: 16
CastBeforeSum: true

b = fi(22, true, 16, 2^-8, 3, 'fimath', f)

b =

22

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16

Slope: 0.00390625
Bias: 3

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: SpecifyPrecision

SumWordLength: 32
SumFractionLength: 16

CastBeforeSum: true

a + b

ans =

25.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 16

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: SpecifyPrecision

SumWordLength: 32
SumFractionLength: 16

4-22

fimath Properties Usage for Fixed-Point Arithmetic

CastBeforeSum: true

Setting the SumMode and ProductMode properties to SpecifyPrecision are
mutually exclusive except when performing the * operation between matrices.
In this case, you must set both the SumMode and ProductMode properties to
SpecifyPrecision for [Slope Bias] signals. Doing so is necessary because the
* operation performs both sum and multiply operations to calculate the result.

4-23

4 Working with fimath Objects

fimath for Rounding and Overflow Modes
Only rounding methods and overflow actions set prior to an operation with fi
objects affect the outcome of those operations. Once you create a fi object in
MATLAB, changing its rounding or overflow settings does not affect its value.
For example, consider the fi objects a and b:

p = fipref('NumberDisplay', 'RealWorldValue',...
'NumericTypeDisplay', 'none', 'FimathDisplay', 'none');
T = numerictype('WordLength',8,'FractionLength',7);
F = fimath('RoundingMethod','Floor','OverflowAction','Wrap');
a = fi(1,T,F)

a =

-1

b = fi(1,T)

b =

0.9922

Because you create a with a fimath object F that has OverflowAction set to
Wrap, the value of a wraps to -1. Conversely, because you create b with the
default OverflowAction value of Saturate, its value saturates to 0.9922.

Now, assign the fimath object F to b:

b.fimath = F

b =

0.9922

Because the assignment operation and corresponding overflow and saturation
happened when you created b, its value does not change when you assign
it the new fimath object F.

4-24

fimath for Rounding and Overflow Modes

Note fi objects with no local fimath and created from a floating-point
value always get constructed with a RoundingMethod of Nearest and
an OverflowAction of Saturate. To construct fi objects with different
RoundingMethod and OverflowAction properties, specify the desired
RoundingMethod and OverflowAction properties in the fi constructor.

For more information about the fimath object and its properties, see “fimath
Object Properties” on page 4-6

4-25

4 Working with fimath Objects

fimath for Sharing Arithmetic Rules
There are two ways of sharing fimath properties in Fixed-Point Designer
software:

• “Default fimath Usage to Share Arithmetic Rules” on page 4-26

• “Local fimath Usage to Share Arithmetic Rules” on page 4-26

Sharing fimath properties across fi objects ensures that the fi objects are
using the same arithmetic rules and helps you avoid “mismatched fimath”
errors.

Default fimath Usage to Share Arithmetic Rules
You can ensure that your fi objects are all using the same fimath properties
by not specifying any local fimath. To assure no local fimath is associated
with a fi object, you can:

• Create a fi object using the fi constructor without specifying any fimath
properties in the constructor call. For example:

a = fi(pi)

• Create a fi object using the sfi or ufi constructor. All fi objects created
with these constructors have no local fimath.

b = sfi(pi)

• Use removefimath to remove a local fimath object from an existing fi
object.

Local fimath Usage to Share Arithmetic Rules
You can also use a fimath object to define common arithmetic rules that
you would like to use for multiple fi objects. You can then create your fi
objects, using the same fimath object for each. To do so, you must also
create a numerictype object to define a common data type and scaling. Refer
to “numerictype Object Construction” on page 6-2 for more information
on numerictype objects. The following example shows the creation of a

4-26

fimath for Sharing Arithmetic Rules

numerictype object and fimath object, and then uses those objects to create
two fi objects with the same numerictype and fimath attributes:

T = numerictype('WordLength',32,'FractionLength',30)

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 30

F = fimath('RoundingMethod','Floor',...
'OverflowAction','Wrap')

F =

RoundingMethod: Floor
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

a = fi(pi, T, F)

a =

-0.8584

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 30

RoundingMethod: Floor
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

4-27

4 Working with fimath Objects

b = fi(pi/2, T, F)

b =

1.5708

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 30

RoundingMethod: Floor
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

4-28

fimath ProductMode and SumMode

fimath ProductMode and SumMode

In this section...

“Example Setup” on page 4-29

“FullPrecision” on page 4-30

“KeepLSB” on page 4-31

“KeepMSB” on page 4-32

“SpecifyPrecision” on page 4-34

Example Setup
The examples in the sections of this topic show the differences among the four
settings of the ProductMode and SumMode properties:

• FullPrecision

• KeepLSB

• KeepMSB

• SpecifyPrecision

To follow along, first set the following preferences:

p = fipref;
p.NumericTypeDisplay = 'short';
p.FimathDisplay = 'none';
p.LoggingMode = 'on';
F = fimath('OverflowAction','Wrap',...

'RoundingMethod','Floor',...
'CastBeforeSum',false);

warning off
format compact

Next, define fi objects a and b. Both have signed 8-bit data types. The
fraction length gets chosen automatically for each fi object to yield the best
possible precision:

a = fi(pi, true, 8)

4-29

4 Working with fimath Objects

a =
3.1563

s8,5

b = fi(exp(1), true, 8)

b =
2.7188

s8,5

FullPrecision
Now, set ProductMode and SumMode for a and b to FullPrecision and look
at some results:

F.ProductMode = 'FullPrecision';
F.SumMode = 'FullPrecision';
a.fimath = F;
b.fimath = F;
a

a =
3.1563 %011.00101

s8,5

b

b =
2.7188 %010.10111

s8,5

a*b

ans =
8.5811 %001000.1001010011

s16,10

a+b

ans =
5.8750 %0101.11100

4-30

fimath ProductMode and SumMode

s9,5

In FullPrecision mode, the product word length grows to the sum of the
word lengths of the operands. In this case, each operand has 8 bits, so the
product word length is 16 bits. The product fraction length is the sum of the
fraction lengths of the operands, in this case 5 + 5 = 10 bits.

The sum word length grows by one most significant bit to accommodate the
possibility of a carry bit. The sum fraction length aligns with the fraction
lengths of the operands, and all fractional bits are kept for full precision. In
this case, both operands have 5 fractional bits, so the sum has 5 fractional bits.

KeepLSB
Now, set ProductMode and SumMode for a and b to KeepLSB and look at some
results:

F.ProductMode = 'KeepLSB';
F.ProductWordLength = 12;
F.SumMode = 'KeepLSB';
F.SumWordLength = 12;
a.fimath = F;
b.fimath = F;
a

a =
3.1563 %011.00101

s8,5

b

b =
2.7188 %010.10111

s8,5

a*b

ans =
0.5811 %00.1001010011

s12,10

4-31

4 Working with fimath Objects

a+b

ans =
5.8750 %0000101.11100

s12,5

In KeepLSB mode, you specify the word lengths and the least significant bits
of results are automatically kept. This mode models the behavior of integer
operations in the C language.

The product fraction length is the sum of the fraction lengths of the operands.
In this case, each operand has 5 fractional bits, so the product fraction length
is 10 bits. In this mode, all 10 fractional bits are kept. Overflow occurs
because the full-precision result requires 6 integer bits, and only 2 integer
bits remain in the product.

The sum fraction length aligns with the fraction lengths of the operands, and
in this model all least significant bits are kept. In this case, both operands
had 5 fractional bits, so the sum has 5 fractional bits. The full-precision result
requires 4 integer bits, and 7 integer bits remain in the sum, so no overflow
occurs in the sum.

KeepMSB
Now, set ProductMode and SumMode for a and b to KeepMSB and look at some
results:

F.ProductMode = 'KeepMSB';
F.ProductWordLength = 12;
F.SumMode = 'KeepMSB';
F.SumWordLength = 12;
a.fimath = F;
b.fimath = F;
a

a =
3.1563 %011.00101

s8,5

b

4-32

fimath ProductMode and SumMode

b =
2.7188 %010.10111

s8,5

a*b

ans =
8.5781 %001000.100101

s12,6

a+b

ans =
5.8750 %0101.11100000

s12,8

In KeepMSB mode, you specify the word lengths and the most significant
bits of sum and product results are automatically kept. This mode models
the behavior of many DSP devices where the product and sum are kept in
double-wide registers, and the programmer chooses to transfer the most
significant bits from the registers to memory after each operation.

The full-precision product requires 6 integer bits, and the fraction length of
the product is adjusted to accommodate all 6 integer bits in this mode. No
overflow occurs. However, the full-precision product requires 10 fractional
bits, and only 6 are available. Therefore, precision is lost.

The full-precision sum requires 4 integer bits, and the fraction length of
the sum is adjusted to accommodate all 4 integer bits in this mode. The
full-precision sum requires only 5 fractional bits; in this case there are 8, so
there is no loss of precision.

This example shows that, in KeepMSB mode the fraction length changes
regardless of whether an overflow occurs. The fraction length is set to the
amount needed to represent the product in case both terms use the maximum
possible value (18+18-16=20 in this example).

F = fimath('SumMode','KeepMSB','ProductMode','KeepMSB',...
'ProductWordLength',16,'SumWordLength',16);

a=fi(100,1,16,-2,'fimath',F);
a*a

4-33

4 Working with fimath Objects

ans =

0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: -20

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: KeepMSB
ProductWordLength: 16

SumMode: KeepMSB
SumWordLength: 16
CastBeforeSum: true

SpecifyPrecision
Now set ProductMode and SumMode for a and b to SpecifyPrecision and
look at some results:

F.ProductMode = 'SpecifyPrecision';
F.ProductWordLength = 8;
F.ProductFractionLength = 7;
F.SumMode = 'SpecifyPrecision';
F.SumWordLength = 8;
F.SumFractionLength = 7;
a.fimath = F;
b.fimath = F;
a

a =
3.1563 %011.00101

s8,5

b

b =
2.7188 %010.10111

s8,5

4-34

fimath ProductMode and SumMode

a*b

ans =
0.5781 %0.1001010

s8,7

a+b

ans =
-0.1250 %1.1110000

s8,7

In SpecifyPrecision mode, you must specify both word length and fraction
length for sums and products. This example unwisely uses fractional formats
for the products and sums, with 8-bit word lengths and 7-bit fraction lengths.

The full-precision product requires 6 integer bits, and the example specifies
only 1, so the product overflows. The full-precision product requires 10
fractional bits, and the example only specifies 7, so there is precision loss in
the product.

The full-precision sum requires 4 integer bits, and the example specifies only
1, so the sum overflows. The full-precision sum requires 5 fractional bits, and
the example specifies 7, so there is no loss of precision in the sum.

For more information about the fimath object and its properties, see “fimath
Object Properties” on page 4-6

4-35

4 Working with fimath Objects

How Functions Use fimath

In this section...

“Functions that use then discard attached fimath” on page 4-36

“Functions that ignore and discard attached fimath” on page 4-36

“Functions that do not perform math” on page 4-37

Functions that use then discard attached fimath

Functions Note

conv, filter Error if attached fimaths differ.

mean, median —

Functions that ignore and discard attached fimath

Functions Note

accumneg, accumpos • By default, use Floor rounding
method and Wrap overflow

add, sub, mpy • Override and discard any fimath
objects attached to the input fi
objects

• Uses the fimath from input, F, as
in add(F, a, b)

CORDIC functions — cordicabs,
cordicangle, cordicatan2,
cordiccart2pol, cordiccexp,
cordiccos, cordicpol2cart,
cordicrotate, cordicsin,
cordicsincos, cordicsqrt

CORDIC functions use their own
internal fimath:

• Rounding Mode – Floor

• Overflow Action – Wrap

mod —

qr —

4-36

How Functions Use fimath

Functions Note

quantize Uses the math settings on the
quantizer object, ignores and
discards any fimath settings on the
input

Trigonometric functions — atan2,
cos, sin

—

Functions that do not perform math

Functions Note

Built-in Types—int32, int64, int8,
uint16, uint32, uint64, uint8

Ignore any fimath settings on the
input. Always use the rounding
method Round when casting to the
new data type. The output is not a fi
object so it has no attached fimath.

bitsll, bitsra, bitsrl OverflowAction and
RoundingMethod are ignored —
bits drop off the end.

bitshift RoundingMethod is ignored, but
OverflowAction property is obeyed.

4-37

4 Working with fimath Objects

4-38

5

Working with fipref Objects

• “fipref Object Construction” on page 5-2

• “fipref Object Properties” on page 5-3

• “fi Object Display Preferences Using fipref” on page 5-5

• “Underflow and Overflow Logging Using fipref” on page 5-7

• “Data Type Override Preferences Using fipref” on page 5-12

5 Working with fipref Objects

fipref Object Construction
The fipref object defines the display and logging attributes for all fi objects.
You can use the fipref constructor function to create a new object.

To get started, type

P = fipref

to create a default fipref object.

P =
NumberDisplay: 'RealWorldValue'

NumericTypeDisplay: 'full'
FimathDisplay: 'full'

LoggingMode: 'Off'
DataTypeOverride: 'ForceOff'

The syntax

P = fipref(...'PropertyName','PropertyValue'...)

allows you to set properties for a fipref object at object creation with property
name/property value pairs.

Your fipref settings persist throughout your MATLAB session. Use
reset(fipref) to return to the default settings during your session. Use
savefipref to save your display preferences for subsequent MATLAB
sessions.

5-2

fipref Object Properties

fipref Object Properties

In this section...

“Display, Data Type Override, and Logging Properties” on page 5-3

“fipref Object Properties Setting” on page 5-3

Display, Data Type Override, and Logging Properties
The following properties of fipref objects are always writable:

• FimathDisplay— Display options for the local fimath attributes of a fi
object

• DataTypeOverride — Data type override options

• LoggingMode— Logging options for operations performed on fi objects

• NumericTypeDisplay— Display options for the numeric type attributes of
a fi object

• NumberDisplay— Display options for the value of a fi object

These properties are described in detail in the “fi Object Properties” on page
2-19. To learn how to specify properties for fipref objects in Fixed-Point
Designer software, refer to “fipref Object Properties Setting” on page 5-3.

fipref Object Properties Setting

Setting fipref Properties at Object Creation
You can set properties of fipref objects at the time of object creation by
including properties after the arguments of the fipref constructor function.
For example, to set NumberDisplay to bin and NumericTypeDisplay to short,

P = fipref('NumberDisplay', 'bin', ...
'NumericTypeDisplay', 'short')

P =
NumberDisplay: 'bin'

NumericTypeDisplay: 'short'

5-3

5 Working with fipref Objects

FimathDisplay: 'full'
LoggingMode: 'Off'

DataTypeOverride: 'ForceOff'

Using Direct Property Referencing with fipref
You can reference directly into a property for setting or retrieving fipref
object property values using MATLAB structure-like referencing. You do this
by using a period to index into a property by name.

For example, to get the NumberDisplay of P,

P.NumberDisplay

ans =

bin

To set the NumericTypeDisplay of P,

P.NumericTypeDisplay = 'full'

P =
NumberDisplay: 'bin'

NumericTypeDisplay: 'full'
FimathDisplay: 'full'

LoggingMode: 'Off'
DataTypeOverride: 'ForceOff'

5-4

fi Object Display Preferences Using fipref

fi Object Display Preferences Using fipref
You use the fipref object to specify three aspects of the display of fi objects:
the object value, the local fimath properties, and the numerictype properties.

For example, the following code shows the default fipref display for a fi
object with a local fimath object:

a = fi(pi, 'RoundingMethod', 'Floor', 'OverflowAction', 'Wrap')

a =
3.1415

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

RoundingMethod: Floor
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

The default fipref display for a fi object with no local fimath is as follows:

a = fi(pi)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

Next, change the fipref display properties:

P = fipref;

5-5

5 Working with fipref Objects

P.NumberDisplay = 'bin';
P.NumericTypeDisplay = 'short';
P.FimathDisplay = 'none'

P =
NumberDisplay: 'bin'

NumericTypeDisplay: 'short'
FimathDisplay: 'none'

LoggingMode: 'Off'
DataTypeOverride: 'ForceOff'

a

a =
0110010010000111

s16,13

For more information on the default fipref display, see “View Fixed-Point
Data”.

5-6

Underflow and Overflow Logging Using fipref

Underflow and Overflow Logging Using fipref

In this section...

“Logging Overflows and Underflows as Warnings” on page 5-7

“Accessing Logged Information with Functions” on page 5-9

Logging Overflows and Underflows as Warnings
Overflows and underflows are logged as warnings for all assignment, plus,
minus, and multiplication operations when the fipref LoggingMode property
is set to on. For example, try the following:

1 Create a signed fi object that is a vector of values from 1 to 5, with 8-bit
word length and 6-bit fraction length.

a = fi(1:5,1,8,6);

2 Define the fimath object associated with a, and indicate that you will
specify the sum and product word and fraction lengths.

F = a.fimath;
F.SumMode = 'SpecifyPrecision';
F.ProductMode = 'SpecifyPrecision';
a.fimath = F;

3 Define the fipref object and turn on overflow and underflow logging.

P = fipref;
P.LoggingMode = 'on';

4 Suppress the numerictype and fimath displays.

P.NumericTypeDisplay = 'none';
P.FimathDisplay = 'none';

5 Specify the sum and product word and fraction lengths.

a.SumWordLength = 16;
a.SumFractionLength = 15;

5-7

5 Working with fipref Objects

a.ProductWordLength = 16;
a.ProductFractionLength = 15;

6 Warnings are displayed for overflows and underflows in assignment
operations. For example, try:

a(1) = pi
Warning: 1 overflow occurred in the fi assignment operation.

a =

1.9844 1.9844 1.9844 1.9844 1.9844

a(1) = double(eps(a))/10
Warning: 1 underflow occurred in the fi assignment operation.

a =

0 1.9844 1.9844 1.9844 1.9844

7 Warnings are displayed for overflows and underflows in addition and
subtraction operations. For example, try:

a+a
Warning: 12 overflows occurred in the fi + operation.

ans =

0 1.0000 1.0000 1.0000 1.0000

a-a
Warning: 8 overflows occurred in the fi - operation.

ans =

0 0 0 0 0

8 Warnings are displayed for overflows and underflows in multiplication
operations. For example, try:

5-8

Underflow and Overflow Logging Using fipref

a.*a
Warning: 4 product overflows occurred in the fi .* operation.

ans =

0 1.0000 1.0000 1.0000 1.0000

a*a'
Warning: 4 product overflows occurred in the fi * operation.
Warning: 3 sum overflows occurred in the fi * operation.

ans =

1.0000

The final example above is a complex multiplication that requires both
multiplication and addition operations. The warnings inform you of overflows
and underflows in both.

Because overflows and underflows are logged as warnings, you can use the
dbstop MATLAB function with the syntax

dbstop if warning

to find the exact lines in a file that are causing overflows or underflows.

Use

dbstop if warning fi:underflow

to stop only on lines that cause an underflow. Use

dbstop if warning fi:overflow

to stop only on lines that cause an overflow.

Accessing Logged Information with Functions
When the fipref LoggingMode property is set to on, you can use the following
functions to return logged information about assignment and creation
operations to the MATLAB command line:

5-9

5 Working with fipref Objects

• maxlog — Returns the maximum real-world value

• minlog — Returns the minimum value

• noverflows — Returns the number of overflows

• nunderflows — Returns the number of underflows

LoggingMode must be set to on before you perform any operation in order to
log information about it. To clear the log, use the function resetlog.

For example, consider the following. First turn logging on, then perform
operations, and then finally get information about the operations:

fipref('LoggingMode','on');
x = fi([-1.5 eps 0.5], true, 16, 15);
x(1) = 3.0;
maxlog(x)

ans =

1.0000

minlog(x)

ans =
-1

noverflows(x)

ans =

2

nunderflows(x)

ans =

1

5-10

Underflow and Overflow Logging Using fipref

Next, reset the log and request the same information again. Note that the
functions return empty [], because logging has been reset since the operations
were run:

resetlog(x)
maxlog(x)

ans =

[]

minlog(x)

ans =

[]

noverflows(x)

ans =

[]

nunderflows(x)

ans =

[]

5-11

5 Working with fipref Objects

Data Type Override Preferences Using fipref

In this section...

“Overriding the Data Type of fi Objects” on page 5-12

“Data Type Override for Fixed-Point Scaling” on page 5-13

Overriding the Data Type of fi Objects
Use the fipref DataTypeOverride property to override fi objects with
singles, doubles, or scaled doubles. Data type override only occurs when the
fi constructor function is called. Objects that are created while data type
override is on have the overridden data type. They maintain that data type
when data type override is later turned off. To obtain an object with a data
type that is not the override data type, you must create an object when data
type override is off:

p = fipref('DataTypeOverride', 'TrueDoubles')

p =

NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'

FimathDisplay: 'full'
LoggingMode: 'Off'

DataTypeOverride: 'TrueDoubles'

a = fi(pi)

a =

3.1416

DataTypeMode: Double

p = fipref('DataTypeOverride', 'ForceOff')

p =

5-12

Data Type Override Preferences Using fipref

NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'

FimathDisplay: 'full'
LoggingMode: 'Off'

DataTypeOverride: 'ForceOff'

a

a =

3.1416

DataTypeMode: Double

b = fi(pi)

b =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

Tip To reset the fipref object to its default values use reset(fipref) or
reset(p), where p is a fipref object. This is useful to ensure that data type
override and logging are off.

Data Type Override for Fixed-Point Scaling
Choosing the scaling for the fixed-point variables in your algorithms can be
difficult. In Fixed-Point Designer software, you can use a combination of
data type override and min/max logging to help you discover the numerical
ranges that your fixed-point data types need to cover. These ranges dictate
the appropriate scalings for your fixed-point data types. In general, the
procedure is

5-13

5 Working with fipref Objects

1 Implement your algorithm using fixed-point fi objects, using initial “best
guesses” for word lengths and scalings.

2 Set the fipref DataTypeOverride property to ScaledDoubles, TrueSingles,
or TrueDoubles.

3 Set the fipref LoggingMode property to on.

4 Use the maxlog and minlog functions to log the maximum and minimum
values achieved by the variables in your algorithm in floating-point mode.

5 Set the fipref DataTypeOverride property to ForceOff.

6 Use the information obtained in step 4 to set the fixed-point scaling for each
variable in your algorithm such that the full numerical range of each variable
is representable by its data type and scaling.

A detailed example of this process is shown in the Fixed-Point Designer
Setting Fixed-Point Data Types Using Min/Max Instrumentation example.

5-14

6

Working with numerictype
Objects

• “numerictype Object Construction” on page 6-2

• “numerictype Object Properties” on page 6-7

• “numerictype of Fixed-Point Objects” on page 6-14

• “numerictype Objects Usage to Share Data Type and Scaling Settings of fi
objects” on page 6-17

6 Working with numerictype Objects

numerictype Object Construction

In this section...

“numerictype Object Syntaxes” on page 6-2

“Example: Construct a numerictype Object with Property Name and
Property Value Pairs” on page 6-3

“Example: Copy a numerictype Object” on page 6-4

“Example: Build numerictype Object Constructors in a GUI” on page 6-5

numerictype Object Syntaxes
numerictype objects define the data type and scaling attributes of fi
objects, as well as Simulink signals and model parameters. You can create
numerictype objects in Fixed-Point Designer software in one of two ways:

• You can use the numerictype constructor function to create a new object.

• You can use the numerictype constructor function to copy an existing
numerictype object.

To get started, type

T = numerictype

to create a default numerictype object.

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

To see all of the numerictype object syntaxes, refer to the numerictype
constructor function reference page.

6-2

numerictype Object Construction

The following examples show different ways of constructing numerictype
objects. For more examples of constructing numerictype objects, see the
“Examples” on the numerictype constructor function reference page.

Example: Construct a numerictype Object with
Property Name and Property Value Pairs
When you create a numerictype object using property name and property
value pairs, Fixed-Point Designer software first creates a default numerictype
object, and then, for each property name you specify in the constructor,
assigns the corresponding value.

This behavior differs from the behavior that occurs when you use a syntax
such as T = numerictype(s,w), where you only specify the property values
in the constructor. Using such a syntax results in no default numerictype
object being created, and the numerictype object receives only the assigned
property values that are specified in the constructor.

The following example shows how the property name/property value syntax
creates a slightly different numerictype object than the property values
syntax, even when you specify the same property values in both constructors.

To demonstrate this difference, suppose you want to create an unsigned
numerictype object with a word length of 32 bits.

First, create the numerictype object using property name/property value
pairs.

T1 = numerictype('Signed',0,'WordLength',32)

T1 =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 32

FractionLength: 15

6-3

6 Working with numerictype Objects

The numerictype object T1 has the same DataTypeMode and FractionLength
as a default numerictype object, but the WordLength and Signed properties
are overwritten with the values you specified.

Now, create another unsigned 32 bit numerictype object, but this time specify
only property values in the constructor.

T2 = numerictype(0,32)

T2 =

DataTypeMode: Fixed-point: unspecified scaling
Signedness: Unsigned
WordLength: 32

Unlike T1, T2 only has the property values you specified. The DataTypeMode
of T2 is Fixed-Point: unspecified scaling, so no fraction length is
assigned.

fi objects cannot have unspecified numerictype properties. Thus, all
unspecified numerictype object properties become specified at the time of
fi object creation.

Example: Copy a numerictype Object
To copy a numerictype object, simply use assignment as in the following
example:

T = numerictype;
U = T;
isequal(T,U)

ans =

1

6-4

numerictype Object Construction

Example: Build numerictype Object Constructors in
a GUI
When you are working with files in MATLAB, you can build your numerictype
object constructors using the Insert numerictype Constructor dialog box.
After specifying the properties of the numerictype object in the dialog box,
you can insert the prepopulated numerictype object constructor string at a
specific location in your file.

For example, to create a signed numerictype object with binary-point scaling,
a word length of 32 bits and a fraction length of 30 bits, perform the following
steps:

1 On the Home tab, in the File section, click New > Script to open the
MATLAB Editor

2 On the Editor tab, in the Edit section, click in the Insert button
group. Click the Insert numerictype... to open the Insert numerictype
Constructor dialog box.

3 Use the edit boxes and drop-down menus to specify the following properties
of the numerictype object:

• Data type mode = Fixed-point: binary point scaling

• Signedness = Signed

• Word length = 32

• Fraction length = 30

6-5

6 Working with numerictype Objects

4 To insert the numerictype object constructor string in your file, place
your cursor at the desired location in the file, and click OK on the Insert
numerictype Constructor dialog box. Clicking OK closes the Insert
numerictype Constructor dialog box and automatically populates the
numerictype object constructor string in your file:

6-6

numerictype Object Properties

numerictype Object Properties

In this section...

“Data Type and Scaling Properties” on page 6-7

“How Properties are Related” on page 6-11

“Set numerictype Object Properties” on page 6-12

Data Type and Scaling Properties
All properties of a numerictype object are writable. However, the
numerictype properties of a fi object become read only after the fi object has
been created. Any numerictype properties of a fi object that are unspecified
at the time of fi object creation are automatically set to their default values.
The properties of a numerictype object are:

Property Description Valid Values

Bias Bias associated with the object.

Along with the slope, the
bias forms the scaling of a
fixed-point number.

• Any floating-point number

DataType Data type category • Fixed (default) — Fixed-point or integer data
type

• boolean— Built-in MATLAB boolean data
type

• double — Built-in MATLAB double data
type

• ScaledDouble— Scaled double data type

• single — Built-in MATLAB single data
type

6-7

6 Working with numerictype Objects

Property Description Valid Values

DataTypeMode Data type and scaling
associated with the object

• Fixed-point: binary point scaling
(default) — Fixed-point data type and scaling
defined by the word length and fraction
length

• Boolean — Built-in boolean

• Double — Built-in double

• Fixed-point: slope and bias scaling
— Fixed-point data type and scaling defined
by the slope and bias

• Fixed-point: unspecified scaling
— Fixed-point data type with unspecified
scaling

• Scaled double: binary point scaling
— Double data type with fixed-point word
length and fraction length information
retained

• Scaled double: slope and bias
scaling— Double data type with fixed-point
slope and bias information retained

• Scaled double: unspecified scaling—
Double data type with unspecified fixed-point
scaling

• Single — Built-in single

FixedExponentFixed-point exponent
associated with the object

• Any integer

Note The FixedExponent property is the
negative of the FractionLength. Changing one
property changes the other.

6-8

numerictype Object Properties

Property Description Valid Values

FractionLengthFraction length of the stored
integer value, in bits

• Best precision fraction length based on value
of the object and the word length (default)

• Any integer

Note The FractionLength property is the
negative of the FixedExponent. Changing one
property changes the other.

Scaling Scaling mode of the object • BinaryPoint (default) — Scaling for the fi
object is defined by the fraction length.

• SlopeBias — Scaling for the fi object is
defined by the slope and bias.

• Unspecified— A temporary setting that is
only allowed at fi object creation, to allow for
the automatic assignment of a binary point
best-precision scaling.

Signed Whether the object is signed

Note Although the Signed
property is still supported, the
Signedness property always
appears in the numerictype
object display. If you choose to
change or set the signedness
of your numerictype objects
using the Signed property,
MATLAB updates the
corresponding value of the
Signedness property.

• true (default) — signed

• false — unsigned

• 1 — signed

• 0 — unsigned

• [] — auto

6-9

6 Working with numerictype Objects

Property Description Valid Values

Signedness Whether the object is signed,
unsigned, or has an unspecified
sign

• Signed (default)

• Unsigned

• Auto — unspecified sign

Slope Slope associated with the
object

Along with the bias, the
slope forms the scaling of a
fixed-point number.

• Any floating-point number

Note

slope slope adjustment factor fixed exponent= × 2

Changing one of these properties changes the
other.

Slope
AdjustmentFactor

Slope adjustment associated
with the object

The slope adjustment is
equivalent to the fractional
slope of a fixed-point number.

• Any number greater than or equal to 1 and
less than 2

Note

slope slope adjustment factor fixed exponent= × 2

Changing one of these properties changes the
other.

WordLength Word length of the stored
integer value, in bits

• 16 (default)

• Any positive integer

These properties are described in detail in the “fi Object Properties” on
page 2-19. To learn how to specify properties for numerictype objects in
Fixed-Point Designer software, refer to “Set numerictype Object Properties”
on page 6-12.

6-10

numerictype Object Properties

How Properties are Related

Properties that affect the slope
The Slope field of the numerictype object is related to the
SlopeAdjustmentFactor and FixedExponent properties by

slope slope adjustment factor fixed exponent= × 2

The FixedExponent and FractionLength properties are related by

fixed exponent fraction length= −

If you set the SlopeAdjustmentFactor, FixedExponent, or FractionLength
property, the Slope field is modified.

Stored integer value and real world value
In binary point scaling the numerictype StoredIntegerValue and
RealWorldValue properties are related according to

real world value stored integer value -fraction length- = × 2

In [Slope Bias] scaling the RealWorldValue can be represented by

real world value

stored integer value slope a

-

=

× (ddjustment factor biasfixed exponent× +2)

which is equivalent to

real world value slope stored integer bias- = × +()

If any of these properties are updated, the others are modified accordingly.

6-11

6 Working with numerictype Objects

Set numerictype Object Properties

Setting numerictype Properties at Object Creation
You can set properties of numerictype objects at the time of object creation
by including properties after the arguments of the numerictype constructor
function.

For example, to set the word length to 32 bits and the fraction length to 30 bits,

T = numerictype('WordLength', 32, 'FractionLength', 30)

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 30

In addition to creating a numerictype object at the command line, you can also
set numerictype properties using the Insert numerictype Constructor
dialog box. For an example of this approach, see “Example: Build numerictype
Object Constructors in a GUI” on page 6-5.

Use Direct Property Referencing with numerictype Objects
You can reference directly into a property for setting or retrieving
numerictype object property values using MATLAB structure-like
referencing. You do this by using a period to index into a property by name.

For example, to get the word length of T,

T.WordLength

ans =

32

To set the fraction length of T,

6-12

numerictype Object Properties

T.FractionLength = 31

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 31

6-13

6 Working with numerictype Objects

numerictype of Fixed-Point Objects

In this section...

“Valid Values for numerictype Object Properties” on page 6-14

“Properties That Affect the Slope” on page 6-16

“Stored Integer Value and Real World Value” on page 6-16

Valid Values for numerictype Object Properties
The numerictype object contains all the data type and scaling attributes of a
fixed-point object. The numerictype object behaves like any MATLAB object,
except that it only lets you set valid values for defined fields. The following
table shows the possible settings of each field of the object.

Note When you create a fi object, any unspecified field of the numerictype
object reverts to its default value. Thus, if the DataTypeMode is set to
unspecified scaling, it defaults to binary point scaling when the fi
object is created. If the Signedness property of the numerictype object is set
to Auto, it defaults to Signed when the fi object is created.

DataTypeMode DataType Scaling Signedness
Word-
Length

Fraction-
Length Slope Bias

Fixed-point data types

Fixed-point:
binary point
scaling

Fixed BinaryPoint Signed
Unsigned
Auto

Positive
integer
from
1 to
65,536

Positive
or
negative
integer

2^(-fraction
length)

0

Fixed-point:
slope and
bias scaling

Fixed SlopeBias Signed
Unsigned
Auto

Positive
integer
from
1 to
65,536

N/A Any
floating-
point
number

Any
floating-
point
number

6-14

numerictype of Fixed-Point Objects

DataTypeMode DataType Scaling Signedness
Word-
Length

Fraction-
Length Slope Bias

Fixed-point:
unspecified
scaling

Fixed Unspecified Signed
Unsigned
Auto

Positive
integer
from
1 to
65,536

N/A N/A N/A

Scaled double data types

Scaled
double:
binary point
scaling

ScaledDouble BinaryPoint Signed
Unsigned
Auto

Positive
integer
from
1 to
65,536

Positive
or
negative
integer

2^(-fraction
length)

0

Scaled
double:
slope and
bias scaling

ScaledDouble SlopeBias Signed
Unsigned
Auto

Positive
integer
from
1 to
65,536

N/A Any
floating-
point
number

Any
floating-
point
number

Scaled
double:
unspecified
scaling

ScaledDouble Unspecified Signed
Unsigned
Auto

Positive
integer
from
1 to
65,536

N/A N/A N/A

Built-in data types

Double double N/A 1
true

64 0 1 0

Single single N/A 1
true

32 0 1 0

Boolean boolean N/A 0
false

1 0 1 0

You cannot change the numerictype properties of a fi object after fi object
creation.

6-15

6 Working with numerictype Objects

Properties That Affect the Slope
The Slope field of the numerictype object is related to the
SlopeAdjustmentFactor and FixedExponent properties by

slope slope adjustment factor fixed exponent= × 2

The FixedExponent and FractionLength properties are related by

fixed exponent fraction length= −

If you set the SlopeAdjustmentFactor, FixedExponent, or FractionLength
property, the Slope field is modified.

Stored Integer Value and Real World Value
In binary point scaling the numerictype StoredIntegerValue and
RealWorldValue properties are related according to

real world value stored integer value -fraction length- = × 2

In [Slope Bias] scaling the RealWorldValue can be represented by

real world value

stored integer value slope a

-

=

× (ddjustment factor biasfixed exponent× +2)

which is equivalent to

real world value slope stored integer bias- = × +()

If any of these properties are updated, the others are modified accordingly.

For more detail on these properties see “numerictype Object Properties” on
page 6-7.

For more information on scaling see “Data Types and Scaling”

6-16

numerictype Objects Usage to Share Data Type and Scaling Settings of fi objects

numerictype Objects Usage to Share Data Type and
Scaling Settings of fi objects

You can use a numerictype object to define common data type and scaling
rules that you would like to use for many fi objects. You can then create
multiple fi objects, using the same numerictype object for each.

Example 1
In the following example, you create a numerictype object T with word length
32 and fraction length 28. Next, to ensure that your fi objects have the same
numerictype attributes, create fi objects a and b using your numerictype
object T.

format long g
T = numerictype('WordLength',32,'FractionLength',28)

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 28

a = fi(pi,T)

a =

3.1415926553309

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 28

b = fi(pi/2, T)

b =

6-17

6 Working with numerictype Objects

1.5707963258028

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 28

Example 2
In this example, start by creating a numerictype object T with [Slope Bias]
scaling. Next, use that object to create two fi objects, c and d with the same
numerictype attributes:

T = numerictype('Scaling','slopebias','Slope', 2^2, 'Bias', 0)

T =

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16

Slope: 2^2
Bias: 0

c = fi(pi, T)

c =

4

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16

Slope: 2^2
Bias: 0

d = fi(pi/2, T)

d =

6-18

numerictype Objects Usage to Share Data Type and Scaling Settings of fi objects

0

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16

Slope: 2^2
Bias: 0

For more detail on the properties of numerictype objects see “numerictype
Object Properties” on page 6-7.

6-19

6 Working with numerictype Objects

6-20

7

Working with quantizer
Objects

• “Constructing quantizer Objects” on page 7-2

• “quantizer Object Properties” on page 7-3

• “Quantizing Data with quantizer Objects” on page 7-4

• “Transformations for Quantized Data” on page 7-6

7 Working with quantizer Objects

Constructing quantizer Objects
You can use quantizer objects to quantize data sets. You can create
quantizer objects in Fixed-Point Designer software in one of two ways:

• You can use the quantizer constructor function to create a new object.

• You can use the quantizer constructor function to copy a quantizer object.

To create a quantizer object with default properties, type

q = quantizer

q =

DataMode = fixed
RoundingMethod = Floor
OverflowAction = Saturate

Format = [16 15]

To copy a quantizer object, simply use assignment as in the following
example:

q = quantizer;
r = q;
isequal(q,r)

ans =

1

A listing of all the properties of the quantizer object q you just created is
displayed along with the associated property values. All property values
are set to defaults when you construct a quantizer object this way. See
“quantizer Object Properties” on page 7-3 for more details.

7-2

quantizer Object Properties

quantizer Object Properties
The following properties of quantizer objects are always writable:

• DataMode — Type of arithmetic used in quantization

• Format — Data format of a quantizer object

• OverflowAction — Action to take on overflow

• RoundingMethod — Rounding method

See the“fi Object Properties” on page 2-19 for more details about these
properties, including their possible values.

For example, to create a fixed-point quantizer object with

• The Format property value set to [16,14]

• The OverflowAction property value set to 'Saturate'

• The RoundingMethod property value set to 'Ceiling'

type

q = quantizer('datamode','fixed','format',[16,14],...
'OverflowMode','saturate','RoundMode','ceil')

You do not have to include quantizer object property names when you set
quantizer object property values.

For example, you can create quantizer object q from the previous example
by typing

q = quantizer('fixed',[16,14],'saturate','ceil')

Note You do not have to include default property values when you construct
a quantizer object. In this example, you could leave out 'fixed' and
'saturate'.

7-3

7 Working with quantizer Objects

Quantizing Data with quantizer Objects
You construct a quantizer object to specify the quantization parameters
to use when you quantize data sets. You can use the quantize function to
quantize data according to a quantizer object’s specifications.

Once you quantize data with a quantizer object, its state values might
change.

The following example shows

• How you use quantize to quantize data

• How quantization affects quantizer object states

• How you reset quantizer object states to their default values using reset

1 Construct an example data set and a quantizer object.

format long g
rng('default');
x = randn(100,4);
q = quantizer([16,14]);

2 Retrieve the values of the maxlog and noverflows states.

q.maxlog

ans =

-1.79769313486232e+308

q.noverflows

ans =

0

Note that maxlog is equal to -realmax, which indicates that the quantizer
q is in a reset state.

3 Quantize the data set according to the quantizer object’s specifications.

7-4

Quantizing Data with quantizer Objects

y = quantize(q,x);
Warning: 626 overflow(s) occurred in the fi quantize operation.

4 Check the values of maxlog and noverflows.

q.maxlog

ans =

1.99993896484375

q.noverflows

ans =

626

Note that the maximum logged value was taken after quantization, that is,
q.maxlog == max(y).

5 Reset the quantizer states and check them.

reset(q)
q.maxlog

ans =

-1.79769313486232e+308

q.noverflows

ans =

0

7-5

7 Working with quantizer Objects

Transformations for Quantized Data
You can convert data values from numeric to hexadecimal or binary according
to a quantizer object’s specifications.

Use

• num2bin to convert data to binary

• num2hex to convert data to hexadecimal

• hex2num to convert hexadecimal data to numeric

• bin2num to convert binary data to numeric

For example,

q = quantizer([3 2]);
x = [0.75 -0.25

0.50 -0.50
0.25 -0.75

0 -1];
b = num2bin(q,x)

b =
011
010
001
000
111
110
101
100

produces all two’s complement fractional representations of 3-bit fixed-point
numbers.

7-6

8

Fixed-Point Conversion

• “Fixed-Point Conversion Workflows” on page 8-2

• “Automated Fixed-Point Conversion” on page 8-3

• “Specify Type Proposal Options” on page 8-20

• “Detect Overflows Using the Fixed-Point Conversion Tool” on page 8-23

• “Detect Overflows at the Command Line” on page 8-30

• “Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types
using cast and zeros” on page 8-34

• “Propose Data Types Based on Simulation Ranges” on page 8-54

• “Propose Data Types Based on Derived Ranges” on page 8-72

• “Manual Fixed-Point Conversion Workflow” on page 8-87

• “Manual Fixed-Point Conversion Best Practices” on page 8-89

• “Generated Fixed-Point Code” on page 8-106

• “Fixed-Point Code for MATLAB Classes” on page 8-107

• “Automated Fixed-Point Conversion Best Practices” on page 8-110

8 Fixed-Point Conversion

Fixed-Point Conversion Workflows

In this section...

“Manual Workflow” on page 8-2

“Automated Project Workflow” on page 8-2

You can convert floating-point MATLAB code to fixed point manually or, if
you have a MATLAB Coder™ license, you can use the automated fixed-point
conversion tool to convert from floating-point MATLAB code to fixed-point
C code.

Manual Workflow
If you have a baseline understanding of fixed-point implementation details
and an interest in exploring design tradeoffs to achieve optimized results, use
the separate algorithm/data type workflow. Separating algorithmic code from
data type specifications allows you to quickly explore design tradeoffs. This
approach provides readable, portable fixed-point code that you can easily
integrated into other projects. For more information, see “Manual Fixed-Point
Conversion Workflow” on page 8-87 and “Implement FIR Filter Algorithm for
Floating-Point and Fixed-Point Types using cast and zeros” on page 8-34.

Automated Project Workflow
If you are new to fixed-point modeling and you are looking for a direct
path from floating-point MATLAB to integer-based C or HDL code, use
the automated project workflow (requires MATLAB Coder license). Using
this automated workflow, the tool provides data type proposals based
on simulation ranges, static ranges, or both. For more information, see
“Automated Fixed-Point Conversion” on page 8-3“Propose Data Types Based
on Simulation Ranges” on page 8-54, and “Propose Data Types Based on
Derived Ranges” on page 8-72.

8-2

Automated Fixed-Point Conversion

Automated Fixed-Point Conversion

In this section...

“License Requirements” on page 8-3

“Automated Fixed-Point Conversion Capabilities” on page 8-3

“Code Coverage” on page 8-6

“Proposing Data Types” on page 8-9

“Locking Proposed Data Types” on page 8-11

“Viewing Functions” on page 8-12

“Viewing Variables” on page 8-12

“Histogram” on page 8-15

“Function Replacements” on page 8-17

“Validating Types” on page 8-17

“Testing Numerics” on page 8-17

“Detecting Overflows” on page 8-18

License Requirements
Fixed-point conversion requires the following licenses:

• Fixed-Point Designer

• MATLAB Coder

Automated Fixed-Point Conversion Capabilities
You can convert floating-point MATLAB code to fixed-point code using the
Fixed-Point Conversion tool in MATLAB Coder projects. You can choose to
propose data types based on simulation range data, derived (also known as
static) range data, or both.

You can manually enter static ranges. These manually-entered ranges take
precedence over simulation ranges and the tool uses them when proposing
data types. In addition, you can modify and lock the proposed type so that

8-3

8 Fixed-Point Conversion

the tool cannot change it. For more information, see “Locking Proposed Data
Types” on page 8-11.

Automated fixed-point conversion supports:

• MATLAB functions supported by MATLAB Coder. See “Functions and
Objects Supported for C and C++ Code Generation — Alphabetical List”
on page 21-2

• Structures. Range computation is supported via simulation mode only.

• Matrices.

• Variable-size data. Range computation is supported via simulation mode
only.

• MATLAB classes. Range computation is supported via simulation mode
only.

Automated conversion supports class properties, constructors, methods,
and specializations. It does not support class inheritance or packages.
For more information, see “Fixed-Point Code for MATLAB Classes” on
page 8-107.

8-4

Automated Fixed-Point Conversion

During fixed-point conversion, you can:

• Verify that your test files cover the full intended operating range of your
algorithm using code coverage results.

• Propose fraction lengths based on default word lengths.

• Propose word lengths based on default fraction lengths.

• Optimize whole numbers.

8-5

8 Fixed-Point Conversion

• Specify safety margins for simulation min/max data.

• Validate that you can build your project with the proposed data types.

• Test numerics by running the test file with the fixed-point types applied.

• View a histogram of bits used by each variable.

• Detect overflows.

Code Coverage
By default, the Fixed-Point Conversion tool shows code coverage results. Your
test files should exercise the algorithm over its full operating range so that
the simulation ranges are accurate. The quality of the proposed fixed-point
data types depends on how well the test files cover the operating range of the
algorithm with the accuracy that you want. Reviewing code coverage results
helps you verify that your test file is exercising the algorithm adequately. If
the code coverage is inadequate, modify the test file or add more test files
to increase coverage. If you simulate multiple test files in one run, the tool
displays cumulative coverage. However, if you specify multiple test files but
run them one at a time, the tool displays the coverage of the file that ran last.

Code coverage is on by default. Turn it off only after you have verified that
you have adequate test file coverage. Turning off code coverage might speed
up simulation. To turn off code coverage, in the Fixed-Point Conversion tool:

1 Click Run Simulation.

2 Clear Show code coverage.

The tool covers basic MATLAB control constructs and shows statement
coverage for basic blocks of code. The tool displays a color-coded coverage bar
to the left of the code.

Coverage
Bar Color

How Often Code is Executed During Test File
Simulation

Dark green Always

Light green Sometimes

8-6

Automated Fixed-Point Conversion

Coverage
Bar Color

How Often Code is Executed During Test File
Simulation

Orange Once

Red Never

When you position your cursor over the coverage bar, the color highlighting
extends over the code and the tool displays more information about how

8-7

8 Fixed-Point Conversion

often the code is executed. For MATLAB constructs that affect control flow
(if-elseif-else, switch-case, for-continue-break, return), it displays statement
coverage as a percentage coverage for basic blocks inside these constructs.

To verify that your test file is testing your algorithm over the intended
operating range, review the code coverage results and take action as described
in the following table.

8-8

Automated Fixed-Point Conversion

Coverage
Bar Color

Action Required

Dark green None

Light green Review percentage coverage and verify that it is reasonable
based on your algorithm. If there are areas of code that you
expect to be executed more frequently, modify your test file
or add more test files to increase coverage.

Orange This is expected behavior for initialization code, for
example, the initialization of persistent variables. For
other cases, verify that this behavior is reasonable for your
algorithm. If there are areas of code that you expect to be
executed more frequently, modify your test file or add more
test files to increase coverage.

Red If the code that is not executed is an error condition, this is
acceptable behavior. If the code should be executed, modify
the test file or add another test file to extend coverage. If
the code is written conservatively and has upper and lower
boundary limits and you cannot modify the test file to reach
this code, add static minimum and maximum values (see
“Computing Derived Ranges” on page 8-11).

Proposing Data Types
The Fixed-Point Conversion tool proposes fixed-point data types based
on computed ranges and the word length or fraction length setting. The
computed ranges are based on simulation range data, derived range data, or
both. If you run a simulation and compute derived ranges, the conversion tool
merges the simulation and derived ranges.

Note You cannot propose data types based on derived ranges for MATLAB
classes.

You can manually enter static ranges. These manually-entered ranges take
precedence over simulation ranges and the tool uses them when proposing
data types. In addition, you can modify and lock the proposed type so that

8-9

8 Fixed-Point Conversion

the tool cannot change it. For more information, see “Locking Proposed Data
Types” on page 8-11.

Running a Simulation
When you open the Fixed-Point Conversion tool, the tool generates an
instrumented MEX function for your entry-point MATLAB file. If the build
completes without errors, the tool displays compiled information (type,
size, complexity) for functions and variables in your code. To navigate to
local functions, click the Functions tab. If build errors occur, the tool
provides error messages that link to the line of code that caused the build
issues. You must address these errors before running a simulation. Use the
link to navigate to the offending line of code in the MATLAB editor and
modify the code to fix the issue. If your code uses functions that are not
supported for fixed-point conversion, the tool displays them on the Function
Replacements tab. See “Function Replacements” on page 8-17.

Before running a simulation, specify the test file or files that you want to
run. When you run a simulation, the tool runs the test file, calling the
instrumented MEX function. If you modify the MATLAB design code, the tool
automatically generates an updated MEX function before running a test file.

If the test file runs successfully, the simulation minimum and maximum
values and the proposed types are displayed on the Variables tab. If you
manually enter static ranges for a variable, the manually-entered ranges take
precedence over the simulation ranges. If you manually modify the proposed
types by typing or using the histogram, the data types are locked so that
the tool cannot modify them.

If the test file fails, the errors are displayed on the Simulation Output tab.

Test files should exercise your algorithm over its full operating range. The
quality of the proposed fixed-point data types depends on how well the test file
covers the operating range of the algorithm with the desired accuracy. You can
add test files and select to run more than one test file during the simulation. If
you run multiple test files, the conversion tool merges the simulation results.

Optionally, you can select to log data for histograms. After running a
simulation, you can view the histogram for each variable. For more
information, see “Histogram” on page 8-15.

8-10

Automated Fixed-Point Conversion

Computing Derived Ranges
The advantage of proposing data types based on derived ranges is that you
do not have to provide test files that exercise your algorithm over its full
operating range. Running such test files often takes a very long time.

To compute derived ranges and propose data types based on these ranges,
provide static minimum and maximum values or proposed data types for
all input variables. To improve the analysis, enter as much static range
information as possible for other variables. You can manually enter ranges or
promote simulation ranges to use as static ranges. Manually-entered static
ranges always take precedence over simulation ranges.

If you know what data type your hardware target uses, set the proposed data
types to match this type. Manually-entered data types are locked so that the
tool cannot modify them. The tool uses these data types to calculate the input
minimum and maximum values and to derive ranges for other variables. For
more information, see “Locking Proposed Data Types” on page 8-11.

When you select Compute Derived Ranges, the tool runs a derived range
analysis to compute static ranges for variables in your MATLAB algorithm.
When the analysis is complete, the static ranges are displayed on the
Variables tab. If the run produces +/-Inf derived ranges, consider defining
ranges for all persistent variables.

Optionally, you can select Quick derived range analysis. With this option,
the conversion tool performs faster static analysis. The computed ranges
might be larger than necessary. Select this option in cases where the static
analysis takes more time than you can afford.

If the derived range analysis for your project is taking a long time, you can
optionally set a timeout. The tool aborts the analysis when the timeout is
reached.

Locking Proposed Data Types
You can lock proposed data types against changes by the Fixed-Point
Conversion tool using one of the following methods:

• Manually setting a proposed data type in the Fixed-Point Conversion tool.

8-11

8 Fixed-Point Conversion

• Right-clicking a type proposed by the tool and selecting Lock computed
value.

The tool displays locked data types in bold so that they are easy to identify.
You can unlock a type using one of the following methods:

• Manually overwriting it.

• Right-clicking it and selecting Undo changes. This action unlocks only
the selected type.

• Right-clicking and selecting Undo changes for all variables. This
action unlocks all locked proposed types.

Viewing Functions
You can view a list of functions in your project on the Navigation pane. This
list also includes function specializations and class methods. When you select
a function from the list, the MATLAB code for that function or class method is
displayed in the Fixed-Point Conversion tool code window.

Viewing Variables
The Variables tab provides the following information for each variable in the
function selected in the Navigation pane:

• Type— The original data type of the variable in the MATLAB algorithm.

• Sim Min and Sim Max— The minimum and maximum values assigned
to the variable during simulation.

You can edit the simulation minimum and maximum values. Edited
fields are shown in bold. Editing these fields does not trigger static range
analysis, but the tool uses the edited values in subsequent analyses. You
can revert to the types proposed by the tool.

• Static Min and Static Max— The static minimum and maximum values.

8-12

Automated Fixed-Point Conversion

To compute derived ranges and propose data types based on these ranges,
provide static minimum and maximum values for all input variables. To
improve the analysis, enter as much static range information as possible
for other variables.

When you compute derived ranges, the Fixed-Point Conversion tool runs a
static analysis to compute static ranges for variables in your code. When
the analysis is complete, the static ranges are displayed. You can edit the
computed results. Edited fields are shown in bold. Editing these fields does
not trigger static range analysis, but the tool uses the edited values in
subsequent analyses. You can revert to the types proposed by the tool.

• Whole Number — Whether all values assigned to the variable during
simulation are integers.

The Fixed-Point Conversion tool determines whether a variable is always
a whole number. You can modify this field. Edited fields are shown in
bold. Editing these fields does not trigger static range analysis, but the
tool uses the edited values in subsequent analyses. You can revert to the
types proposed by the tool.

• The proposed fixed-point data type for the specified word (or fraction)
length. Proposed data types use the numerictype notation. For example,
numerictype(1,16,12) denotes a signed fixed-point type with a word
length of 16 and a fraction length of 12. numerictype(0,16,12) denotes an
unsigned fixed-point type with a word length of 16 and a fraction length
of 12.

Because the tool does not apply data types to expressions, it does not display
proposed types for them. Instead, it displays their original data types.

You can also view and edit variable information in the code pane by placing
your cursor over a variable name.

You can use Ctrl+F to search for variables in the MATLAB code and on the
Variables tab. The tool highlights occurrences in the code and displays only
the variable with the specified name on the Variables tab.

Viewing Information for MATLAB Classes
The tool displays:

8-13

8 Fixed-Point Conversion

• Code for MATLAB classes and code coverage for class methods in the code
window. Use the Function list in the Navigation bar to select which class
or class method to view.

• Information about MATLAB classes on the Variables tab.

8-14

Automated Fixed-Point Conversion

Histogram
To log data for histograms, in the Fixed-Point Conversion window, click
Run Simulation and select Log data for histogram, and then click the
Run Simulation button.

After simulation, to view the histogram for a variable, on the Variables tab,
click the Proposed Type field for that variable.

The histogram provides the range of the proposed data type and the
percentage of simulation values that the proposed data type covers. The bit
weights are displayed along the X-axis, and the percentage of occurrences
along the Y-axis. Each bin in the histogram corresponds to a bit in the binary
word. For example, this histogram displays the range for a variable of type
numerictype(1,16,14).

8-15

8 Fixed-Point Conversion

You can view the effect of changing the proposed data types by:

• Dragging the edges of the bounding box in the histogram window to change
the proposed data type.

• Selecting or clearing Signed.

To revert to the types proposed by the automatic conversion, in the histogram

window, click .

8-16

Automated Fixed-Point Conversion

Function Replacements
If your MATLAB code uses functions that do not have fixed-point support,
the tool lists these functions on the Function Replacements tab. You can
add and remove function replacements from this list. If you enter a function
replacements for a function, the replacement function is used when you build
the project. If you do not enter a replacement, the tool uses the type specified
in the original MATLAB code for the function.

Note Using this table, you can replace the names of the functions but you
cannot replace argument patterns.

Validating Types
Selecting Validate Types validates the build using the proposed fixed-point
data types. If the validation is successful, you are ready to test the numerical
behavior of the fixed-point MATLAB algorithm.

If the errors or warnings occur during validation, they are displayed on the
Type Validation Output tab. If errors or warning occur:

• On the Variables tab, inspect the proposed types and manually modified
types to verify that they are valid.

• On the Function Replacements tab, verify that you have provided
function replacements for unsupported functions.

Testing Numerics
After validating the proposed fixed-point data types, select Test Numerics to
verify the behavior of the fixed-point MATLAB algorithm. By default, if you
added a test file to define inputs or run a simulation, the tool uses this test

8-17

8 Fixed-Point Conversion

file to test numerics. Optionally, you can add test files and select to run more
than one test file. The tool compares the numerical behavior of the generated
fixed-point MATLAB code with the original floating-point MATLAB code. If
you select to log inputs and outputs for comparison plots, the tool generates an
additional plot for each scalar output. This plot shows the floating-point and
fixed-point results and the difference between them. For non-scalar outputs,
only the error information is shown.

If the numerical results do not meet your desired accuracy after fixed-point
simulation, modify fixed-point data type settings and repeat the type
validation and numerical testing steps. You might have to iterate through
these steps multiple times to achieve the desired results.

Detecting Overflows
When testing numerics, selecting Use scaled doubles to detect overflows
enables overflow detection. When this option is selected, the conversion
tool runs the simulation using scaled double versions of the proposed
fixed-point types. Because scaled doubles store their data in double-precision
floating-point, they carry out arithmetic in full range. They also retain their
fixed-point settings, so they are able to report when a computation goes out of
the range of the fixed-point type. For more information, see “Scaled Doubles”
on page 27-20.

If the tool detects overflows, on its Overflow tab, it provides:

• A list of variables and expressions that overflowed

• Information on how much each variable overflowed

• A link to the variables or expressions in the code window

8-18

Automated Fixed-Point Conversion

If your original algorithm uses scaled doubles, the tool also provides overflow
information for these expressions.

See Also
“Detect Overflows Using the Fixed-Point Conversion Tool” on page 8-23

8-19

8 Fixed-Point Conversion

Specify Type Proposal Options

You specify whether to propose fraction lengths or word lengths in the
Fixed-Point Conversion window Type Proposal options. By default, the
software proposes fraction lengths for a default word length of 16.

To customize fixed-point type proposals, use the Advanced settings.

Advanced Setting Values Description

ignore simulation
ranges

Propose data types based only on
derived ranges.

ignore derived
ranges

Propose data types based on
simulation ranges.

When proposing types

Note Manually-entered static
ranges always take precedence over
simulation ranges. use all collected

data (default)
Propose data types based on both
simulation and derived ranges.

Yes Propose data type with the
smallest word length that can
represent the range and is
suitable for C code generation (
8,16,32, 64 …). For example, for
a variable with range [0..7],
propose a word length of 8 rather
than 3.

Propose target container types

No (default) Propose data types with the
minimum word length needed to
represent the value.

8-20

Specify Type Proposal Options

Advanced Setting Values Description

No Do not use integer scaling
for variables that were whole
numbers during simulation.

Optimize whole numbers

Yes (default) Use integer scaling for variables
that were whole numbers during
simulation.

Automatic
(default)

Proposes signed and unsigned
data types depending on the range
information for each variable.

Signed Propose signed data types.

Signedness

Unsigned Propose unsigned data types.

Safety margin for sim min/max (%) 0 (default) Specify safety factor for
simulation minimum and
maximum values.

The simulation minimum and
maximum values are adjusted
by the percentage designated by
this parameter, allowing you to
specify a range different from
that obtained from the simulation
run. For example, a value of 55
specifies that you want a range at
least 55 percent larger. A value of
-15 specifies that a range up to 15
percent smaller is acceptable.

Generated fixed-point file name suffix _fixpt (default) Specify the suffix to add to the
generated fixed-point file names.

No (default)Transform for-loop index variables

Yes

8-21

8 Fixed-Point Conversion

Advanced Setting Values Description

Ceiling

Convergent

Floor (default)

Nearest

Round

Rounding method

Zero

SaturateOverflow action

Wrap (default)

FullPrecision
(default)

KeepLSB

KeepMSB

Product mode

SpecifyPrecision

FullPrecision
(default)

KeepLSB

KeepMSB

fimath

Sum mode

SpecifyPrecision

Specify the fimath properties for
the generated fixed-point data
types.

The default fixed-point math
properties use the Floor rounding
and Wrap overflow. These settings
generate the most efficient code
but might cause problems with
overflow.

After code generation, if required,
modify these settings to optimize
the generated code, or example,
avoid overflow or eliminate bias,
and then rerun the verification.

8-22

Detect Overflows Using the Fixed-Point Conversion Tool

Detect Overflows Using the Fixed-Point Conversion Tool
This example shows how to detect overflows using the Fixed-Point Conversion
tool. At the numerical testing stage in the conversion process, the tool
simulates the fixed-point code using scaled doubles. It then reports which
expressions in the generated code produce values that would overflow the
fixed-point data type.

Prerequisites

To complete this example, you must install the following products:

• MATLAB

• MATLAB Coder

• Fixed-Point Designer

Create a Project

In a local writable folder, create a MATLAB Coder project named overflow.

At the MATLAB command line, enter

coder -new overflow.prj

By default, the project opens in the MATLAB workspace.

Add File

1 In the same folder, create a function, overflow.

function y = overflow(b,x,reset)
if nargin<3, reset = true; end
persistent z p
if isempty(z) || reset

p = 0;
z = zeros(size(b));

end
[y,z,p] = fir_filter(b,x,z,p);

end
function [y,z,p] = fir_filter(b,x,z,p)

8-23

8 Fixed-Point Conversion

y = zeros(size(x));
nx = length(x);
nb = length(b);
for n=1:nx

p=p+1; if p>nb, p=1; end
z(p) = x(n);
acc = 0;
k = p;
for j=1:nb

acc = acc + b(j)*z(k);
k=k-1; if k<1, k=nb; end

end
y(n) = acc;

end
end

2 On the project Overview tab, click the Add files link. Browse to the file
overflow.m and then click OK to add the file to the project.

Define Input Types

1 Create a test file, overflow_test.m to exercise the overflow algorithm.
You use this test file to define input types for b, x, and reset, and, later, to
verify the fixed-point version of the algorithm.

function overflow_test
% The filter coefficients were computed using the FIR1 function from
% Signal Processing Toolbox.
% b = fir1(11,0.25);
b = [-0.004465461051254

-0.004324228005260
+0.012676739550326
+0.074351188907780
+0.172173206073645
+0.249588554524763
+0.249588554524763
+0.172173206073645
+0.074351188907780
+0.012676739550326
-0.004324228005260

8-24

Detect Overflows Using the Fixed-Point Conversion Tool

-0.004465461051254]';

% Input signal
nx = 256;
t = linspace(0,10*pi,nx)';

% Impulse
x_impulse = zeros(nx,1); x_impulse(1) = 1;

% Max Gain
% The maximum gain of a filter will occur when the inputs line up wit
% signs of the filter's impulse response.
x_max_gain = sign(b)';
x_max_gain = repmat(x_max_gain,ceil(nx/length(b)),1);
x_max_gain = x_max_gain(1:nx);

% Sums of sines
f0=0.1; f1=2;
x_sines = sin(2*pi*t*f0) + 0.1*sin(2*pi*t*f1);

% Chirp
f_chirp = 1/16; % Target frequency
x_chirp = sin(pi*f_chirp*t.^2); % Linear chirp

x = [x_impulse, x_max_gain, x_sines, x_chirp];
titles = {'Impulse', 'Max gain', 'Sum of sines', 'Chirp'};
y = zeros(size(x));

for i=1:size(x,2)
reset = true;
y(:,i) = overflow(b,x(:,i),reset);

end

test_plot(1,titles,t,x,y)

end
function test_plot(fig,titles,t,x,y1)

figure(fig)
clf

8-25

8 Fixed-Point Conversion

sub_plot = 1;
font_size = 10;
for i=1:size(x,2)

subplot(4,1,sub_plot); sub_plot = sub_plot+1;
plot(t,x(:,i),'c',t,y1(:,i),'k')
axis('tight')
xlabel('t','FontSize',font_size);
title(titles{i},'FontSize',font_size);
set(gca,'FontSize',12);

end
figure(gcf)

end

2 On the project Overview tab, click the Autodefine types link.

3 In the Autodefine Input Types dialog box, add overflow_test as a test file
and then click Run.

The test file runs and displays the outputs of the filter for each of the input
signals.MATLAB Coder determines the input types from the test file and
then displays them.

4 In the Autodefine Input Types dialog box, click Use These Types.

MATLAB Coder sets the types of b to double(1x12), x to double(256x1),
and reset to logical(1x1).

Fixed-Point Conversion

1 On the project Overview tab Fixed-Point Conversion pane, select
Convert to fixed-point at build time.

The project indicates that you must first define the fixed-point data types.

2 In the Fixed-Point Conversion pane, click Define and validate
fixed-point types.

The Fixed-Point Conversion tool opens and generates an instrumented
MEX function for your entry-point MATLAB function. After generating the
MEX function, the tool displays compiled information — type, size, and

8-26

Detect Overflows Using the Fixed-Point Conversion Tool

complexity — for variables in your code. For more information, see “View
and Modify Variable Information”.

3 In the Fixed-Point Conversion tool, click Advanced to view the advanced
settings. Set the fimath Product mode and Sum mode to KeepLSB. These
settings models the behavior of integer operations in the C language.

4 In the Fixed-Point Conversion tool, click Run Simulation and verify that
the overflow_test file is selected as the test file to run and then click
the Run Simulation button.

The simulation runs and the conversion tool displays simulation minimum
and maximum ranges on the Variables tab. Using the simulation range
data, the software proposes fixed-point types for each variable based on the
default type proposal settings, and displays them in the Proposed Type
column. The Validate Types option is now enabled.

8-27

8 Fixed-Point Conversion

5 To validate the build using the proposed types, click Validate Types.

The software validates the proposed types, displays a Validation
succeeded message, and enables the Test Numerics option.

If the errors or warnings occur during validation, they are displayed on the
Type Validation Output tab. For more information, see “Validating
Types” on page 8-17.

Test Numerics and Check for Overflows

1 Click Test Numerics, select Use scaled doubles to detect overflows,
and then click the Test Numerics button.

The tool runs the test file that you used to define input types to test the
fixed-point MATLAB code. Because you selected to detect overflows, it also
runs the simulation using scaled double versions of the proposed fixed-point
types. Scaled doubles store their data in double-precision floating-point, so
they carry out arithmetic in full range. They also retain their fixed-point
settings, so they are able to report when a computation goes out of the
range of the fixed-point type.

The simulation runs and the tool detects an overflow which it reports on
the Overflow tab.

Overflow error in expression 'acc + b(j)*z(k)'. Percentage of Current Range = 103.52%.

2 Click the overflow message. The tool highlights the expression that
overflowed in the code window.

8-28

Detect Overflows Using the Fixed-Point Conversion Tool

acc + b(j)*z(k)

3 Determine whether it was the sum or the multiplication that overflowed.

In the Advanced settings, set Product mode to FullPrecision, and
then click Test Numerics.

The overflow still occurs, indicating that it is the addition in the expression
that is overflowing.

8-29

8 Fixed-Point Conversion

Detect Overflows at the Command Line
This example shows how to detect overflows at the command line. At the
numerical testing stage in the conversion process, the tool simulates the
fixed-point code using scaled doubles. It then reports which expressions in the
generated code produce values that would overflow the fixed-point data type.

Prerequisites

To complete this example, you must install the following products:

• MATLAB

• MATLAB Coder

• Fixed-Point Designer

In a local, writable folder, create a function, overflow.

function y = overflow(b,x,reset)
if nargin<3, reset = true; end
persistent z p
if isempty(z) || reset

p = 0;
z = zeros(size(b));

end
[y,z,p] = fir_filter(b,x,z,p);

end
function [y,z,p] = fir_filter(b,x,z,p)

y = zeros(size(x));
nx = length(x);
nb = length(b);
for n=1:nx

p=p+1; if p>nb, p=1; end
z(p) = x(n);
acc = 0;
k = p;
for j=1:nb

acc = acc + b(j)*z(k);
k=k-1; if k<1, k=nb; end

end

8-30

Detect Overflows at the Command Line

y(n) = acc;
end

end

Create a test file, overflow_test.m to exercise the overflow algorithm.

function overflow_test
% The filter coefficients were computed using the FIR1 function from
% Signal Processing Toolbox.
% b = fir1(11,0.25);
b = [-0.004465461051254

-0.004324228005260
+0.012676739550326
+0.074351188907780
+0.172173206073645
+0.249588554524763
+0.249588554524763
+0.172173206073645
+0.074351188907780
+0.012676739550326
-0.004324228005260
-0.004465461051254]';

% Input signal
nx = 256;
t = linspace(0,10*pi,nx)';

% Impulse
x_impulse = zeros(nx,1); x_impulse(1) = 1;

% Max Gain
% The maximum gain of a filter will occur when the inputs line up with
% signs of the filter's impulse response.
x_max_gain = sign(b)';
x_max_gain = repmat(x_max_gain,ceil(nx/length(b)),1);
x_max_gain = x_max_gain(1:nx);

% Sums of sines
f0=0.1; f1=2;

8-31

8 Fixed-Point Conversion

x_sines = sin(2*pi*t*f0) + 0.1*sin(2*pi*t*f1);

% Chirp
f_chirp = 1/16; % Target frequency
x_chirp = sin(pi*f_chirp*t.^2); % Linear chirp

x = [x_impulse, x_max_gain, x_sines, x_chirp];
titles = {'Impulse', 'Max gain', 'Sum of sines', 'Chirp'};
y = zeros(size(x));

for i=1:size(x,2)
reset = true;
y(:,i) = overflow(b,x(:,i),reset);

end

test_plot(1,titles,t,x,y)

end
function test_plot(fig,titles,t,x,y1)

figure(fig)
clf
sub_plot = 1;
font_size = 10;
for i=1:size(x,2)

subplot(4,1,sub_plot); sub_plot = sub_plot+1;
plot(t,x(:,i),'c',t,y1(:,i),'k')
axis('tight')
xlabel('t','FontSize',font_size);
title(titles{i},'FontSize',font_size);
set(gca,'FontSize',12);

end
figure(gcf)

end

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is
overflow_test.

8-32

Detect Overflows at the Command Line

fixptcfg.TestBenchName = 'overflow_test';

Set the default word length to 16.

fixptcfg.DefaultWordLength = 16;

Enable overflow detection.

fixptcfg.TestNumerics = true;
fixptcfg.DetectFixptOverflows = true;

Set the fimath Product mode and Sum mode to KeepLSB. These settings
models the behavior of integer operations in the C language.

fixptcfg.fimath = ...

'fimath(''RoundingMethod'', ''Floor'', ''OverflowAction'', ''Wrap'', ''ProductMode'', ''KeepLSB'', ''SumMod

Create a code generation configuration object to generate a standalone C
static library.

cfg = coder.config('lib');

Convert the floating-point MATLAB function, overflow, to fixed-point C code.
You do not need to specify input types for the codegen command because
it infers the types from the test file.

codegen -float2fixed fixptcfg -config cfg overflow

The numerics testing phase reports an overflow.

Overflow error in expression 'acc + b(j)*z(k)'. Percentage of Current Range = 103.52%.

Determine if the addition or the multiplication in this expression overflowed.
Set the fimath ProductMode to FullPrecision so that the multiplication will
not overflow, and then run the codegen command again.

fixptcfg.fimath = ...

'fimath(''RoundingMethod'',''Floor'',''OverflowAction'',''Wrap'',''ProductMode'',''FullPrecision'',''SumMode

codegen -float2fixed fixptcfg -config cfg overflow

The numerics testing phase still reports an overflow, indicating that it is the
addition in the expression that is overflowing.

8-33

8 Fixed-Point Conversion

Implement FIR Filter Algorithm for Floating-Point and
Fixed-Point Types using cast and zeros

This example shows you how to convert a finite impulse-response (FIR)
filter to fixed point by separating the fixed-point type specification from the
algorithm code.

Separating data type type specification from algorithm code allows you to:

• Re-use your algorithm code with different data types

• Keep your algorithm uncluttered with data type specification and switch
statements for different data types

• Keep your algorithm code more readable

• Switch between fixed point and floating point to compare baselines

• Switch between variations of fixed point settings without changing the
algorithm code

Original Algorithm

This example converts MATLAB® code for a finite impulse response (FIR)
filter to fixed point.

The formula for the n’th output y(n) of an (FIR) filter, given filter coefficients
b, and input x is:

y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(end)*x(n-length(b)+1)

Linear Buffer Implementation

There are several different ways to write an FIR filter. One way is with a
linear buffer like in the following function, where b is a row vector and z is a
column vector the same length as b.

function [y,z] = fir_filt_linear_buff(b,x,z)
y = zeros(size(x));
for n=1:length(x)

z = [x(n); z(1:end-1)];
y(n) = b * z;

8-34

Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

end
end

The linear buffer implementation takes advantage of MATLAB’s convenient
matrix syntax and is easy to read and understand. However, it introduces a
full copy of the state buffer for every sample of the input.

Circular Buffer Implementation

To implement the FIR filter more efficiently, you can store the
states in a circular buffer, z, whose elements are z(p) = x(n), where
p=mod(n-1,length(b))+1, for n=1, 2, 3,

For example, let length(b) = 3, and initialize p and z to:

p = 0, z = [0 0 0]

Start with the first sample and fill the state buffer z in a circular manner.

n = 1, p = 1, z(1) = x(1), z = [x(1) 0 0]
y(1) = b(1)*z(1) + b(2)*z(3) + b(3)*z(2)

n = 2, p = 2, z(2) = x(2), z = [x(1) x(2) 0]
y(2) = b(1)*z(2) + b(2)*z(1) + b(3)*z(3)

n = 3, p = 3, z(3) = x(3), z = [x(1) x(2) x(3)]
y(3) = b(1)*z(3) + b(2)*z(2) + b(3)*z(1)

n = 4, p = 1, z(1) = x(4), z = [x(4) x(2) x(3)]
y(4) = b(1)*z(1) + b(2)*z(3) + b(3)*z(2)

n = 5, p = 2, z(2) = x(5), z = [x(4) x(5) x(3)]
y(5) = b(1)*z(2) + b(2)*z(1) + b(3)*z(3)

n = 6, p = 3, z(3) = x(6), z = [x(4) x(5) x(6)]
y(6) = b(1)*z(3) + b(2)*z(2) + b(3)*z(1)

...

8-35

8 Fixed-Point Conversion

You can implement the FIR filter using a circular buffer like the following
MATLAB function.

function [y,z,p] = fir_filt_circ_buff_original(b,x,z,p)
y = zeros(size(x));
nx = length(x);
nb = length(b);
for n=1:nx

p=p+1; if p>nb, p=1; end
z(p) = x(n);
acc = 0;
k = p;
for j=1:nb

acc = acc + b(j)*z(k);
k=k-1; if k<1, k=nb; end

end
y(n) = acc;

end
end

Test File

Create a test file to validate that the floating-point algorithm works as
expected before converting it to fixed point. You can use the same test file
to propose fixed-point data types, and to compare fixed-point results to the
floating-point baseline after the conversion.

The test vectors should represent realistic inputs that exercise the full range
of values expected by your system. Realistic inputs are impulses, sums of
sinusoids, and chirp signals, for which you can verify that the outputs are
correct using linear theory. Signals that produce maximum output are useful
for verifying that your system does not overflow.

Set up

Run the following code to capture and reset the current state of global
fixed-point math settings and fixed-point preferences.

resetglobalfimath;
FIPREF_STATE = get(fipref);

8-36

Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

resetfipref;

Run the following code to copy the test functions into a temporary folder so
this example doesn’t interfere with your own work.

tempdirObj = fidemo.fiTempdir('fir_filt_circ_buff_fixed_point_conversion_ex

copyfile(fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo',...
'fir_filt_*.m'),'.','f');

Filter coefficients

Use the following low-pass filter coefficients that were computed using the
fir1 function from Signal Processing Toolbox.

b = fir1(11,0.25);

b = [-0.004465461051254
-0.004324228005260
+0.012676739550326
+0.074351188907780
+0.172173206073645
+0.249588554524763
+0.249588554524763
+0.172173206073645
+0.074351188907780
+0.012676739550326
-0.004324228005260
-0.004465461051254]';

Time vector

Use this time vector to create the test signals.

nx = 256;
t = linspace(0,10*pi,nx)';

Impulse input

8-37

8 Fixed-Point Conversion

The response of an FIR filter to an impulse input is the filter coefficients
themselves.

x_impulse = zeros(nx,1); x_impulse(1) = 1;

Signal that produces the maximum output

The maximum output of a filter occurs when the signs of the inputs line up
with the signs of the filter’s impulse response.

x_max_output = sign(fliplr(b))';
x_max_output = repmat(x_max_output,ceil(nx/length(b)),1);
x_max_output = x_max_output(1:nx);

The maximum magnitude of the output is the 1-norm of its impulse response,
which is norm(b,1) = sum(abs(b)).

maximum_output_magnitude = norm(b,1) %#ok<*NOPTS>

maximum_output_magnitude =

1.0352

Sum of sines

A sum of sines is a typical input for a filter and you can easily see the high
frequencies filtered out in the plot.

f0=0.1; f1=2;
x_sines = sin(2*pi*t*f0) + 0.1*sin(2*pi*t*f1);

Chirp

A chirp gives a good visual of the low-pass filter action of passing the low
frequencies and attenuating the high frequencies.

f_chirp = 1/16; % Target frequency
x_chirp = sin(pi*f_chirp*t.^2); % Linear chirp

8-38

Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

titles = {'Impulse', 'Max output', 'Sum of sines', 'Chirp'};
x = [x_impulse, x_max_output, x_sines, x_chirp];

Call the original function

Before starting the conversion to fixed point, call your original function with
the test file inputs to establish a baseline to compare to subsequent outputs.

y0 = zeros(size(x));
for i=1:size(x,2)

% Initialize the states for each column of input
p = 0;
z = zeros(size(b));
y0(:,i) = fir_filt_circ_buff_original(b,x(:,i),z,p);

end

Baseline Output

fir_filt_circ_buff_plot(1,titles,t,x,y0)

Prepare for Instrumentation and Code Generation

The first step after the algorithm works in MATLAB is to prepare it for
instrumentation, which requires code generation. Before the conversion,
you can use the coder.screener function to analyze your code and identify
unsupported functions and language features.

Entry-point function

When doing instrumentation and code generation, it is convenient to have an
entry-point function that calls the function to be converted to fixed point.
You can cast the FIR filter’s inputs to different data types, and add calls
to different variations of the filter for comparison. By using an entry-point
function you can run both fixed-point and floating-point variants of your filter,
and also different variants of fixed-point. This allows you to iterate on your
code more quickly to arrive at the optimal fixed-point design.

function y = fir_filt_circ_buff_original_entry_point(b,x,reset)
if nargin<3, reset = true; end

8-39

8 Fixed-Point Conversion

% Define the circular buffer z and buffer position index p.
% They are declared persistent so the filter can be called in a streami
% loop, each section picking up where the last section left off.
persistent z p
if isempty(z) || reset

p = 0;
z = zeros(size(b));

end
[y,z,p] = fir_filt_circ_buff_original(b,x,z,p);

end

Test file

Your test file calls the compiled entry-point function.

function y = fir_filt_circ_buff_test(b,x)

y = zeros(size(x));

for i=1:size(x,2)
reset = true;
y(:,i) = fir_filt_circ_buff_original_entry_point_mex(b,x(:,i),rese

end

end

Build original function

Compile the original entry-point function with buildInstrumentedMex. This
instruments your code for logging so you can collect minimum and maximum
values from the simulation and get proposed data types.

reset = true;
buildInstrumentedMex fir_filt_circ_buff_original_entry_point -args {b, x(:,

Run original function

Run your test file inputs through the algorithm to log minimum and
maximum values.

y1 = fir_filt_circ_buff_test(b,x);

8-40

Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

Show types

Use showInstrumentationResults to view the data types of all your variables
and the minimum and maximum values that were logged during the test
file run. Look at the maximum value logged for the output variable y
and accumulator variable acc and note that they attained the theoretical
maximum output value that you calculated previously.

showInstrumentationResults fir_filt_circ_buff_original_entry_point_mex

To see these results in the instrumented Code Generation Report:

• Select function fir_filt_circ_buff_original

• Select the Variables tab

Validate original function

Every time you modify your function, validate that the results still match
your baseline.

fir_filt_circ_buff_plot2(2,titles,t,x,y0,y1)

Convert Functions to use Types Tables

To separate data types from the algorithm, you:

1 Create a table of data type definitions.

2 Modify the algorithm code to use data types from that table.

This example shows the iterative steps by creating different files. In practice,
you can make the iterative changes to the same file.

Original types table

8-41

8 Fixed-Point Conversion

Create a types table using a structure with prototypes for the variables set
to their original types. Use the baseline types to validate that you made the
initial conversion correctly, and also use it to programatically toggle your
function between floating point and fixed point types. The index variables j,
k, n, nb, nx are automatically converted to integers by MATLAB Coder™, so
you don’t need to specify their types in the table.

Specify the prototype values as empty ([]) since the data types are used,
but not the values.

function T = fir_filt_circ_buff_original_types()
T.acc=double([]);
T.b=double([]);
T.p=double([]);
T.x=double([]);
T.y=double([]);
T.z=double([]);

end

Type-aware filter function

Prepare the filter function and entry-point function to be type-aware by using
the cast and zeros functions and the types table.

Use subscripted assignment acc(:)=..., p(:)=1, and k(:)=nb to preserve data
types during assignment. See the "Cast fi Objects" section in the Fixed-Point
Designer documentation for more details about subscripted assignment and
preserving data types.

The function call y = zeros(size(x),’like’,T.y) creates an array of zeros the
same size as x with the properties of variable T.y. Initially, T.y is a double
defined in function fir_filt_circ_buff_original_types, but it is re-defined as a
fixed-point type later in this example.

The function call acc = cast(0,’like’,T.acc) casts the value 0 with the same
properties as variable T.acc. Initially, T.acc is a double defined in function
fir_filt_circ_buff_original_types, but it is re-defined as a fixed-point type later
in this example.

function [y,z,p] = fir_filt_circ_buff_typed(b,x,z,p,T)

8-42

Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

y = zeros(size(x),'like',T.y);
nx = length(x);
nb = length(b);
for n=1:nx

p(:)=p+1; if p>nb, p(:)=1; end
z(p) = x(n);
acc = cast(0,'like',T.acc);
k = p;
for j=1:nb

acc(:) = acc + b(j)*z(k);
k(:)=k-1; if k<1, k(:)=nb; end

end
y(n) = acc;

end
end

Type-aware entry-point function

The function call p1 = cast(0,’like’,T1.p) casts the value 0 with the same
properties as variable T1.p. Initially, T1.p is a double defined in function
fir_filt_circ_buff_original_types, but it is re-defined as an integer type later
in this example.

The function call z1 = zeros(size(b),’like’,T1.z) creates an array of zeros the
same size as b with the properties of variable T1.z. Initially, T1.z is a double
defined in function fir_filt_circ_buff_original_types, but it is re-defined as a
fixed-point type later in this example.

function y1 = fir_filt_circ_buff_typed_entry_point(b,x,reset)
if nargin<3, reset = true; end
%
% Baseline types
%
T1 = fir_filt_circ_buff_original_types();
% Each call to the filter needs to maintain its own states.
persistent z1 p1
if isempty(z1) || reset

p1 = cast(0,'like',T1.p);
z1 = zeros(size(b),'like',T1.z);

end

8-43

8 Fixed-Point Conversion

b1 = cast(b,'like',T1.b);
x1 = cast(x,'like',T1.x);
[y1,z1,p1] = fir_filt_circ_buff_typed(b1,x1,z1,p1,T1);

end

Validate modified function

Every time you modify your function, validate that the results still match
your baseline. Since you used the original types in the types table, the outputs
should be identical. This validates that you made the conversion to separate
the types from the algorithm correctly.

buildInstrumentedMex fir_filt_circ_buff_typed_entry_point -args {b, x(:,1),

y1 = fir_filt_circ_buff_typed_test(b,x);
fir_filt_circ_buff_plot2(3,titles,t,x,y0,y1)

Propose data types from simulation min/max logs

Use the showInstrumentationResults function to propose fixed-point fraction
lengths, given a default signed fixed-point type and 16-bit word length.

showInstrumentationResults fir_filt_circ_buff_original_entry_point_mex ...
-defaultDT numerictype(1,16) -proposeFL

In the instrumented Code Generation Report, select function
fir_filt_circ_buff_original and the Variables tab to see these results.

Create a fixed-point types table

Use the proposed types from the Code Generation Report to guide you
in choosing fixed-point types and create a fixed-point types table using a
structure with prototypes for the variables.

8-44

Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

Use your knowledge of the algorithm to improve on the proposals. For
example, you are using the acc variable as an accumulator, so make it 32-bits.
From the Code Generation Report, you can see that acc needs at least 2
integer bits to prevent overflow, so set the fraction length to 30.

Variable p is used as an index, so you can make it a builtin 16-bit integer.

Specify the prototype values as empty ([]) since the data types are used,
but not the values.

function T = fir_filt_circ_buff_fixed_point_types()
T.acc=fi([],true,32,30);
T.b=fi([],true,16,17);
T.p=int16([]);
T.x=fi([],true,16,14);
T.y=fi([],true,16,14);
T.z=fi([],true,16,14);

end

Add fixed point to entry-point function

Add a call to the fixed-point types table in the entry-point function:

T2 = fir_filt_circ_buff_fixed_point_types();
persistent z2 p2
if isempty(z2) || reset

p2 = cast(0,'like',T2.p);
z2 = zeros(size(b),'like',T2.z);

end
b2 = cast(b,'like',T2.b);
x2 = cast(x,'like',T2.x);
[y2,z2,p2] = fir_filt_circ_buff_typed(b2,x2,z2,p2,T2);

Build and run algorithm with fixed-point data types

buildInstrumentedMex fir_filt_circ_buff_typed_entry_point -args {b, x(:,1),

[y1,y2] = fir_filt_circ_buff_typed_test(b,x);

showInstrumentationResults fir_filt_circ_buff_typed_entry_point_mex

8-45

8 Fixed-Point Conversion

To see these results in the instrumented Code Generation Report:

• Select the entry-point function, fir_filt_circ_buff_typed_entry_point

• Select fir_filt_circ_buff_typed in the following line of code:

[y2,z2,p2] = fir_filt_circ_buff_typed(b2,x2,z2,p2,T2);

• Select the Variables tab

16-bit word length, full precision math

Validate that the results are within an acceptable tolerance of your baseline.

fir_filt_circ_buff_plot2(4,titles,t,x,y1,y2);

Your algorithm has now been converted to fixed-point MATLAB code. If you
also want to convert to C-code, then proceed to the next section.

Generate C-Code

This section describes how to generate efficient C-code from the fixed-point
MATLAB code from the previous section.

Required products

You need MATLAB Coder™ to generate C-code, and you need Embedded
Coder® for the hardware implementation settings used in this example.

Algorithm tuned for most efficient C-code

The output variable y is initialized to zeros, and then completely overwritten
before it is used. Therefore, filling y with all zeros is unnecessary. You can
use the coder.nullcopy function to declare a variable without actually filling it
with values, which makes the code in this case more efficient. However, you
have to be very careful when using coder.nullcopy because if you access an

8-46

Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

element of a variable before it is assigned, then you are accessing uninitialized
memory and its contents are unpredictable.

A rule of thumb for when to use coder.nullcopy is when the initialization takes
significant time compared to the rest of the algorithm. If you are not sure,
then the safest thing to do is to not use it.

function [y,z,p] = fir_filt_circ_buff_typed_codegen(b,x,z,p,T)
% Use coder.nullcopy only when you are certain that every value of
% the variable is overwritten before it is used.
y = coder.nullcopy(zeros(size(x),'like',T.y));
nx = length(x);
nb = length(b);
for n=1:nx

p(:)=p+1; if p>nb, p(:)=1; end
z(p) = x(n);
acc = cast(0,'like',T.acc);
k = p;
for j=1:nb

acc(:) = acc + b(j)*z(k);
k(:)=k-1; if k<1, k(:)=nb; end

end
y(n) = acc;

end
end

Native C-code types

You can set the fixed-point math properties to match the native actions of C.
This generates the most efficient C-code, but this example shows that it can
create problems with overflow and produce less accurate results which are
corrected in the next section. It doesn’t always create problems, though, so it
is worth trying first to see if you can get the cleanest possible C-code.

Set the fixed-point math properties to use floor rounding and wrap overflow
because those are the default actions in C.

Set the fixed-point math properties of products and sums to match native C
32-bit integer types, and to keep the least significant bits (LSBs) of math
operations.

8-47

8 Fixed-Point Conversion

Add these settings to a fixed-point types table.

function T = fir_filt_circ_buff_dsp_types()
F = fimath('RoundingMethod','Floor',...

'OverflowAction','Wrap',...
'ProductMode','KeepLSB',...
'ProductWordLength',32,...
'SumMode','KeepLSB',...
'SumWordLength',32);

T.acc=fi([],true,32,30,F);
T.p=int16([]);
T.b=fi([],true,16,17,F);
T.x=fi([],true,16,14,F);
T.y=fi([],true,16,14,F);
T.z=fi([],true,16,14,F);

end

Test the native C-code types

Add a call to the types table in the entry-point function and run the test file.

[y1,y2,y3] = fir_filt_circ_buff_typed_test(b,x); %#ok<*ASGLU>

In the second row of plots, you can see that the maximum output error is
twice the size of the input, indicating that a value that should have been
positive overflowed to negative. You can also see that the other outputs did
not overflow. This is why it is important to have your test file exercise the full
range of values in addition to other typical inputs.

fir_filt_circ_buff_plot2(5,titles,t,x,y1,y3);

Scaled Double types to find overflows

Scaled double variables store their data in double-precision floating-point, so
they carry out arithmetic in full range. They also retain their fixed-point
settings, so they are able to report when a computation goes out of the range
of the fixed-point type.

8-48

Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

Change the data types to scaled double, and add these settings to a
scaled-double types table.

function T = fir_filt_circ_buff_scaled_double_types()
F = fimath('RoundingMethod','Floor',...

'OverflowAction','Wrap',...
'ProductMode','KeepLSB',...
'ProductWordLength',32,...
'SumMode','KeepLSB',...
'SumWordLength',32);

DT = 'ScaledDouble';
T.acc=fi([],true,32,30,F,'DataType',DT);
T.p=int16([]);
T.b=fi([],true,16,17,F,'DataType',DT);
T.x=fi([],true,16,14,F,'DataType',DT);
T.y=fi([],true,16,14,F,'DataType',DT);
T.z=fi([],true,16,14,F,'DataType',DT);

end

Add a call to the the scaled-double types table to the entry-point function
and run the test file.

[y1,y2,y3,y4] = fir_filt_circ_buff_typed_test(b,x); %#ok<*NASGU>

Show the instrumentation results with the scaled-double types.

showInstrumentationResults fir_filt_circ_buff_typed_entry_point_mex

To see these results in the instrumented Code Generation Report:

• Select the entry-point function, fir_filt_circ_buff_typed_entry_point

• Select fir_filt_circ_buff_typed_codegen in the following line of code:

[y4,z4,p4] = fir_filt_circ_buff_typed_codegen(b4,x4,z4,p4,T4);

• Select the Variables tab.

• Look at the variables in the table. None of the variables overflowed, which
indicates that the overflow occurred as the result of an operation.

• Hover over the operators in the report (+, -, *, =).

8-49

8 Fixed-Point Conversion

• Hover over the "+" in this line of MATLAB code in the instrumented Code
Generation Report:

acc(:) = acc + b(j)*z(k);

The report shows that the sum overflowed:

The reason the sum overflowed is that a full-precision product for b(j)*z(k)
produces a numerictype(true,32,31) because b has numerictype(true,16,17)
and z has numerictype(true,16,14). The sum type is set to "keep least
significant bits" (KeepLSB), so the sum has numerictype(true,32,31).
However, 2 integer bits are necessary to store the minimum and maximum
simulated values of -1.0045 and +1.035, respectively.

Adjust to avoid the overflow

Set the fraction length of b to 16 instead of 17 so that b(j)*z(k) is
numerictype(true,32,30), and so the sum is also numerictype(true,32,30)
following the KeepLSB rule for sums.

Leave all other settings the same, and set

T.b=fi([],true,16,16,F);

Then the sum in this line of MATLAB code no longer overflows:

acc(:) = acc + b(j)*z(k);

Run the test file with the new settings and plot the results.

[y1,y2,y3,y4,y5] = fir_filt_circ_buff_typed_test(b,x);

You can see that the overflow has been avoided. However, the plots show a
bias and a larger error due to using C’s natural floor rounding. If this bias is
acceptable to you, then you can stop here and the generated C-code is very
clean.

fir_filt_circ_buff_plot2(6,titles,t,x,y1,y5);

8-50

Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

Eliminate the bias

If the bias is not acceptable in your application, then change the rounding
method to ’Nearest’ to eliminate the bias. Rounding to nearest generates
slightly more complicated C-code, but it may be necessary for you if you want
to eliminate the bias and have a smaller error.

The final fixed-point types table with nearest rounding and adjusted
coefficient fraction length is:

function T = fir_filt_circ_buff_dsp_nearest_types()
F = fimath('RoundingMethod','Nearest',...

'OverflowAction','Wrap',...
'ProductMode','KeepLSB',...
'ProductWordLength',32,...
'SumMode','KeepLSB',...
'SumWordLength',32);

T.acc=fi([],true,32,30,F);
T.p=int16([]);
T.b=fi([],true,16,16,F);
T.x=fi([],true,16,14,F);
T.y=fi([],true,16,14,F);
T.z=fi([],true,16,14,F);

end

Call this types table from the entry-point function and run and plot the output.

[y1,y2,y3,y4,y5,y6] = fir_filt_circ_buff_typed_test(b,x);
fir_filt_circ_buff_plot2(7,titles,t,x,y1,y6);

Code generation command

Run this build function to generate C-code. It is a best practice to create a
build function so you can generate C-code for your core algorithm without the

8-51

8 Fixed-Point Conversion

entry-point function or test file so the C-code for the core algorithm can be
included in a larger project.

function fir_filt_circ_buff_build_function()
%
% Declare input arguments
%
T = fir_filt_circ_buff_dsp_nearest_types();
b = zeros(1,12,'like',T.b);
x = zeros(256,1,'like',T.x);
z = zeros(size(b),'like',T.z);
p = cast(0,'like',T.p);
%
% Code generation configuration
%
h = coder.config('lib');
h.PurelyIntegerCode = true;
h.SaturateOnIntegerOverflow = false;
h.SupportNonFinite = false;
h.HardwareImplementation.ProdBitPerShort = 8;
h.HardwareImplementation.ProdBitPerInt = 16;
h.HardwareImplementation.ProdBitPerLong = 32;
%
% Generate C-code
%
codegen fir_filt_circ_buff_typed_codegen -args {b,x,z,p,T} -config h -l

end

Generated C-Code

Using these settings, MATLAB Coder generates the following C-code:

void fir_filt_circ_buff_typed_codegen(const int16_T b[12], const int16_T x[
int16_T z[12], int16_T *p, int16_T y[256])

{
int16_T n;
int32_T acc;
int16_T k;
int16_T j;
for (n = 0; n < 256; n++) {

8-52

Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

(*p)++;
if (*p > 12) {

*p = 1;
}
z[*p - 1] = x[n];
acc = 0L;
k = *p;
for (j = 0; j < 12; j++) {

acc += (int32_T)b[j] * z[k - 1];
k--;
if (k < 1) {

k = 12;
}

}
y[n] = (int16_T)((acc >> 16) + ((acc & 32768L) != 0L));

}
}

Run the following code to restore the global states.

fipref(FIPREF_STATE);
clearInstrumentationResults fir_filt_circ_buff_original_entry_point_mex
clearInstrumentationResults fir_filt_circ_buff_typed_entry_point_mex
clear fir_filt_circ_buff_original_entry_point_mex
clear fir_filt_circ_buff_typed_entry_point_mex

Run the following code to delete the temporary folder.

tempdirObj.cleanUp;

8-53

8 Fixed-Point Conversion

Propose Data Types Based on Simulation Ranges
This example shows how to propose fixed-point data types based on simulation
range data.

Prerequisites

To complete this example, you must install the following products:

• MATLAB

• MATLAB Coder

• Fixed-Point Designer

• C compiler (for most platforms, a default C compiler is
supplied with MATLAB) For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/

You can use mex -setup to change the default compiler. See “Changing
Default Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\coder\fun_with_matlab.

2 Change to the docroot\toolbox\coder\examples folder. At the MATLAB
command line, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))

3 Copy the fun_with_matlab.m and fun_with_matlab_test.m files to your
local working folder.

It is best practice to create a separate test script to do all the pre- and
post-processing such as loading inputs, setting up input values, calling the
function under test, and outputting test results. For more information, see
“Create a Test File” on page 8-89.

8-54

Propose Data Types Based on Simulation Ranges

Type Name Description

Function code fun_with_matlab.m Entry-point MATLAB
function

Test file fun_with_matlab_test.m MATLAB script that tests
fun_with_matlab.m

The fun_with_matlab Function

function y = fun_with_matlab(x) %#codegen
persistent z
if isempty(z)

z = zeros(2,1);
end
% [b,a] = butter(2, 0.25)
b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];
a = [1, -0.942809041582063, 0.3333333333333333];

y = zeros(size(x));
for i=1:length(x)

y(i) = b(1)*x(i) + z(1);
z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
z(2) = b(3)*x(i) - a(3) * y(i);

end
end

The fun_with_matlab_test Script

The test script runs the fun_with_matlab function with three input signals:
chirp, step, and impulse to cover the full intended operating range of the
system. The script then plots the outputs.

% fun_with_matlab_test
%
% Define representative inputs
N = 256; % Number of points
t = linspace(0,1,N); % Time vector from 0 to 1 second
f1 = N/2; % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second

8-55

8 Fixed-Point Conversion

x_step = ones(1,N); % Step
x_impulse = zeros(1,N); % Impulse
x_impulse(1)=1;

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i=1:size(x,1)

y(i,:) = fun_with_matlab(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'};
clf
for i=1:size(x,1)

subplot(size(x,1),1,i);
plot(t,x(i,:),t,y(i,:));
title(titles{i})
legend('Input','Output');

end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.');

Check Code Generation Readiness

In the current working folder, right-click the fun_with_matlab.m function.
From the context menu, select Check Code Generation Readiness.

The code generation readiness tool screens the code for features and functions
that are not supported for code generation. The tool reports that the
fun_with_matlab.m function is already suitable for code generation.

8-56

Propose Data Types Based on Simulation Ranges

If your entry-point function is not suitable for code generation, the tool
provides a report that lists the source files that contain unsupported features
and functions. The report also provides an indication of how much work
you must do to make the MATLAB code ready for code generation. Before
proposing data types, you must fix these issues. For more information, see
“Detect and Debug Code Generation Errors” on page 9-27.

Create and set up a MATLAB Coder Project

1 Navigate to the work folder that contains the file for this example.

2 On the MATLAB Apps tab, select MATLAB Coder and
then, in the MATLAB Coder Project dialog box, set Name to
fun_with_matlab_project.prj.

Alternatively, at the MATLAB command line, enter

coder -new fun_with_matlab_project.prj

By default, the project opens in the MATLAB workspace.

8-57

8 Fixed-Point Conversion

3 On the project Overview tab, click the Add files link. Browse to the file
fun_with_matlab.m and then click OK to add the file to the project.

Define Input Types

1 On the project Overview tab, click the Autodefine types link.

2 In the Autodefine Input Types dialog box, add fun_with_matlab_test
as a test file and then click Run.

The test file runs and displays the outputs of the filter for each of the input
signals.

8-58

Propose Data Types Based on Simulation Ranges

MATLAB Coder determines the input types from the test file and then
displays them.

8-59

8 Fixed-Point Conversion

3 In the Autodefine Input Types dialog box, click Use These Types.

MATLAB Coder sets the type of x to double(1x256).

Fixed-Point Conversion

1 On the project Overview tab Fixed-Point Conversion pane, select
Convert to fixed-point at build time.

8-60

Propose Data Types Based on Simulation Ranges

The project indicates that you must first define the fixed-point data types.

8-61

8 Fixed-Point Conversion

2 In the Fixed-Point Conversion pane, click Define and validate
fixed-point types.

The Fixed-Point Conversion window opens and the tool generates an
instrumented MEX function for your entry-point MATLAB function. After
generating the MEX function, the tool displays compiled information
— type, size, and complexity — for variables in your code. For more
information, see “View and Modify Variable Information”.

8-62

Propose Data Types Based on Simulation Ranges

If the MEX function generation fails, the tool provides error message links
to help you navigate to the code that caused the build issues. If your
code contains functions that are not supported for fixed-point conversion,
the tool displays these on the Function Replacements tab. For more
information, see “Running a Simulation”.

3 Click Run Simulation and verify that the fun_with_matlab_test file is
selected as a test file to run. You can add test files and select to run more
than one test file during the simulation. If you run multiple test files, the

8-63

8 Fixed-Point Conversion

conversion tool merges the simulation results. To clear results, right-click
the Variables tab and select Reset entire table.

4 Click Run Simulation and select Log data for histogram.

By default, the Show code coverage option is selected. This option
provides code coverage information that helps you verify that your test file
is testing your algorithm over the intended operating range.

5 Click the Run Simulation button.

The simulation runs and the conversion tool displays a color-coded code
coverage bar to the left of the MATLAB code. Review this information to
verify that the test file is testing the algorithm adequately. Here, the dark
green line to the left of the code indicates that the code is run every time
the algorithm is executed. The orange bar indicates that the code next to
it is executed only once. In this example, this is the expected behavior
because the code is initializing a persistent variable. If your test file is not
covering all your code, update the test or add more test files.

8-64

Propose Data Types Based on Simulation Ranges

If a value has ... next to it, the value is rounded. Place your cursor over
the ... to view the actual value.

The tool displays simulation minimum and maximum ranges on the
Variables tab. Using the simulation range data, the software proposes
fixed-point types for each variable based on the default type proposal
settings, and displays them in the Proposed Type column. The Validate
Types option is now enabled.

8-65

8 Fixed-Point Conversion

Note If you manually enter static ranges, these manually-entered ranges
take precedence over simulation ranges and the tool uses them to propose
data types. In addition, you can also modify and lock the proposed type.

6 Examine the proposed types and verify that they cover the full simulation
range. To view logged histogram data for a variable, click its Proposed
Type field.

8-66

Propose Data Types Based on Simulation Ranges

To modify the proposed data types, either enter the required type into the
ProposedType field or use the histogram controls. For more information
about the histogram, see “Histogram”.

7 To validate the build using the proposed types, click Validate Types.

The software validates the proposed types, displays a Validation
succeeded message, and enables the Test Numerics option. The project
indicates that you have validated the fixed-point data types.

If the errors or warnings occur during validation, they are displayed on the
Type Validation Output tab. For more information, see “Validating
Types”.

8 Click Test Numerics, select Log inputs and outputs for comparison
plots, and then click the Test Numerics button.

8-67

8 Fixed-Point Conversion

The tool runs the test file that you used to define input types to test the
fixed-point MATLAB code. Optionally, you can add test files and select to
run more than one test file to test numerics. The software runs both a
floating-point and a fixed-point simulation and then calculates the errors
for the output variable y. Because you selected to log inputs and outputs
for comparison plots, the tool generates an additional plot for each scalar
output.

The maximum error is less than 0.03%. For the purpose of this example,
this margin of error is acceptable, so you are ready to generate fixed-point
C code.

If the difference is not acceptable, modify the fixed-point data types or your
original algorithm. For more information, see “Testing Numerics”.

9 Return to the MATLAB Coder project.

Generate Fixed-Point C Code

1 In the MATLAB Coder project, verify that the Fixed-Point Conversion
pane displays Ready for conversion, and then select the Build tab.

2 On this tab, set the Output type to C/C++ Static library.

The default output file name is fun_with_matlab.

3 Click Build to generate a library using the default project settings.

MATLAB Coder builds the project and generates a C
static library and supporting files in the default subfolder,
codegen/lib/fun_with_matlab_fixpt.

4 To view the generated code, click View report.

8-68

Propose Data Types Based on Simulation Ranges

The code generation report opens and displays the generated code for
fun_with_matlab_fixpt.c. In the generated C code, the variables are not
assigned real types, they are assigned fixed-point data types.

In this case, the generated code is not optimized; it contains a number of
utility functions, such as MultiWordAdd. MATLAB Coder generates these
utility functions because the results of adding or multiplying inputs results
in a sum or product that exceed 32 bits. You can optimize the generated
code by modifying the word length and fimath settings.

Optimize Fixed-Point C Code

1 In the Fixed-Point Conversion tool, click Advanced to display the
advanced type proposal settings.

The fimath Product mode and Sum mode settings are both set to
FullPrecision. In FullPrecision mode, the product word length grows
to the sum of the word lengths of the operands.

2 Set the fimath Product mode and Sum mode to SpecifyPrecision.

Selecting SpecifyPrecision enables the Product word length, Product
fraction length, Sum word length, and Sum fraction length settings.
The product word length and sum word length are both set to 32, which
limits these word lengths to 32 in the generated code.

3 Click Validate Types.

Because you have changed type proposal settings, you must validate the
types again.

The software validates the proposed types, displays a Validation
succeeded message.

4 Click the Test Numerics button.

The maximum error is still less than 0.03%, so you are ready to generate
fixed-point C code.

5 Generate code again and view the generated C code for
fun_with_matlab_fixpt.c. This time, because the word lengths in the

8-69

8 Fixed-Point Conversion

generated code do not exceed 32 bits, the generated code does not contain
utility functions.

void fun_with_matlab_fixpt(const short x[256], short y[256])
{

int i0;
int i;
int i1;
short b_y;
int i2;
int i3;

/* [b,a] = butter(2, 0.25) */
for (i0 = 0; i0 < 256; i0++) {

y[i0] = 0;
}

for (i = 0; i < 256; i++) {
i0 = 25593 * x[i];
if (i0 >= 0) {

i1 = (int)((unsigned int)i0 >> 2);
} else {

i1 = ~(int)((unsigned int)~i0 >> 2);
}

i0 = i1 + (z[0] << 15);
if (i0 >= 0) {

b_y = (short)((unsigned int)i0 >> 16);
} else {

b_y = (short)~(int)((unsigned int)~i0 >> 16);
}

i0 = 25593 * x[i];
if (i0 >= 0) {

i2 = (int)((unsigned int)i0 >> 1);
} else {

i2 = ~(int)((unsigned int)~i0 >> 1);
}

i0 = (i2 + (z[1] << 15)) - (-30894 * b_y << 1);

8-70

Propose Data Types Based on Simulation Ranges

if (i0 >= 0) {
z[0] = (short)((unsigned int)i0 >> 15);

} else {
z[0] = (short)~(int)((unsigned int)~i0 >> 15);

}

i0 = 25593 * x[i];
if (i0 >= 0) {

i3 = (int)((unsigned int)i0 >> 2);
} else {

i3 = ~(int)((unsigned int)~i0 >> 2);
}

i0 = i3 - 21844 * b_y;
if (i0 >= 0) {

z[1] = (short)((unsigned int)i0 >> 15);
} else {

z[1] = (short)~(int)((unsigned int)~i0 >> 15);
}

y[i] = b_y;
}

}

8-71

8 Fixed-Point Conversion

Propose Data Types Based on Derived Ranges
This example shows how to propose fixed-point data types based on static
ranges that you specify. The advantage of proposing data types based on
derived ranges is that you do not have to provide test files that exercise your
algorithm over its full operating range. Running such test files often takes a
very long time so you can save time by deriving ranges instead.

Prerequisites

To complete this example, you must install the following products:

• MATLAB

• MATLAB Coder

• Fixed-Point Designer

• C compiler (for most platforms, a default C compiler is
supplied with MATLAB) For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/

You can use mex -setup to change the default compiler. See “Changing
Default Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\coder\dti.

2 Change to the docroot\toolbox\coder\examples folder. At the MATLAB
command line, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))

3 Copy the dti.m and dti_test.m files to your local working folder.

It is best practice to create a separate test script to do all the pre- and
post-processing such as loading inputs, setting up input values, calling the
function under test, and outputting test results. For more information, see
“Create a Test File” on page 8-89.

8-72

Propose Data Types Based on Derived Ranges

Type Name Description

Function code dti.m Entry-point MATLAB
function

Test file dti_test.m MATLAB script that tests
dti.m

The dti Function

The dti function implements a Discrete Time Integrator in MATLAB.

function [y, clip_status] = dti(u_in) %#codegen
% Discrete Time Integrator in MATLAB
%
% Forward Euler method, also known as Forward Rectangular, or left-hand
% approximation. The resulting expression for the output of the block at
% step 'n' is y(n) = y(n-1) + K * u(n-1)
%
init_val = 1;
gain_val = 1;
limit_upper = 500;
limit_lower = -500;

% variable to hold state between consecutive calls to this block
persistent u_state;
if isempty(u_state)

u_state = init_val+1;
end

% Compute Output
if (u_state > limit_upper)

y = limit_upper;
clip_status = -2;

elseif (u_state >= limit_upper)
y = limit_upper;
clip_status = -1;

elseif (u_state < limit_lower)
y = limit_lower;

clip_status = 2;
elseif (u_state <= limit_lower)

8-73

8 Fixed-Point Conversion

y = limit_lower;
clip_status = 1;

else
y = u_state;
clip_status = 0;

end

% Update State
tprod = gain_val * u_in;
u_state = y + tprod;

function b = subFunction(a)
b = a*a;

The dti_test Function

The test script runs the dti function with a sine wave input. The script then
plots the input and output signals.

% dti_test
% cleanup
clear dti

% input signal
x_in = sin(2.*pi.*(0:0.001:2)).';

pause(10);

len = length(x_in);
y_out = zeros(1,len);
is_clipped_out = zeros(1,len);

for ii=1:len
data = x_in(ii);
% call to the dti function
init_val = 0;
gain_val = 1;
upper_limit = 500;
lower_limit = -500;

8-74

Propose Data Types Based on Derived Ranges

% call to the design that does DTI
[y_out(ii), is_clipped_out(ii)] = dti(data);

end

figure('Name', [mfilename, '_plot']);
subplot(2,1,1);
plot(1:len,x_in);
xlabel('Time')
ylabel('Amplitude')
title('Input Signal (Sin)')

subplot(2,1,2); plot(1:len,y_out);
xlabel('Time')
ylabel('Amplitude')
title('Output Signal (DTI)')

disp('Test complete.');

Check Code Generation Readiness

In the current working folder, right-click the dti.m function. From the context
menu, select Check Code Generation Readiness.

The code generation readiness tool screens the code for features and functions
that are not supported for code generation. The tool reports that the dti.m
function is already suitable for code generation.

8-75

8 Fixed-Point Conversion

If your entry-point function is not suitable for code generation, the tool
provides a report that lists the source files that contain unsupported features
and functions. The report also provides an indication of how much work
you must do to make the MATLAB code ready for code generation. Before
proposing data types, you must fix these issues. For more information, see
“Detect and Debug Code Generation Errors” on page 9-27.

Create and set up a MATLAB Coder Project

1 Navigate to the work folder that contains the file for this example.

2 On the MATLAB Apps tab, select MATLAB Coder and then, in the
MATLAB Coder Project dialog box, set Name to dti.prj.

Alternatively, at the MATLAB command line, enter

coder -new dti.prj

By default, the project opens in the MATLAB workspace.

3 On the project Overview tab, click the Add files link. Browse to the file
dti.m and then click OK to add the file to the project.

Define Input Types

1 On the project Overview tab, click the Autodefine types link.

8-76

Propose Data Types Based on Derived Ranges

2 In the Autodefine Input Types dialog box, add dti_test as a test file and
then click Run.

The test file runs and displays the outputs of the filter for each of the input
signals.

8-77

8 Fixed-Point Conversion

MATLAB Coder determines the input types from the test file and then
displays them.

3 In the Autodefine Input Types dialog box, click Use These Types.

MATLAB Coder sets the type of x to double(1x1).

Fixed-Point Conversion

1 On the project Overview tab Fixed-Point Conversion pane, select
Convert to fixed-point at build time.

The project indicates that you must first define the fixed-point data types.

8-78

Propose Data Types Based on Derived Ranges

2 In the Fixed-Point Conversion pane, click Define and validate
fixed-point types.

The Fixed-Point Conversion window opens and the tool generates an
instrumented MEX function for your entry-point MATLAB function. After
generating the MEX function, the tool displays compiled information
— type, size, and complexity — for variables in your code. For more
information, see “View and Modify Variable Information”.

8-79

8 Fixed-Point Conversion

If the MEX function generation fails, the tool provides error message links
to help you navigate to the code that caused the build issues. If your
code contains functions that are not supported for fixed-point conversion,
the tool displays these on the Function Replacements tab. For more
information, see “Running a Simulation”.

3 In the Fixed-Point Conversion window, on the Variables tab, for input
u_in, select Static Min and set it to -1. Then set Static Max to 1.

8-80

Propose Data Types Based on Derived Ranges

To compute derived range information, at a minimum you must specify
static minimum and maximum values or proposed data types for all input
variables.

Note If you manually enter static ranges, these manually-entered ranges
take precedence over simulation ranges and the tool uses them to propose
data types. In addition, you can also modify and lock the proposed type.

4 Click the Compute Derived Ranges button.

Range analysis computes the derived ranges and displays them in the
Variables tab. Using these derived ranges, the analysis proposes
fixed-point types for each variable based on the default type proposal
settings, and displays them in the Proposed Type column. The Validate
Types option is now enabled.

In the dti function, the clip_status output has a minimum value of -2
and a maximum of 2.

% Compute Output
if (u_state > limit_upper)

y = limit_upper;
clip_status = -2;

elseif (u_state >= limit_upper)
y = limit_upper;
clip_status = -1;

elseif (u_state < limit_lower)
y = limit_lower;

clip_status = 2;
elseif (u_state <= limit_lower)
y = limit_lower;

clip_status = 1;
else

y = u_state;
clip_status = 0;

end

8-81

8 Fixed-Point Conversion

When you derive ranges, the Fixed-Point Conversion tool analyses
the function and computes these minimum and maximum values for
clip_status.

The tool provides a Quick derived range analysis option and the option
to specify a timeout in case the analysis takes a very long time. For more
information, see “Computing Derived Ranges”

8-82

Propose Data Types Based on Derived Ranges

5 To validate the build using the proposed types, click Validate Types.

The software validates the proposed types, displays a Validation
succeeded message, and enables the Test Numerics option. The project
indicates that you have validated the fixed-point data types.

If the errors or warnings occur during validation, they are displayed on the
Type Validation Output tab. For more information, see “Validating
Types”.

6 Run the test file to test the fixed-point MATLAB code. Click Test
Numerics and select Log inputs and outputs for comparison plots,
and then click the Test Numerics button.

8-83

8 Fixed-Point Conversion

The tool runs the test file that you used to define input types to test the
fixed-point MATLAB code. Optionally, you can add test files and select to
run more than one test file to test numerics. The software runs both a
floating-point and a fixed-point simulation and then calculates the errors
for the output variables y and clip_status. Because you selected to log
inputs and outputs for comparison plots, the tool generates an additional
plot for each scalar output.

Plots are displayed for the:

• Floating-point input and output signals.

• Fixed-point input and output signals.

• Outputs y and clip_status showing the difference between the
floating-point and the fixed-point runs.

8-84

Propose Data Types Based on Derived Ranges

The maximum difference between the floating-point and fixed-point runs
for y is less than 5%. For the purpose of this example, this margin of error
is acceptable, so you are ready to generate fixed-point C code.

8-85

8 Fixed-Point Conversion

If the difference is not acceptable, modify the fixed-point data types or your
original algorithm. For more information, see “Testing Numerics”.

Generate Fixed-Point C Code

1 In the MATLAB Coder project, select the Build tab.

2 On this tab, set the Output type to C/C++ Static library.

The default output file name is dti.

3 Click Build to generate a library using the default project settings.

MATLAB Coder builds the project and generates a C static library and
supporting files in the default subfolder, codegen/lib/dti_FixPt.

4 To view the generated code, click View report.

The code generation report opens and displays the generated code for
dti_FixPt.c. In the generated C code, variables are assigned fixed-point
data types.

8-86

Manual Fixed-Point Conversion Workflow

Manual Fixed-Point Conversion Workflow
1 Implement your algorithm in MATLAB.

2 Write a test file that calls your original MATLAB algorithm to validate the
behavior of your algorithm.

Create a test file to validate that the algorithm works as expected in
floating point before converting it to fixed point. Use the same test file to
propose fixed-point data types. After the conversion, use this test file to
compare fixed-point results to the floating-point baseline.

By default, the Fixed-Point Conversion tool shows code coverage results.
Your test files should exercise the algorithm over its full operating range
so that the simulation ranges are accurate. The quality of the proposed
fixed-point data types depends on how well the test files cover the operating
range of the algorithm with the accuracy that you want. Reviewing code
coverage results helps you verify that your test file is exercising the
algorithm adequately. If the code coverage is inadequate, modify the test
file or add more test files to increase coverage. For more information, see
“Code Coverage” on page 8-6.

3 Prepare algorithm for instrumentation.

4 Write an entry-point function.

For instrumentation and code generation, it is convenient to have an
entry-point function that calls the function to be converted to fixed point.
You can cast the function inputs to different data types, and add calls
to different variations of the algorithm for comparison. By using an
entry-point function, you can run both fixed-point and floating-point
variants of your algorithm. You can also run different variants of
fixed-point. This approach allows you to iterate on your code more quickly
to arrive at the optimal fixed-point design.

5 Build instrumented MEX for original MATLAB algorithm.

6 Run your original MATLAB algorithm to log min/max data. View this
data in the instrumentation report.

7 Separate data types from algorithm.

8-87

8 Fixed-Point Conversion

Convert functions to use types tables and update entry-point function.

8 Validate modified function.

a Create fixed-point types table based on proposed data types.

b Build MEX function.

c Run and compare MEX function behavior against baseline.

9 Use proposed fixed-point data types.

Create fixed-point types table based on proposed data types, build mex,
run, and then compare against baseline.

10 Optionally, if have a MATLAB Coder license, generate code.

Start by testing native C-types.

11 Iterate, tune algorithm.

For example, tune the algorithm to avoid overflow or eliminate bias.

8-88

Manual Fixed-Point Conversion Best Practices

Manual Fixed-Point Conversion Best Practices

In this section...

“Create a Test File” on page 8-89

“Prepare Your Algorithm for Code Acceleration or Code Generation” on
page 8-91

“Check for Fixed-Point Support for Functions Used in Your Algorithm”
on page 8-92

“Manage Data Types and Control Bit Growth” on page 8-93

“Separate Data Type Definitions from Algorithm” on page 8-94

“Convert to Fixed Point” on page 8-96

“Optimize Data Types” on page 8-99

“Optimize Your Algorithm” on page 8-103

Create a Test File
A best practice for structuring your code is to separate your core algorithm
from other code that you use to test and verify the results. Create a test
file to call your original MATLAB algorithm and fixed-point versions of the
algorithm. For example, as shown in the following table, you might set up
some input data to feed into your algorithm, and then, after you process that
data, create some plots to verify the results. Since you need to convert only
the algorithmic portion to fixed-point, it is more efficient to structure your
code so that you have a test file, in which you create your inputs, call your
algorithm, and plot the results, and one (or more) algorithmic files, in which
you do the core processing.

8-89

8 Fixed-Point Conversion

Original code Best Practice Modified code

% TEST INPUT
x = randn(100,1);

% ALGORITHM
y = zeros(size(x));
y(1) = x(1);
for n=2:length(x)

y(n)=y(n-1) + x(n);
end

% VERIFY RESULTS
yExpected=cumsum(x);
plot(y-yExpected)
title('Error')

Issue

Generation of test input
and verification of results
are intermingled with the
algorithm code.

Fix

Create a test file that is
separate from your algorithm.
Put the algorithm in its own
function.

Test file

% TEST INPUT
x = randn(100,1);

% ALGORITHM
y = cumulative_sum(x);

% VERIFY RESULTS
yExpected = cumsum(x);
plot(y-yExpected)
title('Error')

Algorithm in its own function

function y = cumulative_sum(x)
y = zeros(size(x));
y(1) = x(1);
for n=2:length(x)

y(n) = y(n-1) + x(n);
end

end

You can use the test file to:

• Verify that your floating-point algorithm behaves as you expect before
you convert it to fixed point. The floating-point algorithm behavior is
the baseline against which you compare the behavior of the fixed-point
versions of your algorithm.

• Propose fixed-point data types.

• Compare the behavior of the fixed-point versions of your algorithm to the
floating-point baseline.

Your test files should exercise the algorithm over its full operating range so
that the simulation ranges are accurate. For example, for a filter, realistic
inputs are impulses, sums of sinusoids, and chirp signals. With these inputs,

8-90

Manual Fixed-Point Conversion Best Practices

using linear theory, you can verify that the outputs are correct. Signals that
produce maximum output are useful for verifying that your system does not
overflow. The quality of the proposed fixed-point data types depends on how
well the test files cover the operating range of the algorithm with the accuracy
that you want.

Prepare Your Algorithm for Code Acceleration or
Code Generation
Using Fixed-Point Designer, you can:

• Instrument your code and provide data type proposals to help you convert
your algorithm to fixed point, using the following functions:

- buildInstrumentedMex, which generates compiled C code that includes
logging instrumentation.

- showInstrumentationResults, which shows the results logged by the
instrumented, compiled C code.

- clearInstrumentationResults, which clears the logged
instrumentation results from memory.

• Accelerate your fixed-point algorithms by creating a MEX file using the
fiaccel function.

Any MATLAB algorithms that you want to instrument using
buildInstrumentedMex and any fixed-point algorithms that you want to
accelerate using fiaccel must comply with code generation requirements
and rules. To view the subset of the MATLAB language that is supported for
code generation, see “Functions and Objects Supported for C and C++ Code
Generation — Alphabetical List” on page 21-2.

To help you identify unsupported functions or constructs in your MATLAB
code, use one of the following tools.

• Add the %#codegen pragma to the top of your MATLAB file. The MATLAB
code analyzer flags functions and constructs that are not available in the
subset of the MATLAB language supported for code generation. This advice
appears in real-time as you edit your code in the MATLAB editor.

8-91

8 Fixed-Point Conversion

For more information, see “Check Code Using the MATLAB Code Analyzer”
on page 9-122.

• Use the Code Generation Readiness tool to generate a static report
on your code. The report identifies calls to functions and the use of
data types that are not supported for code generation. To generate
a report for a function, myFunction1, at the command line, enter
coder.screener('myFunction1').

For more information, see “Check Code Using the Code Generation
Readiness Tool” on page 9-121.

Check for Fixed-Point Support for Functions Used in
Your Algorithm
Before you start your fixed-point conversion, identify which functions used
in your algorithm are not supported for fixed point. Consider how you might
replace them or otherwise modify your implementation to be more optimized
for embedded targets. For example, you might need to find (or write your
own) replacements for functions like log2, fft, and exp. Other functions
like sin, cos, and sqrt may support fixed point, but for better efficiency,
you may want to consider an alternative implementation like a lookup table
or CORDIC-based algorithm.

If you cannot find a replacement immediately, you can continue converting
the rest of your algorithm to fixed point by simply insulating any functions
that don’t support fixed-point with a cast to double at the input, and a cast
back to a fixed-point type at the output.

8-92

Manual Fixed-Point Conversion Best Practices

Original Code Best Practice Modified Code

y = 1/exp(x);
Issue

The exp() function is not
defined for fixed-point inputs.

Fix

Cast the input to double until
you have a replacement. In
this case, 1/exp(x) is more
suitable for fixed-point growth
than exp(x), so replace the
whole expression with a 1/exp
function, possibly as a lookup
table.

y = 1/exp(double(x));

Manage Data Types and Control Bit Growth
The (:)= syntax is known as subscripted assignment. When you use this
syntax, MATLAB overwrites the value of the left-hand side argument, but
retains the existing data type and array size. This is particularly important in
keeping fixed-point variables fixed point (as opposed to inadvertently turning
them into doubles), and for preventing bit growth when you want to maintain
a particular data type for the output.

Original Code Best Practice Modified Code

acc = 0;
for n=1:numel(x)

acc = acc + x(n);
end

Issue

acc = acc + x(n)overwrites
acc with acc + x(n). When
you are using all double types,
this behavior is fine. However,
when you introduce fixed-point
data types in your code, if acc
is overwritten, the data type of
acc might change.

Fix

acc = 0;
for n=1:numel(x)

acc(:) = acc + x(n);
end

8-93

8 Fixed-Point Conversion

Original Code Best Practice Modified Code

To preserve the original
data type of acc, assign into
acc using acc(:)=. Using
subscripted assignment casts
the right-hand-side value into
the same data type as acc and
prevents bit growth.

For more information, see “Controlling Bit Growth”.

Separate Data Type Definitions from Algorithm
For instrumentation and code generation, create an entry-point function that
calls the function that you want to convert to fixed point. You can then cast
the function inputs to different data types. You can add calls to different
variations of the function for comparison. By using an entry-point function,
you can run both fixed-point and floating-point variants of your algorithm.
You can also run different variants of fixed-point. This approach allows you to
iterate on your code more quickly to arrive at the optimal fixed-point design.

This method of fixed-point conversion makes it easier for you to compare
several different fixed-point implementations, and also allows you to easily
retarget your algorithm to a different device.

To separate data type definitions from your algorithm:

1 When a variable is first defined, use cast(x,'like',y) or
zeros(m,n,'like',y) to cast it to your desired data type.

2 Create a table of data type definitions, starting with original data types
used in your code. Before converting to fixed point, create a data type table
that uses all single data types to find type mismatches and other problems.

3 Run your code connected to each table and look at the results to verify
the connection.

8-94

Manual Fixed-Point Conversion Best Practices

Original code Best Practice Modified code

% Algorithm
n = 128;
y = zeros(size(n));

Issue

The default data type in
MATLAB is double-precision
floating-point.

Fix

1 Use
cast(...,'like',...)
and
zeros(...'like',...) to
programmatically specify
types that are defined in a
separate table.

2 Create an original types
table, usually in a separate
function.

3 Add single data types to
your table to help verify the
connection with your code.

% Algorithm
T = mytypes('double');
n = cast(128,'like',T.n);
y = zeros(size(n),'like',T.y);

function T = mytypes(dt)
switch(dt)

case 'double'
T.n = double([]);
T.y = double([]);

case 'single'
T.n = single([]);
T.y = single([]);

end
end

Separating data type specifications from algorithm code enables you to:

• Reuse your algorithm code with different data types.

• Keep your algorithm uncluttered with data type specifications and switch
statements for different data types.

• Improve readability of your algorithm code.

• Switch between fixed-point and floating-point data types to compare
baselines.

• Switch between variations of fixed-point settings without changing the
algorithm code.

8-95

8 Fixed-Point Conversion

Convert to Fixed Point

What Are Your Goals for Converting to Fixed Point?
Before you start the conversion, consider your goals for converting to fixed
point. Are you implementing your algorithm in C or HDL? What are
your target constraints? The answers to these questions determine many
fixed-point properties such as the available word length, fraction length, and
math modes, as well as available math libraries.

Build and Run an Instrumented MEX Function
Build and run an instrumentedMEX function to get fixed-point types proposals
using the buildInstrumentedMex and showInstrumentationResults
functions. Test files should exercise your algorithm over its full operating
range. The quality of the proposed fixed-point data types depends on how well
the test file covers the operating range of the algorithm with the accuracy that
you want. A simple set of test vectors may not exercise the full range of types,
so use the proposals as a guideline for choosing an initial set of fixed-point
types, and use your best judgement and experience in adjusting the types. If
loop indices are used only as index variables, they are automatically converted
to integer types, so you do not have to explicitly convert them to fixed point.

Algorithm Code Test File

function [y,z] = myfilter(b,x,z)
y = zeros(size(x));
for n=1:length(x)

z(:) = [x(n); z(1:end-1)];
y(n) = b * z;

end
end

% Test inputs
b = fir1(11,0.25);
t = linspace(0,10*pi,256)';
x = sin((pi/16)*t.^2); % Linear chirp
z = zeros(size(b'));

% Build
buildInstrumentedMex myfilter ...

-args {b,x,z} -histogram

% Run
[y,z] = myfilter_mex(b,x,z);

% Show
showInstrumentationResults myfilter_mex ...

8-96

Manual Fixed-Point Conversion Best Practices

Algorithm Code Test File

-defaultDT numerictype(1,16) -proposeFL

Create a Types Table
Create a types table using a structure with prototypes for the variables. The
proposed types are computed from the simulation runs. A long simulation run
with a wide range of expected data produces better proposals. You can use the
proposed types or use your knowledge of the algorithm and implementation
constraints to improve the proposals.

Because the data types, not the values, are used, specify the prototype values
as empty ([]).

In some cases, it might be more efficient to leave some parts of the code in
floating point. For example, when there is high dynamic range or that part of
the code is sensitive to round-off errors.

8-97

8 Fixed-Point Conversion

Algorithm Code

function [y,z]=myfilter(b,x,z,T)
y = zeros(size(x),'like',T.y);
for n=1:length(x)

z(:) = [x(n); z(1:end-1)];
y(n) = b * z;

end
end

Types Tables

function T = mytypes(dt)
switch dt

case 'double'
T.b = double([]);
T.x = double([]);
T.y = double([]);

case 'fixed16'
T.b = fi([],true,16,15);
T.x = fi([],true,16,15);
T.y = fi([],true,16,14);

end
end

8-98

Manual Fixed-Point Conversion Best Practices

Test File

% Test inputs
b = fir1(11,0.25);
t = linspace(0,10*pi,256)';
x = sin((pi/16)*t.^2);
% Linear chirp

% Cast inputs
T=mytypes('fixed16');
b=cast(b,'like',T.b);
x=cast(x,'like',T.x);
z=zeros(size(b'),'like',T.x);

% Run
[y,z] = myfilter(b,x,z,T);

Run With Fixed-Point Types and Compare Results
Create a test file to validate that the floating-point algorithm works as
expected before converting it to fixed point. You can use the same test file
to propose fixed-point data types, and to compare fixed-point results to the
floating-point baseline after the conversion.

Optimize Data Types

Use Scaled Doubles
Use scaled doubles to detect potential overflows. Scaled doubles are a hybrid
between floating-point and fixed-point numbers. Fixed-Point Designer stores
them as doubles with the scaling, sign, and word length information retained.
To use scaled doubles, you can use the data type override (DTO) property
or you can set the 'DataType' property to 'ScaledDouble' in the fi or
numerictype constructor.

8-99

8 Fixed-Point Conversion

To... Use... Example

Set data
type override
locally

numerictype
DataType property T.a = fi([],1,16,13,'DataType', 'ScaledDouble');

a = cast(pi, 'like', T.a)

a =
3.1416

DataTypeMode: Scaled double: binary point scaling
Signedness: Signed

WordLength: 16
FractionLength: 13

Set data
type override
globally

fipref
DataTypeOverride
property

fipref('DataTypeOverride','ScaledDoubles');
T.a = fi([],1,16,13);

a =
3.1416

DataTypeMode:Scaled double: binary point scaling
Signedness: Signed
WordLength:16

FractionLength:13

For more information, see “Scaled Doubles” on page 27-20.

Use the Histogram to Fine-Tune Data Type Settings
To fine-tune fixed-point type settings, run the buildInstrumentedMex function
with the histogram flag and then run the generated MEX function with
your desired test inputs. When you use the showInstrumentationResults
to display the code generation report, the report displays a Histogram icon.
Click the icon to open the NumericTypeScope and view the distribution of
values observed in your simulation for the selected variable.

Overflows indicated in red in the Code Generation Report show in the "outside
range" bin in the NumericTypeScope. Launch the NumericTypeScope for an

associated variable or expression by clicking on the histogram view icon .

8-100

Manual Fixed-Point Conversion Best Practices

Explore Design Tradeoffs
Once you have your first set of fixed-point data types, you can then add
different variations of fixed-point values to your types table. You can modify
and iterate to avoid overflows, adjust fraction lengths, and change rounding
methods to eliminate bias.

Algorithm Code

function [y,z] = myfilter(b,x,z,T)
y = zeros(size(x),'like',T.y);
for n=1:length(x)

z(:) = [x(n); z(1:end-1)];
y(n) = b * z;

end
end

Types Tables

function T = mytypes(dt)
switch dt

case 'double'
T.b = double([]);
T.x = double([]);
T.y = double([]);

case 'fixed8'
T.b = fi([],true,8,7);
T.x = fi([],true,8,7);
T.y = fi([],true,8,6);

case 'fixed16'
T.b = fi([],true,16,15);
T.x = fi([],true,16,15);
T.y = fi([],true,16,14);

end
end

8-101

8 Fixed-Point Conversion

Test File

function mytest
% Test inputs
b = fir1(11,0.25);
t = linspace(0,10*pi,256)';
x = sin((pi/16)*t.^2); % Linear chirp

% Run
y0 = entrypoint('double',b,x);
y8 = entrypoint('fixed8',b,x);
y16 = entrypoint('fixed16',b,x);

% Plot
subplot(3,1,1);plot(t,x,'c',t,y0,'k');
legend('Input','Baseline output')
title('Baseline')

subplot(3,2,3);plot(t,y8,'k');
title('8-bit fixed-point output')
subplot(3,2,4);plot(t,y0-double(y8),'r');
title('8-bit fixed-point error')

subplot(3,2,5);plot(t,y16,'k');
title('16-bit fixed-point output')
xlabel('Time (s)')
subplot(3,2,6);plot(t,y0-double(y16),'r');
title('16-bit fixed-point error')
xlabel('Time (s)')

end

function [y,z] = entrypoint(dt,b,x)
T = mytypes(dt);
b = cast(b,'like',T.b);
x = cast(x,'like',T.x);
z = zeros(size(b'),'like',T.x);
[y,z] = myfilter(b,x,z,T);

end

8-102

Manual Fixed-Point Conversion Best Practices

Optimize Your Algorithm

Use fimath to Get Natural Types for C or HDL
fimath properties define the rules for performing arithmetic operations on
fi objects, including math, rounding, and overflow properties. You can use
the fimath ProductMode and SumMode properties to retain natural data
types for C and HDL. The KeepLSB setting for ProductMode and SumMode
models the behavior of integer operations in the C language, while KeepMSB
models the behavior of many DSP devices. Different rounding methods
require different amounts of overhead code. Setting the RoundingMethod
property to Floor, which is equivalent to two’s complement truncation,
provides the most efficient rounding implementation. Similarly, the standard
method for handling overflows is to wrap using modulo arithmetic. Other
overflow handling methods create costly logic. Whenever possible, set the
OverflowAction to Wrap.

MATLAB Code Best Practice Generated C Code

% Code being compiled

function y = adder(a,b)
y = a + b;

end

With types defined with
default fimath settings:

T.a = fi([],1,16,0);
T.b = fi([],1,16,0);

a = cast(0,'like',T.a);
b = cast(0,'like',T.b);

Issue

Additional code is
generated to implement
saturation overflow,
nearest rounding,
and full-precision
arithmetic.

int adder(short a, short b)
{

int y;
int i0;
int i1;
int i2;
int i3;
i0 = a;
i1 = b;
if ((i0 & 65536) != 0) {

i2 = i0 | -65536;
} else {

i2 = i0 & 65535;
}

if ((i1 & 65536) != 0) {
i3 = i1 | -65536;

} else {
i3 = i1 & 65535;

}

8-103

8 Fixed-Point Conversion

MATLAB Code Best Practice Generated C Code

i0 = i2 + i3;
if ((i0 & 65536) != 0) {

y = i0 | -65536;
} else {

y = i0 & 65535;
}

return y;
}

Code being compiled

function y = adder(a,b)
y = a + b;

end

With types defined with fimath
settings that match your
processor types:

F = fimath(...
'RoundingMethod','Floor', ...
'OverflowAction','Wrap', ...
'ProductMode','KeepLSB', ...
'ProductWordLength',32, ...
'SumMode','KeepLSB', ...
'SumWordLength',32);

T.a = fi([],1,16,0,F);
T.b = fi([],1,16,0,F);
a = cast(0,'like',T.a);
b = cast(0,'like',T.b);

Fix

To make the generated
code more efficient,
choose fixed-point math
settings that match
your processor types.

int adder(short a, short b)
{

return a + b;
}

8-104

Manual Fixed-Point Conversion Best Practices

Replace Built-in Functions With More Efficient Fixed-Point
Implementations
Some MATLAB built-in functions can be made more efficient for fixed-point
implementation. For example, you can replace a built-in function with a
Lookup table implementation, or a CORDIC implementation, which requires
only iterative shift-add operations.

Re-implement Division Operations Where Possible
Often, division is not fully supported by hardware and can result in slow
processing. When your algorithm requires a division, consider replacing it
with one of the following options:

• Use bit shifting when the denominator is a power of two. For example,
bitsra(x,3) instead of x/8.

• Multiply by the inverse when the denominator is constant. For example,
x*0.2 instead of x/5.

Eliminate Floating-Point Variables
For more efficient code, eliminate floating-point variables. The one exception
to this is loop indices because they usually become integer types.

8-105

8 Fixed-Point Conversion

Generated Fixed-Point Code
When the automated conversion tool generates fixed-point code, it:

• Minimizes fi-casts to improve code readability.

The tool tries to reduce the number of fi-casts by analyzing the
floating-point code. If an arithmetic operation is comprised of only
compile-time constants, the tool does not cast the operands to fixed point
individually. Instead, it casts the entire expression to fixed point.

For example, here is the fixed-point code generated for the constant
expression x = 1/sqrt(2) when the selected word length is 14.

Original MATLAB Code Generated Fixed-Point Code

x = 1/sqrt(2); x = fi(1/sqrt(2), 0, 14, 14, fm);

fm is the local fimath.

• Avoids overflows in the generated fixed-point code.

The tool avoids overflows by:

- Using full-precision arithmetic unless you specify otherwise.

- Avoiding arithmetic operations that involve double and fi data types.
Otherwise, if the word length of the fi data type is not able to represent
the value in the double constant expression, overflows occur.

• Controls bit growth.

The tool controls bit growth by using subscripted assignments, that is,
assignments that use the colon (:) operator, in the generated code. When
you use subscripted assignments, MATLAB overwrites the value of the
left-hand side argument but retains the existing data type and array size.
Using subscripted assignment keeps fixed-point variables fixed point
rather than inadvertently turning them into doubles. Maintaining the
fixed-point type reduces the number of type declarations in the generated
code. Subscripted assignment also prevents bit growth which is useful
when you want to maintain a particular data type for the output.

8-106

Fixed-Point Code for MATLAB® Classes

Fixed-Point Code for MATLAB Classes

In this section...

“Automated Conversion Support for MATLAB Classes” on page 8-107

“Unsupported Constructs” on page 8-107

“Coding Style Best Practices” on page 8-108

Automated Conversion Support for MATLAB Classes
The automated conversion process:

• Proposes fixed-point data types based on simulation ranges for MATLAB
classes. It does not propose data types based on derived ranges for
MATLAB classes.

After simulation, the Fixed-Point Conversion tool:

- Function list contains class constructors, methods, and specializations.

- Code window displays the objects used in each function.

- Provides code coverage for methods.

For more information, see “Viewing Information for MATLAB Classes”
on page 8-13.

• Supports class methods, properties, and specializations. For each
specialization of a class, class_name, the conversion generates a separate
class_name_fixpt.m file. For every instantiation of a class, the generated
fixed-point code contains a call to the constructor of the appropriate
specialization.

• Supports classes that have get and setmethods such as get.PropertyName,
set.PropertyName. These methods are called when properties are read or
assigned. The setmethods can be specialized. Sometimes, in the generated
fixed-point code, assignment statements are transformed to function calls.

Unsupported Constructs
The automated conversion process does not support:

• Class inheritance.

8-107

8 Fixed-Point Conversion

• Packages.

• Constructors that use nargin and varargin.

Coding Style Best Practices
When you write MATLAB code that uses MATLAB classes:

• Initialize properties in the class constructor.

• Replace constant properties with static methods.

For example, consider the counter class.

classdef Counter < handle
properties

Value = 0;
end

properties(Constant)
MAX_VALUE = 128

end

methods
function out = next(this)

out = this.Count;
if this.Value == this.MAX_VALUE

this.Value = 0;
else

this.Value = this.Value + 1;
end

end
end

end

To use the automated fixed-point conversion process, rewrite the class to
have a static class that initializes the constant property MAX_VALUE and a
constructor that initializes the property Value.

classdef Counter < handle
properties

Value;

8-108

Fixed-Point Code for MATLAB® Classes

end

methods(Static)
function t = MAX_VALUE()

t = 128;
end

end

methods
function this = Counter()

this.Value = 0;
end
function out = next(this)

out = this.Value;
if this.Value == this.MAX_VALUE

this.Value = 0;
else

this.Value = this.Value + 1;
end

end
end

end

8-109

8 Fixed-Point Conversion

Automated Fixed-Point Conversion Best Practices

In this section...

“Create a Test File” on page 8-110

“Prepare Your Algorithm for Code Acceleration or Code Generation” on
page 8-112

“Check for Fixed-Point Support for Functions Used in Your Algorithm” on
page 8-113

“Manage Data Types and Control Bit Growth” on page 8-113

“Convert to Fixed Point” on page 8-113

“Use the Histogram to Fine-Tune Data Type Settings” on page 8-114

“Optimize Your Algorithm” on page 8-116

“Avoid Explicit Double and Single Casts” on page 8-119

Create a Test File
A best practice for structuring your code is to separate your core algorithm
from other code that you use to test and verify the results. Create a test
file to call your original MATLAB algorithm and fixed-point versions of the
algorithm. For example, as shown in the following table, you might set up
some input data to feed into your algorithm, and then, after you process that
data, create some plots to verify the results. Since you need to convert only
the algorithmic portion to fixed-point, it is more efficient to structure your
code so that you have a test file, in which you create your inputs, call your
algorithm, and plot the results, and one (or more) algorithmic files, in which
you do the core processing.

8-110

Automated Fixed-Point Conversion Best Practices

Original code Best Practice Modified code

% TEST INPUT
x = randn(100,1);

% ALGORITHM
y = zeros(size(x));
y(1) = x(1);
for n=2:length(x)

y(n)=y(n-1) + x(n);
end

% VERIFY RESULTS
yExpected=cumsum(x);
plot(y-yExpected)
title('Error')

Issue

Generation of test input
and verification of results
are intermingled with the
algorithm code.

Fix

Create a test file that is
separate from your algorithm.
Put the algorithm in its own
function.

Test file

% TEST INPUT
x = randn(100,1);

% ALGORITHM
y = cumulative_sum(x);

% VERIFY RESULTS
yExpected = cumsum(x);
plot(y-yExpected)
title('Error')

Algorithm in its own function

function y = cumulative_sum(x)
y = zeros(size(x));
y(1) = x(1);
for n=2:length(x)

y(n) = y(n-1) + x(n);
end

end

You can use the test file to:

• Verify that your floating-point algorithm behaves as you expect before
you convert it to fixed point. The floating-point algorithm behavior is
the baseline against which you compare the behavior of the fixed-point
versions of your algorithm.

• Propose fixed-point data types.

• Compare the behavior of the fixed-point versions of your algorithm to the
floating-point baseline.

• Help you determine initial values for static ranges.

By default, the Fixed-Point Conversion tool shows code coverage results.
Your test files should exercise the algorithm over its full operating range so

8-111

8 Fixed-Point Conversion

that the simulation ranges are accurate. For example, for a filter, realistic
inputs are impulses, sums of sinusoids, and chirp signals. With these inputs,
using linear theory, you can verify that the outputs are correct. Signals that
produce maximum output are useful for verifying that your system does not
overflow. The quality of the proposed fixed-point data types depends on how
well the test files cover the operating range of the algorithm with the accuracy
that you want. Reviewing code coverage results help you verify that your test
file is exercising the algorithm adequately. Review code flagged with a red
code coverage bar because this code is not executed. If the code coverage is
inadequate, modify the test file or add more test files to increase coverage.
For more information see “Code Coverage” on page 8-6.

Prepare Your Algorithm for Code Acceleration or
Code Generation
The automated conversion process instruments your code and provides data
type proposals to help you convert your algorithm to fixed point.

MATLAB algorithms that you want to convert to fixed point automatically
must comply with code generation requirements and rules. To view the
subset of the MATLAB language that is supported for code generation,
see “Functions and Objects Supported for C and C++ Code Generation —
Alphabetical List” on page 21-2.

To help you identify unsupported functions or constructs in your MATLAB
code, add the %#codegen pragma to the top of your MATLAB file. The
MATLAB code analyzer flags functions and constructs that are not available
in the subset of the MATLAB language supported for code generation. This
advice appears in real-time as you edit your code in the MATLAB editor. For
more information, see “Check Code Using the MATLAB Code Analyzer” on
page 9-122. The software provides a link to a report that identifies calls to
functions and the use of data types that are not supported for code generation.
For more information, see “Check Code Using the Code Generation Readiness
Tool” on page 9-121.

8-112

Automated Fixed-Point Conversion Best Practices

Check for Fixed-Point Support for Functions Used in
Your Algorithm
The Fixed-Point Conversion tool flags unsupported function calls found in
your algorithm on the Function Replacements tab. For example, if you
use the fft, which is not supported for fixed point. The tool adds an entry
to the table on this tab and indicates that you need to specify a replacement
function to use for fixed-point operations.

You can specify additional replacement functions. For example, functions
like sin, cos,and sqrt may support fixed point, but for better efficiency, you
may want to consider an alternative implementation like a lookup table or
CORDIC-based algorithm.

Manage Data Types and Control Bit Growth
The automated fixed-point conversion process automatically manages data
types and controls bit growth. It controls bit growth by using subscripted
assignments, that is, assignments that use the colon (:) operator, in the
generated code. When you use subscripted assignments, MATLAB overwrites
the value of the left-hand side argument but retains the existing data type
and array size. In addition to preventing bit growth, subscripted assignment
reduces the number of casts in the generated fixed-point code and makes the
code more readable.

Convert to Fixed Point

What Are Your Goals for Converting to Fixed Point?
Before you start the conversion, consider your goals for converting to fixed
point. Are you implementing your algorithm in C or HDL? What are
your target constraints? The answers to these questions determine many

8-113

8 Fixed-Point Conversion

fixed-point properties such as the available word length, fraction length, and
math modes, as well as available math libraries.

To set up these properties, use the Advanced settings.

For more information, see “Specify Type Proposal Options” on page 8-20.

Run With Fixed-Point Types and Compare Results
Create a test file to validate that the floating-point algorithm works as
expected before converting it to fixed point. You can use the same test file
to propose fixed-point data types, and to compare fixed-point results to
the floating-point baseline after the conversion. For more information, see
“Running a Simulation” on page 8-10 and “Histogram” on page 8-15 .

Use the Histogram to Fine-Tune Data Type Settings
To fine-tune fixed-point type settings, use the histogram. To log data for
histograms, in the Fixed-Point Conversion window, click Run Simulation
and select Log data for histogram, and then click the Run Simulation
button.

After simulation and static analysis:

• To view the histogram for a variable, on the Variables tab, click the
Proposed Type field for that variable.

8-114

Automated Fixed-Point Conversion Best Practices

You can view the effect of changing the proposed data types by dragging the
edges of the bounding box in the histogram window to change the proposed
data type and selecting or clearing the Signed option.

• If the values overflow and the range cannot fit the proposed type, the table
shows proposed types in red.

When the tool applies data types, it generates an html report that provides
overflow information and highlights overflows in red. Review the proposed
data types.

8-115

8 Fixed-Point Conversion

Optimize Your Algorithm

Use fimath to Get Natural Types for C or HDL
fimath properties define the rules for performing arithmetic operations on
fi objects, including math, rounding, and overflow properties. You can use
the fimath ProductMode and SumMode properties to retain natural data types
for C and HDL. Use the Advanced settings, see “Specify Type Proposal
Options” on page 8-20.

C. The KeepLSB setting for ProductMode and SumMode models the behavior of
integer operations in the C language, while KeepMSB models the behavior of
many DSP devices. Different rounding methods require different amounts
of overhead code. Setting the RoundingMethod property to Floor, which
is equivalent to two’s complement truncation, provides the most efficient
rounding implementation. Similarly, the standard method for handling
overflows is to wrap using modulo arithmetic. Other overflow handling
methods create costly logic. Whenever possible, set OverflowAction to Wrap.

MATLAB Code Best Practice Generated C Code

Issue

With the default word length set to
16 and the default fimath settings,
additional code is generated to
implement saturation overflow,
nearest rounding, and full-precision
arithmetic.

int adder(short a, short b)
{

int y;
int i0;
int i1;
int i2;
int i3;
i0 = a;
i1 = b;
if ((i0 & 65536) != 0) {

i2 = i0 | -65536;
} else {

i2 = i0 & 65535;
}

if ((i1 & 65536) != 0) {
i3 = i1 | -65536;

} else {
i3 = i1 & 65535;

Code being compiled

function y = adder(a,b)
y = a + b;

end

Note In the Fixed-Point
Conversion tool, set
Default word length to
16.

8-116

Automated Fixed-Point Conversion Best Practices

MATLAB Code Best Practice Generated C Code

}

i0 = i2 + i3;
if ((i0 & 65536) != 0) {

y = i0 | -65536;
} else {

y = i0 & 65535;
}

return y;
}

Fix

To make the generated C code more
efficient, choose fixed-point math
settings that match your processor
types.

To customize fixed-point type
proposals, use the Fixed-Point
Conversion tool Advanced settings.
Select fimath and then set:

Rounding method Floor

Overflow action Wrap

Product mode KeepLSB

Sum mode KeepLSB

Product word
length

32

Sum word length 32

int adder(short a, short b)
{

return a + b;
}

HDL. For HDL code generation, set:

• ProductMode and SumMode to FullPrecision

• Overflow action to Wrap

8-117

8 Fixed-Point Conversion

• Rounding method to Floor

Replace Built-in Functions With More Efficient Fixed-Point
Implementations
Some MATLAB built-in functions can be made more efficient for fixed-point
implementation. For example, you can replace a built-in function with a
Lookup table implementation, or a CORDIC implementation, which requires
only iterative shift-add operations. For more information, see “Function
Replacements” on page 8-17.

Re-implement Division Operations Where Possible
Often, division is not fully supported by hardware and can result in slow
processing. When your algorithm requires a division, consider replacing it
with one of the following options:

• Use bit shifting when the denominator is a power of two. For example,
bitsra(x,3) instead of x/8.

• Multiply by the inverse when the denominator is constant. For example,
x*0.2 instead of x/5.

• If the divisor is not constant, use a temporary variable for the division.
Doing so results in a more efficient data type proposal and, if overflows
occur, makes it easier to see which expression is overflowing.

Eliminate Floating-Point Variables
For more efficient code, the automated fixed-point conversion process
eliminates floating-point variables. The one exception to this is loop indices
because they usually become integer types. It is good practice to inspect the
fixed-point code after conversion to verify that there are no floating-point
variables in the generated fixed-point code.

8-118

Automated Fixed-Point Conversion Best Practices

Avoid Explicit Double and Single Casts
For the automated workflow, do not use explicit double or single casts in your
MATLAB algorithm to insulate functions that do not support fixed-point data
types. The automated conversion tool does not support these casts.

Instead of using casts, supply a replacement function. For more information,
see “Function Replacements” on page 8-17.

8-119

8 Fixed-Point Conversion

8-120

9

Code Acceleration and Code
Generation from MATLAB
for Fixed-Point Algorithms

• “Code Acceleration and Code Generation from MATLAB” on page 9-3

• “Requirements for Generating Complied C Code Files” on page 9-4

• “Functions Supported for Code Acceleration or C Code Generation” on
page 9-5

• “Workflow for Fixed-Point Code Acceleration and Generation” on page 9-15

• “Set Up C Compiler” on page 9-16

• “Accelerate Code Using fiaccel” on page 9-17

• “File Infrastructure and Paths Setup” on page 9-24

• “Detect and Debug Code Generation Errors” on page 9-27

• “Set Up C Code Compilation Options” on page 9-30

• “MEX Configuration Dialog Box Options” on page 9-32

• “Best Practices for Accelerating Fixed-Point Code” on page 9-38

• “Use Fixed-Point Code Generation Reports” on page 9-42

• “Generate C Code from Code Containing Global Data” on page 9-48

• “Define Input Properties Programmatically in MATLAB File” on page 9-54

• “Control Run-Time Checks” on page 9-62

• “Fix Run-Time Stack Overflows” on page 9-65

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

• “Code Generation with MATLAB Coder” on page 9-66

• “Code Generation with MATLAB Function Block” on page 9-67

• “Generate Fixed-Point FIR Code Using MATLAB Function Block” on page
9-76

• “Fixed-Point FIR Code Example Parameter Values” on page 9-81

• “Accelerate Code for Variable-Size Data” on page 9-84

• “Accelerate Fixed-Point Simulation” on page 9-95

• “Propose Fixed-Point Data Types Using an Instrumented Mex Function”
on page 9-98

• “Apply Fixed-Point Data Types Using an Instrumented Mex Function” on
page 9-108

• “Code Generation Readiness Tool” on page 9-114

• “Check Code Using the Code Generation Readiness Tool” on page 9-121

• “Check Code Using the MATLAB Code Analyzer” on page 9-122

• “Fix Errors Detected at Code Generation Time” on page 9-123

• “Avoid Multiword Operations in Generated Code” on page 9-124

9-2

Code Acceleration and Code Generation from MATLAB®

Code Acceleration and Code Generation from MATLAB
In many cases, you may want your code to run faster and more efficiently.
Code acceleration provides optimizations for accelerating fixed-point
algorithms through MEX file building. In Fixed-Point Designer the fiaccel
function converts your MATLAB code to a MEX function and can greatly
accelerate the execution speed of your fixed-point algorithms.

Code generation creates efficient, production-quality C/C++ code for desktop
and embedded applications. There are several ways to use Fixed-Point
Designer software to generate C/C++ code.

Use... To... Requires... See...

MATLAB Coder
(codegen)
function

Automatically
convert
MATLAB code
to C/C++ code

MATLAB Coder
code generation
software license

“C Code
Generation at
the Command
Line” in the
MATLAB Coder
documentation

MATLAB
Function

Use MATLAB
code in your
Simulink models
that generate
embeddable
C/C++ code

Simulink license “What Is a
MATLAB
Function Block?”
in the Simulink
documentation

MATLAB code generation supports variable-size arrays and matrices with
known upper bounds. To learn more about using variable-size signals, see
“What Is Variable-Size Data?” on page 22-2.

9-3

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Requirements for Generating Complied C Code Files
You use the fiaccel function to generate MEX code from a MATLAB
algorithm. The algorithm must meet these requirements:

• Must be a MATLAB function, not a script

• Must meet the requirements listed on the fiaccel reference page

• Does not call custom C code using any of the following MATLAB Coder
constructs:

- coder.ceval

- coder.ref

- coder.rref

- coder.wref

9-4

Functions Supported for Code Acceleration or C Code Generation

Functions Supported for Code Acceleration or C Code
Generation

In addition to function-specific limitations listed in the table, the following
general limitations apply to the use of Fixed-Point Designer functions in
generated code or with fiaccel:

• fipref and quantizer objects are not supported.

• Word lengths greater than 128 bits are not supported.

• You cannot change the fimath or numerictype of a given fi variable after
that variable has been created.

• The boolean value of the DataTypeMode and DataType properties are not
supported.

• For all SumMode property settings other than FullPrecision, the
CastBeforeSum property must be set to true.

• You can use parallel for (parfor) loops in code compiled with fiaccel, but
those loops are treated like regular for loops.

• When you compile code containing fi objects with nontrivial slope and bias
scaling, you may see different results in generated code than you achieve
by running the same code in MATLAB.

• The general limitations of C/C++ code generated from MATLAB apply. For
more information, see “MATLAB Language Features Supported for C/C++
Code Generation”.

Function Remarks/Limitations

abs N/A

accumneg N/A

accumpos N/A

add • Code generation in MATLAB does not support the syntax
F.add(a,b). You must use the syntax add(F,a,b).

all N/A

any N/A

9-5

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Function Remarks/Limitations

atan2 N/A

bitand Not supported for slope-bias scaled fi objects.

bitandreduce N/A

bitcmp N/A

bitconcat N/A

bitget N/A

bitor Not supported for slope-bias scaled fi objects.

bitorreduce N/A

bitreplicate N/A

bitrol N/A

bitror N/A

bitset N/A

bitshift N/A

bitsliceget N/A

bitsll Generated code may not handle out of range shifting.

bitsra Generated code may not handle out of range shifting.

bitsrl Generated code may not handle out of range shifting.

bitxor Not supported for slope-bias scaled fi objects.

bitxorreduce N/A

ceil N/A

complex N/A

conj N/A

9-6

Functions Supported for Code Acceleration or C Code Generation

Function Remarks/Limitations

conv • Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see different results between
generated code and MATLAB.

- In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

- In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when both
inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

convergent N/A

cordicabs Variable-size signals are not supported.

cordicangle Variable-size signals are not supported.

cordicatan2 Variable-size signals are not supported.

cordiccart2pol Variable-size signals are not supported.

cordiccexp Variable-size signals are not supported.

cordiccos Variable-size signals are not supported.

cordicpol2cart Variable-size signals are not supported.

cordicrotate Variable-size signals are not supported.

cordicsin Variable-size signals are not supported.

cordicsincos Variable-size signals are not supported.

cos N/A

ctranspose N/A

diag If supplied, the index, k, must be a real and scalar integer value that
is not a fi object.

9-7

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Function Remarks/Limitations

divide • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• Complex and imaginary divisors are not supported.

• Code generation in MATLAB does not support the syntax
T.divide(a,b).

double N/A

end N/A

eps • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and fi double
signals.

eq Not supported for fixed-point signals with different biases.

fi • The default constructor syntax without any input arguments is
not supported.

• If the numerictype is not fully specified, the input to fi must be
a constant, a fi, a single, or a built-in integer value. If the input
is a built-in double value, it must be a constant. This limitation
allows fi to autoscale its fraction length based on the known data
type of the input.

• All properties related to data type must be constant for code
generation.

• numerictype object information must be available for
nonfixed-point Simulink inputs.

filter • Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

9-8

Functions Supported for Code Acceleration or C Code Generation

Function Remarks/Limitations

fimath • Fixed-point signals coming in to a MATLAB Function block from
Simulink are assigned a fimath object. You define this object in
the MATLAB Function block dialog in the Model Explorer.

• Use to create fimath objects in the generated code.

• If the ProductMode property of the fimath object is set to
anything other than FullPrecision, the ProductWordLength and
ProductFractionLength properties must be constant.

• If the SumMode property of the fimath object is set to
anything other than FullPrecision, the SumWordLength and
SumFractionLength properties must be constant.

fix N/A

fixed.Quantizer N/A

floor N/A

ge Not supported for fixed-point signals with different biases.

get The syntax structure = get(o) is not supported.

getlsb N/A

getmsb N/A

gt Not supported for fixed-point signals with different biases.

hdlram N/A

horzcat N/A

imag N/A

int8, int16, int32,
int64

N/A

iscolumn N/A

isempty N/A

isequal N/A

isfi N/A

isfimath N/A

9-9

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Function Remarks/Limitations

isfimathlocal N/A

isfinite N/A

isinf N/A

isnan N/A

isnumeric N/A

isnumerictype N/A

isreal N/A

isrow N/A

isscalar N/A

issigned N/A

isvector N/A

le Not supported for fixed-point signals with different biases.

length N/A

logical N/A

lowerbound N/A

lsb • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and double
signals.

lt Not supported for fixed-point signals with different biases.

max N/A

mean N/A

median N/A

min N/A

minus Any non-fi input must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object.

9-10

Functions Supported for Code Acceleration or C Code Generation

Function Remarks/Limitations

mpower • When the exponent k is a variable and the input is a scalar,
the ProductMode property of the governing fimath must be
SpecifyPrecision.

• When the exponent k is a variable and the input is not
scalar, the SumMode property of the governing fimath must be
SpecifyPrecision.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to SpecifyPrecision or
Keep LSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

- In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

- In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when
the first input, a, is nonscalar. However, when a is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

mpy • Code generation in MATLAB does not support the syntax
F.mpy(a,b). You must use the syntax mpy(F,a,b).

• When you provide complex inputs to the mpy function inside of a
MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and
data manager and set the Complexity parameter for all known
complex inputs to On.

mrdivide N/A

9-11

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Function Remarks/Limitations

mtimes • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to SpecifyPrecision or
KeepLSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

- In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

- In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when both
inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

ndims N/A

ne Not supported for fixed-point signals with different biases.

nearest N/A

numberofelements numberofelements will be removed in a future release. Use numel
instead.

numel N/A

numerictype • Fixed-point signals coming in to a MATLAB Function block from
Simulink are assigned a numerictype object that is populated
with the signal’s data type and scaling information.

• Returns the data type when the input is a nonfixed-point signal.

• Use to create numerictype objects in generated code.

• All numerictype object properties related to the data type must
be constant.

permute N/A

plus Any non-fi inputs must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object.

9-12

Functions Supported for Code Acceleration or C Code Generation

Function Remarks/Limitations

pow2 N/A

power When the exponent k is a variable, the ProductMode property of the
governing fimath must be SpecifyPrecision.

qr N/A

quantize N/A

range N/A

rdivide N/A

real N/A

realmax N/A

realmin N/A

reinterpretcast N/A

removefimath N/A

repmat N/A

rescale N/A

reshape N/A

round N/A

setfimath N/A

sfi • All properties related to data type must be constant for code
generation.

sign N/A

sin N/A

single N/A

size N/A

sort N/A

sqrt • Complex and [Slope Bias] inputs error out.

• Negative inputs yield a 0 result.

storedInteger N/A

9-13

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Function Remarks/Limitations

storedIntegerToDouble N/A

sub • Code generation in MATLAB does not support the syntax
F.sub(a,b). You must use the syntax sub(F,a,b).

subsasgn N/A

subsref N/A

sum Variable-sized inputs are only supported when the SumMode property
of the governing fimath is set to Specify precision or Keep LSB.

times • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• When you provide complex inputs to the times function inside of a
MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and
data manager and set the Complexity parameter for all known
complex inputs to On.

transpose N/A

tril If supplied, the index, k, must be a real and scalar integer value that
is not a fi object.

triu If supplied, the index, k, must be a real and scalar integer value that
is not a fi object.

ufi • All properties related to data type must be constant for code
generation.

uint8, uint16, uint32,
uint64

N/A

uminus N/A

uplus N/A

upperbound N/A

vertcat N/A

9-14

Workflow for Fixed-Point Code Acceleration and Generation

Workflow for Fixed-Point Code Acceleration and
Generation

Step Action Details

1 Set up your C compiler. See “Set Up C Compiler” on page 9-16.

2 Set up your file infrastructure. See “File Infrastructure and Paths Setup”
on page 9-24.

3 Make your MATLAB algorithm suitable for
code generation

See “Best Practices for Accelerating
Fixed-Point Code” on page 9-38.

4 Set compilation options. See “Set Up C Code Compilation Options”
on page 9-30.

5 Specify properties of primary function
inputs.

See “Primary Function Input Specification”
on page 23-2.

6 Run fiaccel with the appropriate
command-line options.

See “Recommended Compilation Options
for fiaccel” on page 9-38.

9-15

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Set Up C Compiler
Fixed-Point Designer automatically locates and uses a supported installed
compiler. For the current list of supported compilers, see Supported and
Compatible Compilers on the MathWorks® Web site.

You can use mex -setup to change the default compiler. See “Changing
Default Compiler”.

9-16

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

Accelerate Code Using fiaccel

Accelerate Code Using fiaccel

In this section...

“Speeding Up Fixed-Point Execution with fiaccel” on page 9-17

“Running fiaccel” on page 9-17

“Generated Files and Locations” on page 9-18

“Data Type Override Using fiaccel” on page 9-21

“Specifying Default fimath Values for MEX Functions” on page 9-22

Speeding Up Fixed-Point Execution with fiaccel
You can convert fixed-point MATLAB code to MEX functions using fiaccel.
The generated MEX functions contain optimizations to automatically
accelerate fixed-point algorithms to compiled C/C++ code speed in MATLAB.
The fiaccel function can greatly increase the execution speed of your
algorithms.

Running fiaccel
The basic command is:

fiaccel M_fcn

By default, fiaccel performs the following actions:

• Searches for the function M_fcn stored in the file M_fcn.m as specified in
“Compile Path Search Order” on page 9-24.

• Compiles M_fcn to MEX code.

• If there are no errors or warnings, generates a platform-specific MEX file in
the current folder, using the naming conventions described in “File Naming
Conventions” on page 9-41.

• If there are errors, does not generate a MEX file, but produces an error
report in a default output folder, as described in “Generated Files and
Locations” on page 9-18.

9-17

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

• If there are warnings, but no errors, generates a platform-specific MEX file
in the current folder, but does report the warnings.

You can modify this default behavior by specifying one or more compiler
options with fiaccel, separated by spaces on the command line.

Generated Files and Locations
fiaccel generates files in the following locations:

Generates: In:

Platform-specific MEX files Current folder

HTML reports

(if errors or warnings occur during
compilation)

Default output folder:

fiaccel/mex/M_fcn_name/html

You can change the name and location of generated files by using the options
-o and -d when you run fiaccel.

In this example, you will use the fiaccel function to compile different parts
of a simple algorithm. By comparing the run times of the two cases, you will
see the benefits and best use of the fiaccel function.

Comparing Run Times When Accelerating Different Algorithm
Parts
The algorithm used throughout this example replicates the functionality of
the MATLAB sum function, which sums the columns of a matrix. To see the
algorithm, type open fi_matrix_column_sum.m at the MATLAB command
line.

function B = fi_matrix_column_sum(A)
% Sum the columns of matrix A.
%#codegen

[m,n] = size(A);
w = get(A,'WordLength') + ceil(log2(m));
f = get(A,'FractionLength');
B = fi(zeros(1,n),true,w,f);

9-18

Accelerate Code Using fiaccel

for j = 1:n
for i = 1:m

B(j) = B(j) + A(i,j);
end

end

Trial 1: Best Performance
The best way to speed up the execution of the algorithm is to compile the
entire algorithm using the fiaccel function. To evaluate the performance
improvement provided by the fiaccel function when the entire algorithm
is compiled, run the following code.

The first portion of code executes the algorithm using only MATLAB
functions. The second portion of the code compiles the entire algorithm using
the fiaccel function. The MATLAB tic and toc functions keep track of the
run times for each method of execution.

% MATLAB
fipref('NumericTypeDisplay','short');
A = fi(randn(1000,10));
tic
B = fi_matrix_column_sum(A)
t_matrix_column_sum_m = toc

% fiaccel
fiaccel fi_matrix_column_sum -args {A} ...
-I [matlabroot '/toolbox/fixedpoint/fidemos']
tic
B = fi_matrix_column_sum_mex(A);
t_matrix_column_sum_mex = toc

Trial 2: Worst Performance
Compiling only the smallest unit of computation using the fiaccel function
leads to much slower execution. In some cases, the overhead that results
from calling the mex function inside a nested loop can cause even slower
execution than using MATLAB functions alone. To evaluate the performance
of the mex function when only the smallest unit of computation is compiled,
run the following code.

9-19

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

The first portion of code executes the algorithm using only MATLAB functions.
The second portion of the code compiles the smallest unit of computation with
the fiaccel function, leaving the rest of the computations to MATLAB.

% MATLAB
tic
[m,n] = size(A);
w = get(A,'WordLength') + ceil(log2(m));
f = get(A,'FractionLength');
B = fi(zeros(1,n),true,w,f);
for j = 1:n

for i = 1:m
B(j) = fi_scalar_sum(B(j),A(i,j));
% B(j) = B(j) + A(i,j);

end
end
t_scalar_sum_m = toc

% fiaccel
fiaccel fi_scalar_sum -args {B(1),A(1,1)} ...
-I [matlabroot '/toolbox/fixedpoint/fidemos']
tic
[m,n] = size(A);
w = get(A,'WordLength') + ceil(log2(m));
f = get(A,'FractionLength');
B = fi(zeros(1,n),true,w,f);
for j = 1:n

for i = 1:m
B(j) = fi_scalar_sum_mex(B(j),A(i,j));
% B(j) = B(j) + A(i,j);

end
end
t_scalar_sum_mex = toc

Ratio of Times
A comparison of Trial 1 and Trial 2 appears in the following table. Your
computer may record different times than the ones the table shows, but the
ratios should be approximately the same. There is an extreme difference
in ratios between the trial where the entire algorithm was compiled using

9-20

Accelerate Code Using fiaccel

fiaccel (t_matrix_column_sum_mex.m) and where only the scalar sum was
compiled (t_scalar_sum_mex.m). Even the file with no fiaccel compilation
(t_matrix_column_sum_m) did better than when only the smallest unit of
computation was compiled using fiaccel (t_scalar_sum_mex).

X (Overall Performance
Rank)

Time X/Best X_m/X_mex

Trial 1: Best Performance

t_matrix_column_sum_m (2) 1.99759 84.4917

t_matrix_column_sum_mex
(1)

0.0236424 1

84.4917

Trial 2: Worst Performance

t_scalar_sum_m (4) 10.2067 431.71

t_scalar_sum_mex (3) 4.90664 207.536

2.08017

Data Type Override Using fiaccel
Fixed-Point Designer software ships with an example of how to generate
a MEX function from MATLAB code. The code in the example takes the
weighted average of a signal to create a lowpass filter. To run the example in
the Help browser select MATLAB Examples under Fixed-Point Designer,
and then select Fixed-Point Lowpass Filtering Using MATLAB for Code
Generation.

You can specify data type override in this example by typing an extra
command at the MATLAB prompt in the “Define Fixed-Point Parameters”
section of the example. To turn data type override on, type the following
command at the MATLAB prompt after running the reset(fipref)
command in that section:

fipref('DataTypeOverride','TrueDoubles')

This command tells Fixed-Point Designer software to create all fi objects
with type fi double. When you compile the code using the fiaccel command
in the “Compile the M-File into a MEX File” section of the example, the
resulting MEX-function uses floating-point data.

9-21

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Specifying Default fimath Values for MEX Functions
MEX functions generated with fiaccel use the MATLAB default global
fimath. The MATLAB factory default global fimath has the following
properties:

RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: FullPrecision

When running MEX functions that depend on the MATLAB default fimath
value, do not change this value during your MATLAB session. Otherwise,
MATLAB generates a warning, alerting you to a mismatch between the
compile-time and run-time fimath values. For example, create the following
MATLAB function:

function y = test %#codegen
y = fi(0);

The function test constructs a fi object without explicitly specifying a
fimath object. Therefore, test relies on the default fimath object in effect
at compile time.

Generate the MEX function test_mex to use the factory setting of the
MATLAB default fimath.

resetglobalfimath;
fiaccel test

fiaccel generates a MEX function, test_mex, in the current folder.

Run test_mex.

test_mex

ans =
0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

9-22

Accelerate Code Using fiaccel

Modify the MATLAB default fimath value so it no longer matches the setting
used at compile time.

F = fimath('RoundingMethod','Floor');
globalfimath(F);

Clear the MEX function from memory and rerun it.

clear test_mex
test_mex

The mismatch is detected and MATLAB generates a warning.

testglobalfimath_mex
Warning: This function was generated with a different default fimath than t
ans =

0
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

To avoid this issue, separate the fimath properties from your algorithm
by using types tables. For more information, see “Separate Data Type
Definitions from Algorithm” on page 8-94.

9-23

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

File Infrastructure and Paths Setup

In this section...

“Compile Path Search Order” on page 9-24

“Naming Conventions” on page 9-24

Compile Path Search Order
fiaccel resolves function calls by searching first on the code generation
path and then on the MATLAB path. By default, fiaccel tries to compile
and generate code for functions it finds on the path unless you explicitly
declare the function to be extrinsic. An extrinsic function is a function on
the MATLAB path that is dispatched to MATLAB software for execution.
fiaccel does not compile extrinsic functions, but rather dispatches them to
MATLAB for execution.

Naming Conventions
MATLAB enforces naming conventions for functions and generated files.

• “Reserved Prefixes” on page 9-24

• “Reserved Keywords” on page 9-24

• “Conventions for Naming Generated files” on page 9-26

Reserved Prefixes
MATLAB reserves the prefix eml for global C functions and variables in
generated code. For example, run-time library function names all begin with
the prefix emlrt, such as emlrtCallMATLAB. To avoid naming conflicts, do not
name C functions or primary MATLAB functions with the prefix eml.

Reserved Keywords

• “C Reserved Keywords” on page 9-25

• “C++ Reserved Keywords” on page 9-25

• “Reserved Keywords for Code Generation” on page 9-26

9-24

File Infrastructure and Paths Setup

MATLAB Coder software reserves certain words for its own use as keywords
of the generated code language. MATLAB Coder keywords are reserved for
use internal to MATLAB Coder software and should not be used in MATLAB
code as identifiers or function names. C reserved keywords should also not be
used in MATLAB code as identifiers or function names. If your MATLAB code
contains any reserved keywords, the code generation build does not complete
and an error message is displayed. To address this error, modify your code
to use identifiers or names that are not reserved.

If you are generating C++ code using the MATLAB Coder software, in
addition, your MATLAB code must not contain the “C++ Reserved Keywords”
on page 9-25.

C Reserved Keywords.

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

C++ Reserved Keywords.

catch friend protected try

class inline public typeid

const_cast mutable reinterpret_cast typename

delete namespace static_cast using

dynamic_cast new template virtual

explicit operator this wchar_t

export private throw

9-25

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Reserved Keywords for Code Generation.

abs fortran localZCE rtNaN

asm HAVESTDIO localZCSV SeedFileBuffer

bool id_t matrix SeedFileBufferLen

boolean_T int_T MODEL single

byte_T int8_T MT TID01EQ

char_T int16_T NCSTATES time_T

cint8_T int32_T NULL true

cint16_T int64_T NUMST TRUE

cint32_T INTEGER_CODE pointer_T uint_T

creal_T LINK_DATA_BUFFER_SIZE PROFILING_ENABLED uint8_T

creal32_T LINK_DATA_STREAM PROFILING_NUM_SAMPLES uint16_T

creal64_T localB real_T uint32_T

cuint8_T localC real32_T uint64_T

cuint16_T localDWork real64_T UNUSED_PARAMETER

cuint32_T localP RT USE_RTMODEL

ERT localX RT_MALLOC VCAST_FLUSH_DATA

false localXdis rtInf vector

FALSE localXdot rtMinusInf

Conventions for Naming Generated files
MATLAB provides platform-specific extensions for MEX files.

Platform MEX File Extension

Linux® x86-64 .mexa64

Windows® (32-bit) .mexw32

Windows x64 .mexw64

9-26

Detect and Debug Code Generation Errors

Detect and Debug Code Generation Errors

In this section...

“Debugging Strategies” on page 9-27

“Error Detection at Design Time” on page 9-28

“Error Detection at Compile Time” on page 9-28

Debugging Strategies
To prepare your algorithms for code generation, MathWorks recommends
that you choose a debugging strategy for detecting and correcting violations
in your MATLAB applications, especially if they consist of a large number of
MATLAB files that call each other’s functions. Here are two best practices:

Debugging
Strategy

What to Do Pros Cons

Bottom-up
verification 1 Verify that your lowest-level

(leaf) functions are suitable
for code generation.

2 Work your way up
the function hierarchy
incrementally to compile
and verify each function,
ending with the top-level
function.

• Efficient

• Safe

• Easy to
isolate
syntax
violations

Requires application tests that
work from the bottom up

9-27

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Debugging
Strategy

What to Do Pros Cons

Top-down
verification 1 Declare all functions called

by the top-level function to
be extrinsic so fiaccel does
not compile them.

2 Verify that your top-level
function is suitable for code
generation.

3 Work downward in the
function hierarchy to:

a. Remove extrinsic
declarations one by one

b. Compile and verify each
function, ending with the
leaf functions.

Lets you retain
your top-level
tests

Introduces extraneous code that
you must remove after code
verification, including:

• Extrinsic declarations

• Additional assignment
statements as necessary
to convert opaque values
returned by extrinsic
functions to nonopaque
values.

Error Detection at Design Time
To detect potential issues for MEX file building as you write your MATLAB
algorithm, add the %#codegen directive to the code that you want fiaccel
to compile. Adding this directive indicates that you intend to generate code
from the algorithm and turns on detailed diagnostics during MATLAB code
analysis.

Error Detection at Compile Time
Before you can successfully generate code from a MATLAB algorithm, you
must verify that the algorithm does not contain syntax and semantics
violations that would cause compile-time errors, as described in “Detect and
Debug Code Generation Errors” on page 9-27.

fiaccel checks for all potential syntax violations at compile time. When
fiaccel detects errors or warnings, it automatically produces a code

9-28

Detect and Debug Code Generation Errors

generation report that describes the issues and provides links to the offending
code. See “Use Fixed-Point Code Generation Reports” on page 9-42.

If your MATLAB code calls functions on the MATLAB path, fiaccel attempts
to compile these functions unless you declare them to be extrinsic.

9-29

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Set Up C Code Compilation Options

In this section...

“C Code Compiler Configuration Object” on page 9-30

“Compilation Options Modification at the Command Line Using Dot
Notation” on page 9-30

“How fiaccel Resolves Conflicting Options” on page 9-31

C Code Compiler Configuration Object
For C code generation to a MEX file, MATLAB provides a configuration object
coder.MEXConfig for fine-tuning the compilation. To set MEX compilation
options:

1 Define the compiler configuration object in the MATLAB workspace by
issuing a constructor command:

comp_cfg = coder.mexconfig

MATLAB displays the list of compiler options and their current values in
the command window.

2 Modify the compilation options as necessary. See “Compilation Options
Modification at the Command Line Using Dot Notation” on page 9-30

3 Invoke fiaccel with the -config option and specify the configuration
object as its argument:

fiaccel -config comp_cfg myMfile

The -config option instructs fiaccel to convert myFile.m to a MEX
function, based on the compilation settings in comp_cfg.

Compilation Options Modification at the Command
Line Using Dot Notation
Use dot notation to modify the value of compilation options, using this syntax:

configuration_object.property = value

9-30

Set Up C Code Compilation Options

Dot notation uses assignment statements to modify configuration object
properties. For example, to change the maximum size function to inline and
the stack size limit for inlined functions during MEX generation, enter this
code at the command line:

co_cfg = coder.mexconfig
co_cfg.InlineThreshold = 25;
co_cfg.InlineStackLimit = 4096;
fiaccel -config co_cfg myFun

How fiaccel Resolves Conflicting Options
fiaccel takes the union of all options, including those specified using
configuration objects, so that you can specify options in any order.

9-31

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

MEX Configuration Dialog Box Options
MEX Configuration Dialog Box Options

The following table describes parameters for fine-tuning the behavior of
fiaccel for converting MATLAB files to MEX:

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Report

Create code generation report GenerateReport
true, false

Document generated code in
an HTML report.

Launch report automatically LaunchReport
true, false

Specify whether to
automatically display HTML
reports after code generation
completes.

Note Requires that you
enable Create code
generation report

Debugging

Echo expressions without
semicolons

EchoExpressions
true, false

Specify whether or not actions
that do not terminate with
a semicolon appear in the
MATLAB Command Window.

Enable debug build EnableDebugging
true, false

Compile the generated code in
debug mode.

Language and Semantics

Constant Folding Timeout ConstantFoldingTimeout
integer, 10000

Specify the maximum number
of instructions to be executed
by the constant folder.

9-32

MEX Configuration Dialog Box Options

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Dynamic memory allocation DynamicMemoryAllocation
'off',
'AllVariableSizeArrays'

Enable dynamic memory
allocation for variable-size
data. By default, dynamic
memory allocation is disabled
and fiaccel allocates memory
statically on the stack. When
you select dynamic memory
allocation, fiaccel allocates
memory for all variable-size
data dynamically on the heap.

Youmust use dynamic memory
allocation for all unbounded
variable-size data.

Enable variable sizing EnableVariableSizing
true, false

Enable support for
variable-size arrays.

9-33

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Extrinsic calls ExtrinsicCalls
true, false

Allow calls to extrinsic
functions.

When enabled (true), the
compiler generates code for the
call to a MATLAB function,
but does not generate the
function’s internal code.

When disabled (false), the
compiler ignores the extrinsic
function. Does not generate
code for the call to the
MATLAB function—as long
as the extrinsic function does
not affect the output of the
caller function. Otherwise,
the compiler issues a compiler
error.

9-34

MEX Configuration Dialog Box Options

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Global Data Synchronization
Mode

GlobalDataSyncMethod
string,SyncAlways,
SyncAtEntryAndExits,
NoSync

Controls when global data
is synchronized with the
MATLAB global workspace.
By default, (SyncAlways),
synchronizes global data
at MEX function entry and
exit and for all extrinsic
calls. This synchronization
ensures maximum consistency
between MATLAB and
generated code. If the
extrinsic calls do not affect
global data, use this option
with the coder.extrinsic
-sync:off option to turn off
synchronization for these calls.

SyncAtEntryAndExits
synchronizes global data
at MEX function entry
and exit only. If only a
few extrinsic calls affect
global data, use this option
with the coder.extrinsic
-sync:on option to turn on
synchronization for these calls.

NoSync disables
synchronization. Ensure that
your generated code does not
interact with MATLAB before
disabling synchronization.
Otherwise, inconsistencies
might occur.

9-35

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Saturate on integer overflow SaturateOnIntegerOverflow
true, false

Add checks in the generated
code to detect integer overflow
or underflow.

Safety (disable for faster MEX)

Ensure memory integrity IntegrityChecks
true, false

Detects violations of memory
integrity in code generated
from MATLAB algorithms
and stops execution with a
diagnostic message. Setting
IntegrityChecks to false
also disables the run-time
stack.

Ensure responsiveness ResponsivenessChecks
true, false

Enables responsiveness
checks in code generated from
MATLAB algorithms.

Function Inlining and Stack Allocation

Inline Stack Limit InlineStackLimit
integer, 4000

Specify the stack size limit on
inlined functions.

Inline Threshold InlineThreshold
integer, 10

Specify the maximum size of
functions to be inlined.

Inline Threshold Max InlineThresholdMax
integer, 200

Specify the maximum size of
functions after inlining.

Stack Usage Max StackUsageMax
integer, 200000

Specify the maximum stack
usage per application in
bytes. Set a limit that is
lower than the available stack
size. Otherwise, a runtime
stack overflow might occur.
Overflows are detected and
reported by the C compiler, not
by fiaccel.

9-36

MEX Configuration Dialog Box Options

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Optimizations

Use BLAS library if possible EnableBLAS
true, false

Speed up low-level matrix
operations during simulation
by calling the Basic Linear
Algebra Subprograms (BLAS)
library.

See Also

• “Control Run-Time Checks” on page 9-62

• “Variable-Size Data Definition for Code Generation” on page 22-3

• “Generate C Code from Code Containing Global Data” on page 9-48

9-37

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Best Practices for Accelerating Fixed-Point Code

In this section...

“Recommended Compilation Options for fiaccel” on page 9-38

“Build Scripts” on page 9-39

“Check Code Interactively Using MATLAB Code Analyzer” on page 9-40

“Separating Your Test Bench from Your Function Code” on page 9-41

“Preserving Your Code” on page 9-41

“File Naming Conventions” on page 9-41

Recommended Compilation Options for fiaccel

• -args – Specify input parameters by example

Use the -args option to specify the properties of primary function inputs as
a cell array of example values at the same time as you generate code for
the MATLAB file with fiaccel. The cell array can be a variable or literal
array of constant values. The cell array should provide the same number
and order of inputs as the primary function.

When you use the -args option you are specifying the data types and
array dimensions of these parameters, not the values of the variables.
For more information, see “Define Input Properties by Example at the
Command Line”.

Note Alternatively, you can use the assert function to define properties
of primary function inputs directly in your MATLAB file. For more
information, see “Define Input Properties Programmatically in MATLAB
File” on page 9-54.

• -report – Generate code generation report

Use the -report option to generate a report in HTML format at code
generation time to help you debug your MATLAB code and verify that it

9-38

Best Practices for Accelerating Fixed-Point Code

is suitable for code generation. If you do not specify the -report option,
fiaccel generates a report only if build errors or warnings occur.

The code generation report contains the following information:

- Summary of code generation results, including type of target and
number of warnings or errors

- Target build log that records build and linking activities

- Links to generated files

- Error and warning messages (if any)

For more information, see fiaccel.

Build Scripts
Use build scripts to call fiaccel to generate MEX functions from your
MATLAB function.

A build script automates a series of MATLAB commands that you want to
perform repeatedly from the command line, saving you time and eliminating
input errors. For instance, you can use a build script to clear your workspace
before each build and to specify code generation options.

This example shows a build script to run fiaccel to process lms_02.m:

close all;
clear all;
clc;

N = 73113;

fiaccel -report lms_02.m ...
-args { zeros(N,1) zeros(N,1) }

In this example, the following actions occur:

• close all deletes all figures whose handles are not hidden. See close in
the MATLAB Graphics function reference for more information.

9-39

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

• clear all removes all variables, functions, and MEX-files from memory,
leaving the workspace empty. This command also clears all breakpoints.

Note Remove the clear all command from the build scripts if you want
to preserve breakpoints for debugging.

• clc clears all input and output from the Command Window display, giving
you a “clean screen.”

• N = 73113 sets the value of the variable N, which represents the number of
samples in each of the two input parameters for the function lms_02

• fiaccel -report lms_02.m -args { zeros(N,1) zeros(N,1) } calls
fiaccel to accelerate simulation of the file lms_02.m using the following
options:

- -report generates a code generation report

- -args { zeros(N,1) zeros(N,1) } specifies the properties of the
function inputs as a cell array of example values. In this case, the input
parameters are N-by-1 vectors of real doubles.

Check Code Interactively Using MATLAB Code
Analyzer
The code analyzer checks your code for problems and recommends
modifications to maximize performance and maintainability. You can use
the code analyzer to check your code continuously in the MATLAB Editor
while you work.

To ensure that continuous code checking is enabled:

1 From the MATLAB menu, select File > Preferences > Code Analyzer.

The list of code analyzer preferences appears.

2 Select the Enable integrated warning and error messages check box.

9-40

Best Practices for Accelerating Fixed-Point Code

Separating Your Test Bench from Your Function Code
Separate your core algorithm from your test bench. Create a separate test
script to do all the pre- and post-processing such as loading inputs, setting
up input values, calling the function under test, and outputting test results.
See the example on the fiaccel reference page.

Preserving Your Code
Preserve your code before making further modifications. This practice
provides a fallback in case of error and a baseline for testing and validation.
Use a consistent file naming convention, as described in “File Naming
Conventions” on page 9-41. For example, add a 2-digit suffix to the file name
for each file in a sequence. Alternatively, use a version control system.

File Naming Conventions
Use a consistent file naming convention to identify different types and
versions of your MATLAB files. This approach keeps your files organized
and minimizes the risk of overwriting existing files or creating two files with
the same name in different folders.

For example, the file naming convention in the Generating MEX Functions
getting started tutorial is:

• The suffix _build identifies a build script.

• The suffix _test identifies a test script.

• A numerical suffix, for example, _01 identifies the version of a file. These
numbers are typically two-digit sequential integers, beginning with 01,
02, 03, and so on.

For example:

• The file build_01.m is the first version of the build script for this tutorial.

• The file test_03.m is the third version of the test script for this tutorial.

9-41

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Use Fixed-Point Code Generation Reports

In this section...

“Code Generation Report Creation” on page 9-42

“Code Generation Report Opening” on page 9-43

“Viewing Your MATLAB Code” on page 9-43

“Viewing Variables in the Variables Tab” on page 9-46

“See Also” on page 9-47

Code Generation Report Creation
When you compile your code with the fiaccel function or the MATLAB
Coder codegen function, you can use the -report option to generate a code
generation report. This report allows you to examine the data types of the
variables and expressions in your code.

This example shows how to create a code generation report.

1 In a local writable folder, write a MATLAB function, moving_average.m.

function [avg,z] = moving_average(x,z)
%#codegen

if nargin < 2,
z = fi(zeros(10,1),1,16,15);

end
z(2:end) = z(1:end-1); % Update buffer
z(1) = x; % Add new value
avg = mean(z); % Compute moving average

end

2 In the same folder, write a MATLAB function, test_moving_average.m.

function avg = test_moving_average(x)
%#codegen

if nargin < 1,
x = fi(rand(100,1),1,16,15);

end
z = fi(zeros(10,1),1,16,15);

9-42

Use Fixed-Point Code Generation Reports

avg = x;
for k = 1:length(x)

[avg(k),z] = moving_average(x(k),z);
end

end

3 Use fiaccel to create a MEX function and accelerate the code. Specify
the type of input x using the -args option. Specify the -report option
to create a code generation report.

x = fi(rand(100,1),1,16,15);
fiaccel -report test_moving_average -args {x}

Code Generation Report Opening
If code generation completes, you receive the following message:

Code generation successful: View report

Click the View report link to open the report.

If code generation fails, you get a link to the error report:

Code generation failed: View report

Click the View report link to view the error report and debug your code.
For more information on working with error reports, see “Code Generation
Reports”.

Viewing Your MATLAB Code
When the code generation report opens, you can hover your cursor over the
variables and expressions in your MATLAB code to see their data type
information. The code generation report provides color-coded data type
information according to the following legend.

Color Meaning

Green Data type information is available for the
selected variable at this location in the code.

Orange There is a warning message associated with
the selected variable or expression.

9-43

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Color Meaning

Pink No data type information is available for the
selected variable.

Purple Data type information is available for the
selected expression at this location in the
code.

Red There is an error message associated with the
selected variable or expression.

Variables in your code that have data type information available appear
highlighted in green.

9-44

Use Fixed-Point Code Generation Reports

Expressions in your code that have data type information available appear
highlighted in purple, as the next figure shows.

9-45

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Viewing Variables in the Variables Tab
To see the data type information for all the variables in your file, click the
Variables tab of the code generation report. You can expand all fi and
fimath objects listed in the Variables tab to display the fimath properties.
When you expand a fi object in the Variables tab, the report indicates
whether the fi object has a local fimath object or is using default fimath
values.

The following figure shows the information displayed for a fi object that is
using default fimath values.

9-46

Use Fixed-Point Code Generation Reports

You can sort the variables by clicking the column headings in the Variables
tab. To sort the variables by multiple columns, press the Shift key while
clicking the column headings.

See Also
For more information about using the code generation report with the
fiaccel function, see the fiaccel reference page.

For information about local and default fimath, see “fimath Object
Construction” on page 4-2.

For information about using the code generation report with the codegen
function, see “Code Generation Reports”.

9-47

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Generate C Code from Code Containing Global Data

In this section...

“Workflow Overview” on page 9-48

“Declaring Global Variables” on page 9-48

“Defining Global Data” on page 9-49

“Synchronizing Global Data with MATLAB” on page 9-50

“Limitations of Using Global Data” on page 9-53

Workflow Overview
To generate MEX functions from MATLAB code that uses global data:

1 Declare the variables as global in your code.

2 Define and initialize the global data before using it.

For more information, see “Defining Global Data” on page 9-49.

3 Compile your code using fiaccel.

If you use global data, you must also specify whether you want to synchronize
this data between MATLAB and the generated code. If there is no
interaction between MATLAB and the generated code, it is safe to disable
synchronization. Otherwise, you should enable synchronization. For more
information, see “Synchronizing Global Data with MATLAB” on page 9-50.

Declaring Global Variables
For code generation, you must declare global variables before using them in
your MATLAB code. Consider the use_globals function that uses two global
variables AR and B.

function y = use_globals()
%#codegen
% Turn off inlining to make
% generated code easier to read
coder.inline('never');

9-48

Generate C Code from Code Containing Global Data

% Declare AR and B as global variables
global AR;
global B;
AR(1) = B(1);
y = AR * 2;

Defining Global Data
You can define global data either in the MATLAB global workspace or at
the command line. If you do not initialize global data at the command line,
fiaccel looks for the variable in the MATLAB global workspace. If the
variable does not exist, fiaccel generates an error.

Defining Global Data in the MATLAB Global Workspace
To compile the use_globals function described in “Declaring Global
Variables” on page 9-48 using fiaccel:

1 Define the global data in the MATLAB workspace. At the MATLAB
prompt, enter:

global AR B;
AR = fi(ones(4),1,16,14);
B = fi([1 2 3],1,16,13);

2 Compile the function to generate a MEX file named use_globalsx.

fiaccel -o use_globalsx use_globals

Defining Global Data at the Command Line
To define global data at the command line, use the fiaccel -global option.
For example, to compile the use_globals function described in “Declaring
Global Variables” on page 9-48, specify two global inputs AR and B at the
command line.

fiaccel -o use_globalsx ...
-global {'AR',fi(ones(4)),'B',fi([1 2 3])} use_globals

Alternatively, specify the type and initial value with the -globals flag using
the format -globals {'g', {type, initial_value}}.

9-49

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Defining Variable-Sized Global Data. To provide initial values for
variable-sized global data, specify the type and initial value with the
-globals flag using the format -globals {'g', {type, initial_value}}.
For example, to specify a global variable g1 that has an initial value [1 1]
and upper bound [2 2], enter:

fiaccel foo -globals {'g1',{coder.typeof(0,[2 2],1),[1 1]}}

For a detailed explanation of coder.typeof syntax, see coder.typeof.

Synchronizing Global Data with MATLAB

Why Synchronize Global Data?
The generated code and MATLAB each have their own copies of global data.
To ensure consistency, you must synchronize their global data whenever the
two interact. If you do not synchronize the data, their global variables might
differ. The level of interaction determines when to synchronize global data.

When to Synchronize Global Data
By default, synchronization between global data in MATLAB and generated
code occurs at MEX function entry and exit and for all extrinsic calls, which
are calls to MATLAB functions on the MATLAB path that fiaccel dispatches
to MATLAB for execution. This behavior ensures maximum consistency
between generated code and MATLAB.

To improve performance, you can:

• Select to synchronize only at MEX function entry and exit points.

• Disable synchronization when the global data does not interact.

• Choose whether to synchronize before and after each extrinsic call.

The following table summarizes which global data synchronization options
to use. To learn how to set these options, see “How to Synchronize Global
Data” on page 9-51.

9-50

Generate C Code from Code Containing Global Data

Global Data Synchronization Options

If you want to... Set the
global data
synchronization
mode to:

Synchronize before
and after extrinsic
calls?

Ensure maximum
consistency when all
extrinsic calls modify global
data.

At MEX-function
entry, exit and
extrinsic calls
(default)

Yes. Default behavior.

Ensure maximum
consistency when most
extrinsic calls modify global
data, but a few do not.

At MEX-function
entry, exit and
extrinsic calls
(default)

Yes. Use the
coder.extrinsic
-sync:off option to
turn off synchronization
for the extrinsic calls that
do not affect global data.

Ensure maximum
consistency when most
extrinsic calls do not modify
global data, but a few do.

At MEX-function
entry and exit

Yes. Use the
coder.extrinsic
-sync:on option to
synchronize only the calls
that modify global data.

Maximize performance
when synchronizing global
data, and none of your
extrinsic calls modify global
data.

At MEX-function
entry and exit

No.

Communicate between
generated code files only.
No interaction between
global data in MATLAB
and generated code.

Disabled No.

How to Synchronize Global Data
To control global data synchronization, set the global data synchronization
mode and select whether to synchronize extrinsic functions. For guidelines on
which options to use, see “When to Synchronize Global Data” on page 9-50.

9-51

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

You control the synchronization of global data with extrinsic functions using
the coder.extrinsic -sync:on and -sync:off options.

Controlling the Global Data Synchronization Mode from the
Command Line.

1 Define the compiler options object in the MATLAB workspace by issuing a
constructor command:

comp_cfg = coder.mexconfig

2 From the command line, set the GlobalDataSyncMethod property to
Always, SyncAtEntryAndExits or NoSync, as applicable. For example:

comp_cfg.GlobalDataSyncMethod = 'SyncAtEntryAndExits';

3 Use the comp_cfg configuration object when compiling your code by
specifying it using the -config compilation option. For example,

fiaccel -config comp_cfg myFile

Controlling Synchronization for Extrinsic Function Calls. You can
control whether synchronization between global data in MATLAB and
generated code occurs before and after you call an extrinsic function. To do so,
use the coder.extrinsic -sync:on and -sync:off options.

By default, global data is:

• Synchronized before and after each extrinsic call if the global data
synchronization mode is At MEX-function entry, exit and extrinsic
calls. If you are sure that certain extrinsic calls do not affect global
data, turn off synchronization for these calls using the -sync:off option.
Turning off synchronization improves performance. For example, if
functions foo1 and foo2 do not affect global data, turn off synchronization
for these functions:

coder.extrinsic('-sync:off', 'foo1', 'foo2');

• Not synchronized if the global data synchronization mode is At
MEX-function entry and exit. If the code has a few extrinsic calls
that affect global data, turn on synchronization for these calls using the

9-52

Generate C Code from Code Containing Global Data

-sync:on option. For example, if functions foo1 and foo2 do affect global
data, turn on synchronization for these functions:

coder.extrinsic('-sync:on', 'foo1', 'foo2');

• Not synchronized if the global data synchronization mode is Disabled.
When synchronization is disabled, you cannot control the synchronization
for specific extrinsic calls. The -sync:on option has no effect.

Limitations of Using Global Data
You cannot use global data with

• The coder.cstructname function. This function does not support global
variables.

• The coder.varsize function. Instead, use a coder.typeof object to define
variable-sized global data as described in “Defining Variable-Sized Global
Data” on page 9-50.

9-53

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Define Input Properties Programmatically in MATLAB File

In this section...

“How to Use assert” on page 9-54

“Rules for Using assert Function” on page 9-58

“Specifying Properties of Primary Fixed-Point Inputs” on page 9-59

“Specifying Class and Size of Scalar Structure” on page 9-60

“Specifying Class and Size of Structure Array” on page 9-60

How to Use assert
You can use the MATLAB assert function to define properties of primary
function inputs directly in your MATLAB file.

Use the assert function to invoke standard MATLAB functions for specifying
the class, size, and complexity of primary function inputs.

Specify Any Class

assert (isa (param, 'class_name'))

Sets the input parameter param to the MATLAB class class_name. For
example, to set the class of input U to a 32-bit signed integer, call:

...
assert(isa(U,'embedded.fi'));
...

9-54

Define Input Properties Programmatically in MATLAB® File

Note If you set the class of an input parameter to fi, you must also set its
numerictype, see “Specify numerictype of Fixed-Point Input” on page 9-57.
You can also set its fimath properties, see “Specify fimath of Fixed-Point
Input” on page 9-58.

If you set the class of an input parameter to struct, you must specify the
properties of each field in the structure in the order in which you define the
fields in the structure definition.

Specify fi Class

assert (isfi (param))
assert (isa (param, 'embedded.fi'))

Sets the input parameter param to the MATLAB class fi (fixed-point numeric
object). For example, to set the class of input U to fi, call:

...
assert(isfi(U));
...

or

...
assert(isa(U,'embedded.fi'));
...

Note If you set the class of an input parameter to fi, you must also set its
numerictype, see “Specify numerictype of Fixed-Point Input” on page 9-57.
You can also set its fimath properties, see “Specify fimath of Fixed-Point
Input” on page 9-58.

Specify Structure Class

assert (isstruct (param))

9-55

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Sets the input parameter param to the MATLAB class struct (structure). For
example, to set the class of input U to a struct, call:

...
assert(isstruct(U));
...

or

...
assert(isa(U,'struct'));
...

Note If you set the class of an input parameter to struct, you must specify
the properties of each field in the structure in the order in which you define
the fields in the structure definition.

Specify Any Size

assert (all (size (param) == [dims]))

Sets the input parameter param to the size specified by dimensions dims. For
example, to set the size of input U to a 3-by-2 matrix, call:

...
assert(all(size(U)== [3 2]));
...

Specify Scalar Size

assert (isscalar (param))
assert (all (size (param) == [1]))

Sets the size of input parameter param to scalar. For example, to set the
size of input U to scalar, call:

...
assert(isscalar(U));
...

9-56

Define Input Properties Programmatically in MATLAB® File

or

...
assert(all(size(U)== [1]));
...

Specify Real Input

assert (isreal (param))

Specifies that the input parameter param is real. For example, to specify
that input U is real, call:

...
assert(isreal(U));
...

Specify Complex Input

assert (~isreal (param))

Specifies that the input parameter param is complex. For example, to specify
that input U is complex, call:

...
assert(~isreal(U));
...

Specify numerictype of Fixed-Point Input

assert (isequal (numerictype (fiparam), T))

Sets the numerictype properties of fi input parameter fiparam to the
numerictype object T. For example, to specify the numerictype property of
fixed-point input U as a signed numerictype object T with 32-bit word length
and 30-bit fraction length, use the following code:

...
% Define the numerictype object.

9-57

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

T = numerictype(1, 32, 30);

% Set the numerictype property of input U to T.
assert(isequal(numerictype(U),T));
...

Specify fimath of Fixed-Point Input

assert (isequal (fimath (fiparam), F))

Sets the fimath properties of fi input parameter fiparam to the fimath
object F. For example, to specify the fimath property of fixed-point input U so
that it saturates on integer overflow, use the following code:

...
% Define the fimath object.
F = fimath('OverflowAction','Saturate');

% Set the fimath property of input U to F.
assert(isequal(fimath(U),F));
...

Specify Multiple Properties of Input

assert (function1 (params) && function2 (params) && function3 (params) && ...)

Specifies the class, size, and complexity of one or more inputs using a single
assert function call. For example, the following code specifies that input U is
a double, complex, 3-by-3 matrix, and input V is a 16-bit unsigned integer:

...

assert(isa(U,'double') && ~isreal(U) && all(size(U) == [3 3]) && isa(V,'uint16'));

...

Rules for Using assert Function
Follow these rules when using the assert function to specify the properties
of primary function inputs:

9-58

Define Input Properties Programmatically in MATLAB® File

• Call assert functions at the beginning of the primary function, before any
flow-control operations such as if statements or subroutine calls.

• Do not call assert functions inside conditional constructs, such as if, for,
while, and switch statements.

• If you set the class of an input parameter to fi:

- You must also set its numerictype, see “Specify numerictype of
Fixed-Point Input” on page 9-57.

- You can also set its fimath properties, see “Specify fimath of Fixed-Point
Input” on page 9-58.

• If you set the class of an input parameter to struct, you must specify the
class, size, and complexity of each field in the structure in the order in
which you define the fields in the structure definition.

Specifying Properties of Primary Fixed-Point Inputs
In the following example, the primary MATLAB function emcsqrtfi takes one
fixed-point input: x. The code specifies the following properties for this input:

Property Value

class fi

numerictype numerictype object T, as specified in the
primary function

fimath fimath object F, as specified in the primary
function

size scalar (by default)

complexity real (by default)

function y = emcsqrtfi(x)
T = numerictype('WordLength',32,'FractionLength',23,...

'Signed',true);
F = fimath('SumMode','SpecifyPrecision',...

'SumWordLength',32,'SumFractionLength',23,...
'ProductMode','SpecifyPrecision',...
'ProductWordLength',32,'ProductFractionLength',23);

9-59

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

assert(isfi(x));
assert(isequal(numerictype(x),T));
assert(isequal(fimath(x),F));

y = sqrt(x);

Specifying Class and Size of Scalar Structure
Assume you have defined S as the following scalar MATLAB structure:

S = struct('r',double(1),'i',fi(4,true,8,0));

This code specifies the class and size of S and its fields when passed as an
input to your MATLAB function:

function y = fcn(S)

% Specify the class of the input as struct.
assert(isstruct(S));

% Specify the size of the fields r and i
% in the order in which you defined them.
T = numerictype('Wordlength', 8,'FractionLength', ...

0,'signed',true);
assert(isa(S.r,'double'));
assert(isfi(S.i) && isequal(numerictype(S.i),T));

y = S;

Note The only way to name a field in a structure is to set at least one of its
properties. Therefore in the preceding example, an assert function specifies
that field S.r is of type double, even though double is the default.

Specifying Class and Size of Structure Array
For structure arrays, you must choose a representative element of the array
for specifying the properties of each field. For example, assume you have
defined S as the following 1-by-2 array of MATLAB structures:

S = struct('r',{double(1), double(2)},'i',...

9-60

Define Input Properties Programmatically in MATLAB® File

{fi(4,1,8,0), fi(5,1,8,0)});

The following code specifies the class and size of each field of structure input S
using the first element of the array:

function y = fcn(S)

% Specify the class of the input S as struct.
assert(isstruct(S));
T = numerictype('Wordlength', 8,'FractionLength', ...

0,'signed',true);

% Specify the size of the fields r and i
% based on the first element of the array.
assert(all(size(S) == [1 2]));
assert(isa(S(1).r,'double'));
assert(isfi(S(1).i) && isequal(numerictype(S(1).i),T));

y = S;

Note The only way to name a field in a structure is to set at least one of its
properties. Therefore in the example above, an assert function specifies that
field S(1).r is of type double, even though double is the default.

9-61

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Control Run-Time Checks

In this section...

“Types of Run-Time Checks” on page 9-62

“When to Disable Run-Time Checks” on page 9-63

“How to Disable Run-Time Checks” on page 9-63

Types of Run-Time Checks
In simulation, the code generated for your MATLAB functions includes the
following run-time checks and external function calls.

• Memory integrity checks

These checks detect violations of memory integrity in code generated for
MATLAB functions and stop execution with a diagnostic message.

Caution For safety, these checks are enabled by default. Without memory
integrity checks, violations will result in unpredictable behavior.

• Responsiveness checks in code generated for MATLAB functions

These checks enable periodic checks for Ctrl+C breaks in code generated
for MATLAB functions. Enabling responsiveness checks also enables
graphics refreshing.

Caution For safety, these checks are enabled by default. Without these
checks the only way to end a long-running execution might be to terminate
MATLAB.

• Extrinsic calls to MATLAB functions

Extrinsic calls to MATLAB functions, for example to display results,
are enabled by default for debugging purposes. For more information

9-62

Control Run-Time Checks

about extrinsic functions, see “Declaring MATLAB Functions as Extrinsic
Functions” on page 11-12.

When to Disable Run-Time Checks
Generally, generating code with run-time checks enabled results in more
generated code and slower simulation than generating code with the checks
disabled. Similarly, extrinsic calls are time consuming and have an adverse
effect on performance. Disabling run-time checks and extrinsic calls usually
results in streamlined generated code and faster simulation, with these
caveats:

Consider disabling... Only if...

Memory integrity checks You are sure that your code is
safe and that all array bounds and
dimension checking is unnecessary.

Responsiveness checks You are sure that you will not need
to stop execution of your application
using Ctrl+C.

Extrinsic calls You are only using extrinsic calls
to functions that do not affect
application results.

How to Disable Run-Time Checks
To disable run-time checks:

1 Define the compiler options object in the MATLAB workspace by issuing a
constructor command:

comp_cfg = coder.MEXConfig

2 From the command line set the IntegrityChecks, ExtrinsicCalls, or
ResponsivenessChecks properties false, as applicable:

comp_cfg.IntegrityChecks = false;
comp_cfg.ExtrinsicCalls = false;

9-63

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

comp_cfg.ResponsivenessChecks = false;

9-64

Fix Run-Time Stack Overflows

Fix Run-Time Stack Overflows
If your C compiler reports a run-time stack overflow, set the value of the
maximum stack usage parameter to be less than the available stack size.
Create a command-line configuration object, coder.MexConfig and then set
the StackUsageMax parameter.

9-65

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Code Generation with MATLAB Coder
MATLAB Coder codegen automatically converts MATLAB code directly to C
code. It generates standalone C code that is bit-true to fixed-point MATLAB
code. Using Fixed-Point Designer and MATLAB Coder software you can
generate C code with algorithms containing integer math only (i.e., without
any floating-point math).

9-66

Code Generation with MATLAB Function Block

Code Generation with MATLAB Function Block

In this section...

“Composing a MATLAB Language Function in a Simulink Model” on page
9-67

“MATLAB Function Block with Data Type Override” on page 9-67

“Fixed-Point Data Types with MATLAB Function Block” on page 9-69

Composing a MATLAB Language Function in a
Simulink Model
The MATLAB Function block lets you compose a MATLAB language function
in a Simulink model that generates embeddable code. When you simulate the
model or generate code for a target environment, a function in a MATLAB
Function block generates efficient C/C++ code. This code meets the strict
memory and data type requirements of embedded target environments. In
this way, the MATLAB Function blocks bring the power of MATLAB for the
embedded environment into Simulink.

For more information about the MATLAB Function block and code generation,
refer to the following:

• MATLAB Function block reference page in the Simulink documentation

• “What Is a MATLAB Function Block?” in the Simulink documentation

• “Code Generation Workflow” in the MATLAB Coder documentation

MATLAB Function Block with Data Type Override
When you use the MATLAB Function block in a Simulink model that specifies
data type override, the block determines the data type override equivalents of
the input signal and parameter types. The block then uses these equivalent
values to run the simulation. The following table shows how the MATLAB
Function block determines the data type override equivalent using

• The data type of the input signal or parameter

• The data type override settings in the Simulink model

9-67

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

For more information about data type override, see fxptdlg.

Input Signal or
Parameter Type

Data Type Override
Setting

Data Type Override
Applies To Setting

Override Data Type

Double All numeric types
or Floating-point

Built-in double

Single All numeric types
or Floating-point

Built-in single

Inherited single

Scaled double All numeric types
or Floating-point

fi scaled double

Double All numeric types
or Floating-point

Built-in double

Single All numeric types
or Floating-point

Built-in single

Specified single

Scaled double All numeric types
or Floating-point

fi scaled double

Double All numeric types
or Floating-point

Built-in double

Single All numeric types
or Floating-point

Built-in single

Inherited double

Scaled double All numeric types
or Floating-point

fi scaled double

Double All numeric types
or Floating-point

Built-in double

Single All numeric types
or Floating-point

Built-in single

Specified double

Scaled double All numeric types
or Floating-point

fi scaled double

9-68

Code Generation with MATLAB Function Block

Input Signal or
Parameter Type

Data Type Override
Setting

Data Type Override
Applies To Setting

Override Data Type

Double All numeric types
or Fixed-point

fi double

Single All numeric types
or Fixed-point

fi single

Inherited Fixed

Scaled double All numeric types
or Fixed-point

fi scaled double

Double All numeric types
or Fixed-point

fi double

Single All numeric types
or Fixed-point

fi single

Specified Fixed

Scaled double All numeric types
or Fixed-point

fi scaled double

For more information about using the MATLAB Function block with data type
override, see “Using Data Type Override with the MATLAB Function Block”.

Fixed-Point Data Types with MATLAB Function Block
Code generation from MATLAB supports a significant number of Fixed-Point
Designer functions. Refer to “Functions Supported for Code Acceleration or
C Code Generation” on page 9-5 for information about which Fixed-Point
Designer functions are supported.

For more information on working with fixed-point MATLAB Function blocks,
see:

• “Specifying Fixed-Point Parameters in the Model Explorer” on page 9-70

• “Using fimath Objects in MATLAB Function Blocks” on page 9-71

• “Sharing Models with Fixed-Point MATLAB Function Blocks” on page 9-73

Note To simulate models using fixed-point data types in Simulink, you must
have a Fixed-Point Designer license.

9-69

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Specifying Fixed-Point Parameters in the Model Explorer
You can specify parameters for an MATLAB Function block in a fixed-point
model using the Model Explorer. Try the following exercise:

1 Place a MATLAB Function block in a new model. You can find the block in
the Simulink User-Defined Functions library.

2 Open the Model Explorer by selecting View > Model Explorer from your
model.

3 Expand the untitled* node in the Model Hierarchy pane of the Model
Explorer. Then, select the MATLAB Function node. The Model Explorer
now appears as shown in the following figure.

9-70

Code Generation with MATLAB Function Block

The following parameters in the Dialog pane apply to MATLAB Function
blocks in models that use fixed-point and integer data types:

Treat these inherited Simulink signal types as fi objects
Choose whether to treat inherited fixed-point and integer signals as
fi objects.

• When you select Fixed-point, the MATLAB Function block treats
all fixed-point inputs as Fixed-Point Designer fi objects.

• When you select Fixed-point & Integer, the MATLAB Function
block treats all fixed-point and integer inputs as Fixed-Point Designer
fi objects.

MATLAB Function block fimath
Specify the fimath properties for the block to associate with the
following objects:

• All fixed-point and integer input signals to the MATLAB Function
block that you choose to treat as fi objects.

• All fi and fimath objects constructed in the MATLAB Function block.

You can select one of the following options for theMATLAB Function
block fimath:

• Same as MATLAB — When you select this option, the block uses
the same fimath properties as the current default fimath. The edit
box appears dimmed and displays the current default fimath in
read-only form.

• Specify Other— When you select this option, you can specify your
own fimath object in the edit box.

For more information on these parameters, see “Using fimath Objects in
MATLAB Function Blocks” on page 9-71.

Using fimath Objects in MATLAB Function Blocks
TheMATLAB Function block fimath parameter enables you to specify one
set of fimath object properties for the MATLAB Function block. The block
associates the fimath properties you specify with the following objects:

9-71

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

• All fixed-point and integer input signals to the MATLAB Function block
that you choose to treat as fi objects.

• All fi and fimath objects constructed in the MATLAB Function block.

You can set these parameters on the following dialog box, which you can
access through either the Model Explorer or the “Ports and Data Manager”.

• To access this pane through the Model Explorer:

- Select View > Model Explorer from your model menu.

9-72

Code Generation with MATLAB Function Block

- Then, select the MATLAB Function block from the Model Hierarchy
pane on the left side of the Model Explorer.

• To access this pane through the Ports and Data Manager, select Tools >
Edit Data/Ports from the MATLAB Editor menu.

When you select Same as MATLAB for the MATLAB Function block
fimath, the MATLAB Function block uses the current default fimath. The
current default fimath appears dimmed and in read-only form in the edit box.

When you select Specify other the block allows you to specify your own
fimath object in the edit box. You can do so in one of two ways:

• Constructing the fimath object inside the edit box.

• Constructing the fimath object in the MATLAB or model workspace and
then entering its variable name in the edit box.

Note If you use this option and plan to share your model with others,
make sure you define the variable in the model workspace. See “Sharing
Models with Fixed-Point MATLAB Function Blocks” on page 9-73 for more
information on sharing models.

The Fixed-Point Designer isfimathlocal function supports code generation
for MATLAB.

Sharing Models with Fixed-Point MATLAB Function Blocks
When you collaborate with a coworker, you can share a fixed-point model
using the MATLAB Function block. To share a model, make sure that you
move any variables you define in the MATLAB workspace, including fimath
objects, to the model workspace. For example, try the following:

1 Place a MATLAB Function block in a new model. You can find the block in
the Simulink User-Defined Functions library.

2 Define a fimath object in the MATLAB workspace that you want to use for any
Simulink fixed-point signal entering the MATLAB Function block as an input:

F = fimath('RoundingMethod','Floor','OverflowAction','Wrap',...

9-73

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

'ProductMode','KeepLSB','ProductWordLength',32,...
'SumMode','KeepLSB','SumWordLength',32)

F =
RoundingMethod: Floor
OverflowAction: Wrap

ProductMode: KeepLSB
ProductWordLength: 32

SumMode: KeepLSB
SumWordLength: 32
CastBeforeSum: true

3 Open the Model Explorer by selecting View > Model Explorer from your
model.

4 Expand the untitled* node in the Model Hierarchy pane of the Model
Explorer, and select the MATLAB Function node.

5 Select Specify other for theMATLAB Function block fimath parameter
and enter the variable F into the edit box on the Dialog pane. Click Apply
to save your changes.

You have now defined the fimath properties to be associated with all
Simulink fixed-point input signals and all fi and fimath objects constructed
within the block.

6 Select the Base Workspace node in theModel Hierarchy pane. You can see
the variable F that you have defined in the MATLAB workspace listed in the
Contents pane. If you send this model to a coworker, that coworker must first
define that same variable in the MATLAB workspace to get the same results.

7 Cut the variable F from the base workspace, and paste it into the model
workspace listed under the node for your model, in this case, untitled*. The
Model Explorer now appears as shown in the following figure.

9-74

Code Generation with MATLAB Function Block

You can now email your model to a coworker. Because you included the
required variables in the workspace of the model itself, your coworker can
simply run the model and get the correct results. Receiving and running the
model does not require any extra steps.

9-75

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Generate Fixed-Point FIR Code Using MATLAB Function
Block

In this section...

“Program the MATLAB Function Block” on page 9-76

“Prepare the Inputs” on page 9-77

“Create the Model” on page 9-77

“Define the fimath Object Using the Model Explorer” on page 9-79

“Run the Simulation” on page 9-80

Program the MATLAB Function Block
The following example shows how to create a fixed-point, lowpass, direct form
FIR filter in Simulink. To create the FIR filter, you use Fixed-Point Designer
software and the MATLAB Function block. In this example, you perform the
following tasks in the sequence shown:

1 Place a MATLAB Function block in a new model. You can find the block in
the Simulink User-Defined Functions library.

2 Save your model as cgen_fi.

3 Double-click the MATLAB Function block in your model to open the MATLAB
Function Block Editor. Type or copy and paste the following MATLAB code,
including comments, into the Editor:

function [yout,zf] = dffirdemo(b, x, zi) %#codegen
%codegen_fi doc model example
%Initialize the output signal yout and the final conditions zf
Ty = numerictype(1,12,8);
yout = fi(zeros(size(x)),'numerictype',Ty);
zf = zi;

% FIR filter code
for k=1:length(x);

% Update the states: z = [x(k);z(1:end-1)]
zf(:) = [x(k);zf(1:end-1)];

9-76

Generate Fixed-Point FIR Code Using MATLAB Function Block

% Form the output: y(k) = b*z
yout(k) = b*zf;

end

% Plot the outputs only in simulation.
% This does not generate C code.
figure;
subplot(211);plot(x); title('Noisy Signal');grid;
subplot(212);plot(yout); title('Filtered Signal');grid;

Prepare the Inputs
Define the filter coefficients b, noise x, and initial conditions zi by typing the
following code at the MATLAB command line:

b=fidemo.fi_fir_coefficients;
load mtlb
x = mtlb;
n = length(x);
noise = sin(2*pi*2140*(0:n-1)'./Fs);
x = x + noise;
zi = zeros(length(b),1);

Create the Model

1 Add blocks to your model to create the following system.

9-77

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

9-78

Generate Fixed-Point FIR Code Using MATLAB Function Block

2 Set the block parameters in the model to these “Fixed-Point FIR Code
Example Parameter Values” on page 9-81.

3 From the model menu, select Simulation > Model Configuration
Parameters and set the following parameters.

Parameter Value

Stop time 0

Type Fixed-step

Solver discrete (no continuous
states)

Click Apply to save your changes.

Define the fimath Object Using the Model Explorer

1 Open the Model Explorer for the model.

2 Click the cgen_fi > MATLAB Function node in the Model Hierarchy
pane. The dialog box for the MATLAB Function block appears in the Dialog
pane of the Model Explorer.

3 Select Specify other for theMATLAB Function block fimath parameter
on the MATLAB Function block dialog box. You can then create the following
fimath object in the edit box:

fimath('RoundingMethod','Floor','OverflowAction','Wrap',...
'ProductMode','KeepLSB','ProductWordLength',32,...
'SumMode','KeepLSB','SumWordLength',32)

The fimath object you define here is associated with fixed-point inputs to
the MATLAB Function block as well as the fi object you construct within
the block.

By selecting Specify other for theMATLAB Function block fimath, you
ensure that your model always uses the fimath properties you specified.

9-79

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Run the Simulation

1 Run the simulation by selecting your model and typing Ctrl+T. While the
simulation is running, information outputs to the MATLAB command line.
You can look at the plots of the noisy signal and the filtered signal.

2 Next, build embeddable C code for your model by selecting the model and
typing Ctrl+B. While the code is building, information outputs to the
MATLAB command line. A folder called coder_fi_grt_rtw is created in
your current working folder.

3 Navigate to coder_fi_grt_rtw > cgen_fi.c. In this file, you can see the code
generated from your model. Search for the following comment in your code:

/* codegen_fi doc model example */

This search brings you to the beginning of the section of the code that your
MATLAB Function block generated.

9-80

Fixed-Point FIR Code Example Parameter Values

Fixed-Point FIR Code Example Parameter Values

Block Parameter Value

Constant value b

Interpret vector
parameters as 1-D

Not selected

Sampling mode Sample based

Sample time inf

Mode Fixed point

Signedness Signed

Scaling Slope and bias

Word length 12

Slope 2^-12

Constant

Bias 0

Constant value x+noise

Interpret vector
parameters as 1-D

Unselected

Sampling mode Sample based

Sample time 1

Mode Fixed point

Signedness Signed

Scaling Slope and bias

Word length 12

Slope 2^-8

Constant1

Bias 0

9-81

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Block Parameter Value

Constant value zi

Interpret vector
parameters as 1-D

Unselected

Sampling mode Sample based

Sample time inf

Mode Fixed point

Signedness Signed

Scaling Slope and bias

Word length 12

Slope 2^-8

Constant2

Bias 0

Variable name yout

Limit data points to
last

inf

Decimation 1

Sample time -1

Save format Array

To Workspace

Log fixed-point data
as a fi object

Selected

9-82

Fixed-Point FIR Code Example Parameter Values

Block Parameter Value

Variable name zf

Limit data points to
last

inf

Decimation 1

Sample time -1

Save format Array

To Workspace1

Log fixed-point data
as a fi object

Selected

Variable name noisyx

Limit data points to
last

inf

Decimation 1

Sample time -1

Save format Array

To Workspace2

Log fixed-point data
as a fi object

Selected

9-83

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Accelerate Code for Variable-Size Data

In this section...

“Disable Support for Variable-Size Data” on page 9-84

“Control Dynamic Memory Allocation” on page 9-85

“Accelerate Code for MATLAB Functions with Variable-Size Data” on page
9-86

“Accelerate Code for a MATLAB Function That Expands a Vector in a Loop”
on page 9-88

Variable-size data is data whose size might change at run time. MATLAB
supports bounded and unbounded variable-size data for code generation.
Bounded variable-size data has fixed upper bounds. This data can be allocated
statically on the stack or dynamically on the heap. Unbounded variable-size
data does not have fixed upper bounds. This data must be allocated on
the heap. By default, for MEX and C/C++ code generation, support for
variable-size data is enabled and dynamic memory allocation is enabled for
variable-size arrays whose size exceeds a configurable threshold.

Disable Support for Variable-Size Data
By default, for MEX and C/C++ code acceleration, support for variable-size
data is enabled. You modify variable sizing settings at the command line.

1 Create a configuration object for code generation.

cfg = coder.mexconfig;

2 Set the EnableVariableSizing option:

cfg.EnableVariableSizing = false;

3 Using the -config option, pass the configuration object to fiaccel :

fiaccel -config cfg foo

9-84

Accelerate Code for Variable-Size Data

Control Dynamic Memory Allocation
By default, dynamic memory allocation is enabled for variable-size arrays
whose size exceeds a configurable threshold. If you disable support for
variable-size data, you also disable dynamic memory allocation. You can
modify dynamic memory allocation settings at the command line.

1 Create a configuration object for code acceleration. For example, for a MEX
function:

mexcfg = coder.mexconfig;

2 Set the DynamicMemoryAllocation option:

Setting Action

mexcfg.DynamicMemoryAllocation='Off';
Dynamic memory allocation
is disabled. All variable-size
data is allocated statically
on the stack.

mexcfg.DynamicMemoryAllocation='AllVariableSizeArrays';
Dynamic memory
allocation is enabled for
all variable-size arrays.
All variable-size data is
allocated dynamically on the
heap.

mexcfg.DynamicMemoryAllocation='Threshold';
Dynamic memory
allocation is enabled for all
variable-size arrays whose
size (in bytes) is greater than
or equal to the value specified
using the Dynamic memory
allocation threshold
parameter. Variable-size
arrays whose size is less than
this threshold are allocated
on the stack.

9-85

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

3 Optionally, if you set Dynamic memory allocation to `Threshold',
configure Dynamic memory allocation threshold to fine tune memory
allocation.

4 Using the -config option, pass the configuration object to fiaccel:

fiaccel -config mexcfg foo

Accelerate Code for MATLAB Functions with
Variable-Size Data
Here is a basic workflow that generates MEX code.

1 In the MATLAB Editor, add the compilation directive %#codegen at the
top of your function.

This directive:

• Indicates that you intend to generate code for the MATLAB algorithm

• Turns on checking in the MATLAB Code Analyzer to detect potential
errors during code generation

2 Address issues detected by the Code Analyzer.

In some cases, the MATLAB Code Analyzer warns you when your code
assigns data a fixed size but later grows the data, such as by assignment
or concatenation in a loop. If that data is supposed to vary in size at run
time, you can ignore these warnings.

3 Generate a MEX function using fiaccel. Use the following command-line
options:

• -args {coder.typeof...} if you have variable-size inputs

• -report to generate a code generation report

For example:

fiaccel -report foo -args {coder.typeof(0,[2 4],1)}

This command uses coder.typeof to specify one variable-size input for
function foo. The first argument, 0, indicates the input data type (double)

9-86

Accelerate Code for Variable-Size Data

and complexity (real). The second argument, [2 4], indicates the size, a
matrix with two dimensions. The third argument, 1, indicates that the
input is variable sized. The upper bound is 2 for the first dimension and 4
for the second dimension.

Note During compilation, fiaccel detects variables and structure fields
that change size after you define them, and reports these occurrences as
errors. In addition, fiaccel performs a runtime check to generate errors
when data exceeds upper bounds.

4 Fix size mismatch errors:

Cause: How To Fix: For More
Information:

You try to change the
size of data after its
size has been locked.

Declare the data to be
variable sized.

See “Diagnosing and
Fixing Size Mismatch
Errors” on page 22-23.

5 Fix upper bounds errors

Cause: How To Fix: For More
Information:

MATLAB cannot
determine or
compute the upper
bound

Specify an upper
bound.

See “Specifying
Upper Bounds for
Variable-Size Data”
on page 22-6 and
“Diagnosing and Fixing
Size Mismatch Errors”
on page 22-23.

MATLAB attempts
to compute an upper
bound for unbounded
variable-size data.

If the data is
unbounded, enable
dynamic memory
allocation.

See “Control Dynamic
Memory Allocation” on
page 9-85

6 Generate C/C++ code using the fiaccel function.

9-87

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Accelerate Code for a MATLAB Function That Expands
a Vector in a Loop

• “About the MATLAB Function uniquetol” on page 9-88

• “Step 1: Add Compilation Directive for Code Generation” on page 9-88

• “Step 2: Address Issues Detected by the Code Analyzer” on page 9-89

• “Step 3: Generate MEX Code” on page 9-89

• “Step 4: Fix the Size Mismatch Error” on page 9-91

• “Step 5: Compare Execution Speed of MEX Function to Original Code”
on page 9-93

About the MATLAB Function uniquetol
This example uses the function uniquetol. This function returns in vector B a
version of input vector A, where the elements are unique to within tolerance
tol of each other. In vector B, abs(B(i) - B(j)) > tol for all i and j. Initially,
assume input vector A can store up to 100 elements.

function B = uniquetol(A, tol)
A = sort(A);
B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

Step 1: Add Compilation Directive for Code Generation
Add the %#codegen compilation directive at the top of the function:

function B = uniquetol(A, tol) %#codegen
A = sort(A);
B = A(1);
k = 1;
for i = 2:length(A)

9-88

Accelerate Code for Variable-Size Data

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

Step 2: Address Issues Detected by the Code Analyzer
The Code Analyzer detects that variable B might change size in the for-
loop. It issues this warning:

The variable 'B' appears to change size on every loop iteration.
Consider preallocating for speed.

In this function, vector B should expand in size as it adds values from vector A.
Therefore, you can ignore this warning.

Step 3: Generate MEX Code
To generate MEX code, use the fiaccel function.

1 Generate a MEX function for uniquetol:

T = numerictype(1, 16, 15);
fiaccel -report uniquetol -args {coder.typeof(fi(0,T),[1 100],1),coder.typeof(fi(0,T))}

What do these command-line options mean?

T = numerictype(1, 16, 15) creates a signed numerictype object with a
16-bit word length and 15-bit fraction length that you use to specify the
data type of the input arguments for the function uniquetol.

The fiaccel function -args option specifies the class, complexity, and size
of each input to function uniquetol:

• The first argument, coder.typeof, defines a variable-size input. The
expression coder.typeof(fi(0,T),[1 100],1) defines input A as a
vector of real, signed embedded.fi objects that have a 16-bit word length
and 15-bit fraction length. The vector has a fixed upper bound; its first

9-89

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

dimension is fixed at 1 and its second dimension can vary in size up
to 100 elements.

For more information, see “Specify Variable-Size Inputs at the Command
Line”.

• The second argument, coder.typeof(fi(0,T)), defines input tol as
a real, signed embedded.fi object with a 16-bit word length and 15-bit
fraction length.

The -report option instructs fiaccel to generate a code generation report,
even if no errors or warnings occur.

For more information, see thefiaccel reference page.

Executing this command generates a compiler error:

??? Size mismatch (size [1 x 1] ~= size [1 x 2]).
The size to the left is the size
of the left-hand side of the assignment.

2 Open the error report and select the Variables tab.

9-90

Accelerate Code for Variable-Size Data

The error indicates a size mismatch between the left-hand side and right-hand
side of the assignment statement B = [B A(i)];. The assignment B =
A(1) establishes the size of B as a fixed-size scalar (1 x 1). Therefore, the
concatenation of [B A(i)] creates a 1 x 2 vector.

Step 4: Fix the Size Mismatch Error
To fix this error, declare B to be a variable-size vector.

1 Add this statement to the uniquetol function:

coder.varsize('B');

9-91

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

It should appear before B is used (read). For example:

function B = uniquetol(A, tol) %#codegen
A = sort(A);

coder.varsize('B');

B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

The function coder.varsize declares every instance of B in uniquetol
to be variable sized.

2 Generate code again using the same command:

fiaccel -report uniquetol -args {coder.typeof(fi(0,T),[1 100],1),coder.typeof(fi(0,T))}

In the current folder, fiaccel generates a MEX function for uniquetol
named uniquetol_mex and provides a link to the code generation report.

3 Click the View report link.

4 In the code generation report, select the Variables tab.

9-92

Accelerate Code for Variable-Size Data

The size of variable B is 1x:?, indicating that it is variable size with no
upper bounds.

Step 5: Compare Execution Speed of MEX Function to Original
Code
Run the original MATLAB algorithm and MEX function with the same inputs
for the same number of loop iterations and compare their execution speeds.

1 Create inputs of the correct class, complexity, and size to pass to the
uniquetol MATLAB and MEX functions.

x = fi(rand(1,90), T);
tol = fi(0, T);

9-93

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

2 Run the original uniquetol function in a loop and time how long it takes
to execute 10 iterations of the loop.

tic; for k=1:10, b = uniquetol(x,tol); end; tSim=toc

3 Run the generated MEX function with the same inputs for the same
number of loop iterations.

tic; for k=1:10, b = uniquetol_mex(x,tol); end; tSim_mex=toc

4 Compare the execution times.

r = tSim/tSim_mex

This example shows that generating a MEX function using fiaccel greatly
accelerates the execution of the fixed-point algorithm.

9-94

Accelerate Fixed-Point Simulation

Accelerate Fixed-Point Simulation
This example shows how to accelerate fixed-point algorithms using fiaccel
function. You generate a MEX function from MATLAB® code, run the
generated MEX function, and compare the execution speed with MATLAB
code simulation.

Description of the Example

This example uses a first-order feedback loop. It also uses a quantizer to
avoid infinite bit growth. The output signal is delayed by one sample and
fed back to dampen the input signal.

Copy Required File

You need this MATLAB-file to run this example. Copy it to a temporary
directory. This step requires write-permission to the system’s temporary
directory.

tempdirObj = fidemo.fiTempdir('fiaccelbasicsdemo');
fiacceldir = tempdirObj.tempDir;
fiaccelsrc = ...

fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo','fiaccel
copyfile(fiaccelsrc,fiacceldir,'f');

Inspect the MATLAB Feedback Function Code

The MATLAB function that performs the feedback loop is in the file
fiaccelFeedback.m. This code quantizes the input, and performs the
feedback loop action :

type(fullfile(fiacceldir,'fiaccelFeedback.m'))

function [y,w] = fiaccelFeedback(x,a,y,w)
%FIACCELFEEDBACK Quantizer and feedback loop used in FIACCELBASICSDEMO.

9-95

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

% Copyright 1984-2013 The MathWorks, Inc.
%#codegen

for n = 1:length(x)
y(n) = quantize(x(n) - a*w, true, 16, 12, 'floor', 'wrap');
w = y(n);

end

The following variables are used in this function:

• x is the input signal vector.

• y is the output signal vector.

• a is the feedback gain.

• w is the unit-delayed output signal.

Create the Input Signal and Initialize Variables

rng('default'); % Random number generator
x = fi(2*rand(1000,1)-1,true,16,15); % Input signal
a = fi(.9,true,16,15); % Feedback gain
y = fi(zeros(size(x)),true,16,12); % Initialize output. Fraction length

% is chosen to prevent overflow
w = fi(0,true,16,12); % Initialize delayed output
A = coder.Constant(a); % Declare "a" constant for code

% generation

Run Normal Mode

tic,
y = fiaccelFeedback(x,a,y,w);
t1 = toc;

Build the MEX Version of the Feedback Code

fiaccel fiaccelFeedback -args {x,A,y,w} -o fiaccelFeedback_mex

Run the MEX Version

tic

9-96

Accelerate Fixed-Point Simulation

y2 = fiaccelFeedback_mex(x,y,w);
t2 = toc;

Acceleration Ratio

Code acceleration provides optimizations for accelerating fixed-point
algorithms through MEX file generation. Fixed-Point Designer™ provides
a convenience function fiaccel to convert your MATLAB code to a MEX
function, which can greatly accelerate the execution speed of your fixed-point
algorithms.

r = t1/t2

r =

103.2215

Clean up Temporary Files

clear fiaccelFeedback_mex;
tempdirObj.cleanUp;

9-97

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Propose Fixed-Point Data Types Using an Instrumented
Mex Function

This example shows how to propose fixed-point data types using an
instrumented MEX function.

This capability is not compatible with automatic fixed-point conversion.
If you select Convert to fixed point at build time, you cannot build
instrumented MEX functions.

Prerequisites

To complete this example, you must install the following products:

• MATLAB

• MATLAB Coder

• Fixed-Point Designer

• C compiler (for most platforms, a default C compiler is
supplied with MATLAB) For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/

You can use mex -setup to change the default compiler. See “Changing
Default Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\coder\fun_with_matlab.

2 Change to the docroot\toolbox\coder\examples folder. At the MATLAB
command line, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))

3 Copy the fun_with_matlab.m and fun_with_matlab_test.m files to your
local working folder.

9-98

Propose Fixed-Point Data Types Using an Instrumented Mex Function

Type Name Description

Function code fun_with_matlab.m Entry-point MATLAB
function

Test file fun_with_matlab_test.m MATLAB script that tests
fun_with_matlab.m

The fun_with_matlab Function

function y = fun_with_matlab(x) %#codegen
persistent z
if isempty(z)

z = zeros(2,1);
end
% [b,a] = butter(2, 0.25)
b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];
a = [1, -0.942809041582063, 0.3333333333333333];

y = zeros(size(x));
for i=1:length(x)

y(i) = b(1)*x(i) + z(1);
z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
z(2) = b(3)*x(i) - a(3) * y(i);

end
end

Check Code Generation Readiness

In the current working folder, right-click the fun_with_matlab.m function.
From the context menu, select Check Code Generation Readiness.

The code generation readiness tool screens the code for features and functions
that are not supported for code generation. The tool reports that the
fun_with_matlab.m function is already suitable for code generation.

9-99

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

If your entry-point function is not suitable for code generation, the tool
provides a report that lists the source files that contain unsupported features
and functions. The report also provides an indication of how much work
you must do to make the MATLAB code ready for code generation. Before
proposing data types, you must fix these issues. For more information, see
“Detect and Debug Code Generation Errors” on page 9-27.

Create and set up a MATLAB Coder Project

1 Navigate to the work folder that contains the file for this tutorial.

2 On the MATLAB Apps tab, select MATLAB Coder and then,
in the MATLAB Coder Project dialog box, set Name to
fun_with_matlab_project.prj.

Alternatively, at the MATLAB command line, enter

coder -new fun_with_matlab_project.prj

By default, the project opens in the MATLAB workspace.

9-100

Propose Fixed-Point Data Types Using an Instrumented Mex Function

3 On the project Overview tab, click the Add files link. Browse to the file
fun_with_matlab.m and then click OK to add the file to the project.

About the fun_with_matlab_test Script

The test script runs the fun_with_matlab function with three input signals:
chirp, step, and impulse. The script then plots the results.

Contents of fun_with_matlab_test

% fun_with_matlab_test
%
% Define representative inputs
N = 256; % Number of points
t = linspace(0,1,N); % Time vector from 0 to 1 second

9-101

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

f1 = N/2; % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x_step = ones(1,N); % Step
x_impulse = zeros(1,N); % Impulse
x_impulse(1)=1;

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i=1:size(x,1)

y(i,:) = fun_with_matlab(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'};
clf
for i=1:size(x,1)

subplot(size(x,1),1,i);
plot(t,x(i,:),t,y(i,:));
title(titles{i})
legend('Input','Output');

end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.');

Define Input Types

1 On the project Overview tab, click the Autodefine types link.

2 In the Autodefine Input Types dialog box, add fun_with_matlab_test
as a test file and then click Run.

The test file runs and displays the outputs of the filter for each of the input
signals.

9-102

Propose Fixed-Point Data Types Using an Instrumented Mex Function

MATLAB Coder determines the input types from the test file and then
displays them in the Autodefine Input Types dialog box.

3 In this dialog box, click Use These Types.

MATLAB Coder sets the type of x to double(1x256).

9-103

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Build Instrumented MEX Function

1 In the project, click the Build tab.

2 On the Build tab, set the Output type to Instrumented MEX Function.

3 Click the Build button.

The Build progress dialog box opens. When the build is complete, MATLAB
Coder generates an instrumented MEX function fun_with_matlab_mex
in the current folder. It also provides a link to the report on the Show
Instrumentation Results pane. In this report, you can view the types of
variables in your MATLAB code.

View Data Type Proposal Settings

1 On the Show Instrumentation Results pane, click the Data type
proposal and report settings link.

9-104

Propose Fixed-Point Data Types Using an Instrumented Mex Function

This example uses the default data type proposal settings which propose
fraction lengths for the specified word lengths. Because the MATLAB code
is floating-point, the word length is specified by the Default data type of
all floating-point expressions field. You can specify the numerictype
signedness, word length and fraction length. Specifying [] for signedness
instructs MATLAB Coder to choose the signedness based on simulation
values. The default word length is 16. The default fraction length is 12.

2 Close the dialog box.

Run Simulation

1 On the Run Simulation pane, verify that the test file is set to
fun_with_matlab_test and that Redirect entry-point calls to MEX

9-105

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

function is selected. That way, each call to fun_with_matlab is replaced
with a call to the instrumented MEX function fun_with_matlab_mex.

2 On the Run Simulation pane, click Run.

The fun_with_matlab_test file runs and calls fun_with_matlab_mex. The
outputs of the filters are displayed as before.

View Code Generation Report

1 On the Show Instrumentation Results pane, click View Report.

2 In the Code Generation Report, click the Variables tab.

The report displays the simulation minimum and maximum values and the
proposed data types.

MATLAB Coder proposes data types with word length of 16 and fraction
length optimized to avoid overflows.

9-106

Propose Fixed-Point Data Types Using an Instrumented Mex Function

Next Steps

To learn how to apply the proposed data types to your entry-point MATLAB
function and verify that the fixed-point version of your algorithm is
functionally equivalent to your original MATLAB algorithm, see “Apply
Fixed-Point Data Types Using an Instrumented Mex Function” on page 9-108.

9-107

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Apply Fixed-Point Data Types Using an Instrumented Mex
Function

This example shows how to write a fixed-point version of your entry-point
function using the data types proposed in “Propose Fixed-Point Data Types
Using an Instrumented Mex Function” on page 9-98.

This capability is not compatible with automatic fixed-point conversion.
If you select Convert to fixed point at build time, you cannot build
instrumented MEX functions.

You will learn how to:

• Use the proposed data types to create a fixed-point version of your
entry-point function.

• Update your test file to call the fixed-point entry-point function.

• Verify that the fixed-point function is functionally equivalent to the original
MATLAB algorithm.

Prerequisites

To complete this example, you must install the following products:

• MATLAB

• MATLAB Coder

• Fixed-Point Designer

• C compiler (for most platforms, a default C compiler is
supplied with MATLAB) For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/

You can use mex -setup to change the default compiler. See “Changing
Default Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\coder\fun_with_matlab.

9-108

Apply Fixed-Point Data Types Using an Instrumented Mex Function

2 Change to the docroot\toolbox\coder\examples folder. At the MATLAB
command line, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))

3 Copy the following files to your local working folder.

Type Name Description

Function
code

fun_with_matlab.m Entry-point MATLAB
function

Test file fun_with_matlab_test.m MATLAB script that tests
fun_with_matlab.m

Function
code

fun_with_fi.m Entry-point MATLAB
function — fixed-point
version of fun_with_matlab
that uses data types
proposed in “Propose
Fixed-Point Data Types
Using an Instrumented Mex
Function” on page 9-98

Test file fun_with_fi_test.m MATLAB script that runs
both fun_with_matlab and
fun_with_fi and compares
the results

The fun_with_fi Function

The fun_with_fi is a fixed-point version of the fun_with_matlab function
that uses the data types proposed in “Propose Fixed-Point Data Types Using
an Instrumented Mex Function” on page 9-98.

Variable Proposed
Signedness

Proposed Word
Length

Proposed
Fraction Length

y Signed 16 14

x Signed 16 14

z Signed 16 15

9-109

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Variable Proposed
Signedness

Proposed Word
Length

Proposed
Fraction Length

a Unsigned 16 18

b Signed 16 14

i Unsigned 16 0

For example, in fun_with_matlab, variable y is defined as y =
zeros(size(x));. In fun_with_fi, to specify that it is a signed fixed-point
data type with a word length of 16 and a fraction length of 14:

y = fi(zeros(size(x)),1,16,14,'OverflowAction','Wrap','RoundingMethod','Floor');

For more information, see fi.

Create and set up a MATLAB Coder Project

1 Navigate to the work folder that contains the file for this tutorial.

2 On the MATLAB Apps tab, select MATLAB Coder and then,
in the MATLAB Coder Project dialog box, set Name to
fun_with_fi_project.prj.

Alternatively, at the MATLAB command line, enter

coder -new fun_with_fi_project.prj

By default, the project opens in the MATLAB workspace.

9-110

Apply Fixed-Point Data Types Using an Instrumented Mex Function

3 On the project Overview tab, click the Add files link. Browse to the file
fun_with_fi.m, and then click OK to add the file to the project.

Define Input Types

1 On the project Overview tab, click the Autodefine types link.

2 In the Autodefine Input Types dialog box, add fun_with_fi_test as a
test file, and then click Run.

The test file runs and plots the outputs of the filter. MATLAB Coder
determines the input types from the test file and then displays them.

3 In the Autodefine Input Types dialog box, click Use These Types to accept
the autodefined input type.

MATLAB Coder sets the type of x to double(1x256).

The fun_with_fi_test Script

9-111

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

The fun_with_fi_test script runs the original floating-point MATLAB
algorithm, fun_with_matlab, then runs the fixed-point version of the
algorithm, fun_with_fi. The script then plots the outputs for the
floating-point and fixed-point algorithms and the difference in results.

Run Simulation

1 In the project, click the Build tab.

2 On the Verification pane, verify that the test file is set to
fun_with_fi_test. Clear Redirect entry-point calls to MEX function
so that the test file calls the MATLAB versions of the original and
fixed-point algorithms.

3 On Verification pane, click Run.

The fun_with_fi_test file runs. The test file runs the original MATLAB
algorithm and the fixed-point version, and plots the difference in their
outputs.

9-112

Apply Fixed-Point Data Types Using an Instrumented Mex Function

4 Optionally, zoom in on each plot in turn to view the error (difference
between the two versions of the algorithm). In this example, the errors are
very small, on the order of 10-3. If the error is unacceptably large, refine
the fixed-point data types.

9-113

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Code Generation Readiness Tool

In this section...

“What Information Does the Code Generation Readiness Tool Provide?” on
page 9-114

“Summary Tab” on page 9-115

“Code Structure Tab” on page 9-117

“See Also” on page 9-120

What Information Does the Code Generation
Readiness Tool Provide?
The code generation readiness tool screens MATLAB code for features and
functions that are not supported for code generation. The tool provides a
report that lists the source files that contain unsupported features and
functions. The report also provides an indication of how much work you
must do to make the MATLAB code suitable for code generation. The tool
might not detect all code generation issues. Under certain circumstances, it
might report false errors. Because the tool might not detect all issues, or
might report false errors, generate a MEX function to verify that your code is
suitable for code generation before generating C code.

9-114

Code Generation Readiness Tool

Summary Tab

The Summary tab provides a Code Generation Readiness Score which
ranges from 1 to 5. A score of 1 indicates that the tool has detected issues
that require extensive changes to the MATLAB code to make it suitable for
code generation. A score of 5 indicates that the tool has not detected code
generation issues; the code is ready to use with no or minimal changes.

9-115

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

On this tab, the tool also provides information about:

• MATLAB syntax issues. These issues are reported in the MATLAB editor.
Use the code analyzer to learn more about the issues and how to fix them.

• Unsupported MATLAB function calls.

• Unsupported MATLAB language features, such as recursion, cell arrays,
nested functions, and function handles.

• Unsupported data types.

9-116

Code Generation Readiness Tool

Code Structure Tab

If the code that you are checking calls other MATLAB functions, or you
are checking multiple entry-point functions, the tool displays the Code
Structure Tab.

9-117

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

This tab provides information about the relative size of each file and how
suitable each file is for code generation.

Code Distribution
The Code Distribution pane provides a pie chart that shows the relative
sizes of the files and how suitable each file is for code generation. This
information is useful during the planning phase of a project for estimation
and scheduling purposes. If the report indicates that there are multiple files
not yet suitable for code generation, consider fixing files that require minor
changes before addressing files with significant issues.

Call Tree
The Call Tree pane provides information on the nesting of function calls. For
each called function, the report provides a Code Generation Readiness
score which ranges from 1 to 5. A score of 1 indicates that the tool has
detected issues that require extensive changes to the MATLAB code to make
it suitable for code generation. A score of 5 indicates that the tool has not
detected code generation issues; the code is ready to use with no or minimal
changes. The report also lists the number of lines of code in each file.

Show MATLAB Functions. If you select Show MATLAB Functions, the
report also lists the MATLAB functions called by your function code. For each
of these MATLAB functions, if the function is supported for code generation,
the report sets Code Generation Readiness to Yes.

9-118

Code Generation Readiness Tool

9-119

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

See Also

• “Check Code Using the Code Generation Readiness Tool” on page 9-121

9-120

Check Code Using the Code Generation Readiness Tool

Check Code Using the Code Generation Readiness Tool

Run Code Generation Readiness Tool at the
Command Line

1 Navigate to the folder that contains the file that you want to check for
code generation readiness.

2 At the MATLAB command prompt, enter:

coder.screener('filename')

The Code Generation Readiness tool opens for the file named filename,
provides a code generation readiness score, and lists issues that must be
fixed prior to code generation.

Run the Code Generation Readiness Tool From the
Current Folder Browser

1 In the current folder browser, right-click the file that you want to check for
code generation readiness.

2 From the context menu, select Check Code Generation Readiness.

The Code Generation Readiness tool opens for the selected file and
provides a code generation readiness score and lists issues that must be
fixed prior to code generation.

See Also

• “Code Generation Readiness Tool” on page 9-114

9-121

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Check Code Using the MATLAB Code Analyzer
The code analyzer checks your code for problems and recommends
modifications. You can use the code analyzer to check your code interactively
in the MATLAB Editor while you work.

To verify that continuous code checking is enabled:

1 In MATLAB, select the Home tab and then click Preferences.

2 In the Preferences dialog box, select Code Analyzer.

3 In the Code Analyzer Preferences pane, verify that Enable integrated
warning and error messages is selected.

9-122

Fix Errors Detected at Code Generation Time

Fix Errors Detected at Code Generation Time
When the code generation software detects errors or warnings, it
automatically generates an error report. The error report describes the issues
and provides links to the MATLAB code with errors.

To fix the errors, modify your MATLAB code to use only those MATLAB
features that are supported for code generation. For more information,
see “Algorithm Design Basics”. Choose a debugging strategy for detecting
and correcting code generation errors in your MATLAB code. For more
information, see “Debugging Strategies” on page 9-27.

When code generation is complete, the software generates a MEX function
that you can use to test your implementation in MATLAB.

If your MATLAB code calls functions on the MATLAB path, unless the code
generation software determines that these functions should be extrinsic or
you declare them to be extrinsic, it attempts to compile these functions. See
“Resolution of Function Calls for Code Generation” on page 11-2. To get
detailed diagnostics, add the %#codegen directive to each external function
that you want codegen to compile.

See Also

• “Use Fixed-Point Code Generation Reports” on page 9-42

• “Why Test MEX Functions in MATLAB?”

• “When to Generate Code from MATLAB Algorithms” on page 16-2

• “Debugging Strategies” on page 9-27

• “Declaring MATLAB Functions as Extrinsic Functions” on page 11-12

9-123

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Avoid Multiword Operations in Generated Code
This example shows how to avoid multiword operations in generated code by
using the accumpos function instead of simple addition in your MATLAB
algorithm. Similarly, you can use accumneg for subtraction.

This example requires a MATLAB Coder license.

Write a simple MATLAB algorithm that adds two numbers and returns the
result.

function y = my_add1(a, b)
y = a+b;

Write a second MATLAB algorithm that adds two numbers using accumpos
and returns the result.

function y =my_add2(a, b)
y = accumpos(a, b); %floor, wrap

accumpos adds a and b using the data type of a. b is cast into the data type of
a. If a is a fi object, by default, accumpos sets the rounding mode to 'Floor'
and the overflow action to 'Wrap'. It ignores the fimath properties of a and b.

Compare the outputs of the two functions in MATLAB.

a = fi(1.25, 1, 32,5);
b = fi(0.125, 0, 32);
%%
y1 = my_add1(a, b)
y2 = my_add2(a, b)

y1 =

1.3750

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 62

FractionLength: 34

9-124

Avoid Multiword Operations in Generated Code

y2 =

1.3750

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 5

For the simple addition, the word length grows but using accumpos, the word
length of the result is the same as that of a.

Generate C code for the function my_add1. First, disable use of the long long
data type because it is not usually supported by the target hardware.

hw = coder.HardwareImplementation;
hw.ProdHWDeviceType = 'Generic->32-bit Embedded Processor';
hw.ProdLongLongMode = false;
hw.ProdBitPerLong = 32;
cfg = coder.config('lib');
cfg.HardwareImplementation = hw;
codegen my_add1 -args {a,b} -report -config cfg

MATLAB Coder generates a C static library and provides a link to the code
generation report.

View the generated code for the simple addition. Click the View report link
to open the code generation report and then scroll to the code for the my_add1
function.

/* Function Declarations */
static void MultiWordAdd(const unsigned long u1[], const unsigned long u2[]
unsigned long y[], int n);

static void MultiWordSignedWrap(const unsigned long u1[], int n1, unsigned
n2, unsigned long y[]);

static void sLong2MultiWord(long u, unsigned long y[], int n);
static void sMultiWord2MultiWord(const unsigned long u1[], int n1, unsigned

y[], int n);
static void sMultiWord2sMultiWordSat(const unsigned long u1[], int n1, unsi

long y[], int n);
static void sMultiWordShl(const unsigned long u1[], int n1, unsigned int n2

9-125

9 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

unsigned long y[], int n);
static void sMultiWordShr(const unsigned long u1[], int n1, unsigned int n2

unsigned long y[], int n);
static void uLong2MultiWord(unsigned long u, unsigned long y[], int n);

The generated C code contains multiple multiword operations.

Generate C code for the function my_add2.

codegen my_add2 -args {a,b} -report -config cfg

View the generated code for the addition using accumpos. Click the View
report link to open the code generation report and then scroll to the code for
the my_add2 function.

int my_add2(int a, unsigned int b)
{

int y;
y = a + (int)(b >> 29);
/* floor, wrap */
return y;

}

For this function, the generated code contains no multiword operations.

9-126

10

Interoperability with Other
Products

• “fi Objects with Simulink” on page 10-2

• “fi Objects with DSP System Toolbox” on page 10-8

• “Ways to Generate Code” on page 10-13

10 Interoperability with Other Products

fi Objects with Simulink

In this section...

“Reading Fixed-Point Data from the Workspace” on page 10-2

“Writing Fixed-Point Data to the Workspace” on page 10-2

“Setting the Value and Data Type of Block Parameters” on page 10-6

“Logging Fixed-Point Signals” on page 10-6

“Accessing Fixed-Point Block Data During Simulation” on page 10-7

Reading Fixed-Point Data from the Workspace
You can read fixed-point data from the MATLAB workspace into a Simulink
model via the From Workspace block. To do so, the data must be in a
structure format with a fi object in the values field. In array format, the
From Workspace block only accepts real, double-precision data.

To read in fi data, the Interpolate data parameter of the From Workspace
block must not be selected, and the Form output after final data value by
parameter must be set to anything other than Extrapolation.

Writing Fixed-Point Data to the Workspace
You can write fixed-point output from a model to the MATLAB workspace via
the To Workspace block in either array or structure format. Fixed-point data
written by a To Workspace block to the workspace in structure format can be
read back into a Simulink model in structure format by a From Workspace
block.

Note To write fixed-point data to the MATLAB workspace as a fi object,
select the Log fixed-point data as a fi object check box on the To
Workspace block dialog. Otherwise, fixed-point data is converted to double
and written to the workspace as double.

10-2

fi Objects with Simulink®

For example, you can use the following code to create a structure in the
MATLAB workspace with a fi object in the values field. You can then use
the From Workspace block to bring the data into a Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])

a =

0 -0.5440
0.8415 0.4121
0.9093 0.9893
0.1411 0.6570

-0.7568 -0.2794
-0.9589 -0.9589
-0.2794 -0.7568
0.6570 0.1411
0.9893 0.9093
0.4121 0.8415

-0.5440 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

s.signals.values = a

s =

signals: [1x1 struct]

s.signals.dimensions = 2

s =

signals: [1x1 struct]

s.time = [0:10]'

10-3

10 Interoperability with Other Products

s =

signals: [1x1 struct]
time: [11x1 double]

The From Workspace block in the following model has the fi structure s in
the Data parameter.

Remember, to write fixed-point data to the MATLAB workspace as a fi
object, select the Log fixed-point data as a fi object check box on the To
Workspace block dialog. Otherwise, fixed-point data is converted to double
and written to the workspace as double.

In the model, the following parameters in the Solver pane of the Model
Configuration Parameters dialog have the indicated settings:

• Start time — 0.0

• Stop time — 10.0

• Type — Fixed-step

• Solver — Discrete (no continuous states)

• Fixed step size (fundamental sample time) — 1.0

10-4

fi Objects with Simulink®

The To Workspace block writes the result of the simulation to the MATLAB
workspace as a fi structure.

simout.signals.values

ans =

0 -8.7041
13.4634 6.5938
14.5488 15.8296
2.2578 10.5117

-12.1089 -4.4707
-15.3428 -15.3428

10-5

10 Interoperability with Other Products

-4.4707 -12.1089
10.5117 2.2578
15.8296 14.5488
6.5938 13.4634

-8.7041 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 25

Setting the Value and Data Type of Block Parameters
You can use Fixed-Point Designer expressions to specify the value and data
type of block parameters in Simulink. Refer to “Block Support for Data and
Signal Types” in the Simulink documentation for more information.

Logging Fixed-Point Signals
When fixed-point signals are logged to the MATLAB workspace via signal
logging, they are always logged as fi objects.

To enable signal logging for a signal:

1 Select the signal.

2 Open the Record dropdown.

3 Select Log/Unlog Selected Signals.

For more information, refer to “Export Signal Data Using Signal Logging” in
the Simulink documentation.

When you log signals from a referenced model or Stateflow® chart in your
model, the word lengths of fi objects may be larger than you expect. The word
lengths of fixed-point signals in referenced models and Stateflow charts are
logged as the next largest data storage container size.

10-6

fi Objects with Simulink®

Accessing Fixed-Point Block Data During Simulation
Simulink provides an application program interface (API) that enables
programmatic access to block data, such as block inputs and outputs,
parameters, states, and work vectors, while a simulation is running. You can
use this interface to develop MATLAB programs capable of accessing block
data while a simulation is running or to access the data from the MATLAB
command line. Fixed-point signal information is returned to you via this API
as fi objects. For more information on the API, refer to “Accessing Block Data
During Simulation” in the Simulink documentation.

10-7

10 Interoperability with Other Products

fi Objects with DSP System Toolbox

In this section...

“Reading Fixed-Point Signals from the Workspace” on page 10-8

“Writing Fixed-Point Signals to the Workspace” on page 10-8

“fi Objects with dfilt Objects” on page 10-12

Reading Fixed-Point Signals from the Workspace
You can read fixed-point data from the MATLAB workspace into a Simulink
model using the Signal From Workspace and Triggered Signal From
Workspace blocks from DSP System Toolbox™ software. Enter the name
of the defined fi variable in the Signal parameter of the Signal From
Workspace or Triggered Signal From Workspace block.

Writing Fixed-Point Signals to the Workspace
Fixed-point output from a model can be written to the MATLAB workspace
via the Signal To Workspace or Triggered To Workspace block from the
blockset. The fixed-point data is always written as a 2-D or 3-D array.

Note To write fixed-point data to the MATLAB workspace as a fi object,
select the Log fixed-point data as a fi object check box on the Signal To
Workspace or Triggered To Workspace block dialog. Otherwise, fixed-point
data is converted to double and written to the workspace as double.

10-8

fi Objects with DSP System Toolbox™

For example, you can use the following code to create a fi object in the
MATLAB workspace. You can then use the Signal From Workspace block to
bring the data into a Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])

a =

0 -0.5440
0.8415 0.4121
0.9093 0.9893
0.1411 0.6570

-0.7568 -0.2794
-0.9589 -0.9589
-0.2794 -0.7568
0.6570 0.1411
0.9893 0.9093
0.4121 0.8415

-0.5440 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

The Signal From Workspace block in the following model has these settings:

• Signal — a

• Sample time — 1

• Samples per frame — 2

• Form output after final data value by— Setting to zero

The following parameters in the Solver pane of the Model Configuration
Parameters dialog have these settings:

• Start time — 0.0

10-9

10 Interoperability with Other Products

• Stop time — 10.0

• Type — Fixed-step

• Solver — Discrete (no continuous states)

• Fixed step size (fundamental sample time) — 1.0

Remember, to write fixed-point data to the MATLAB workspace as a fi object,
select the Log fixed-point data as a fi object check box on the Signal To
Workspace block dialog. Otherwise, fixed-point data is converted to double
and written to the workspace as double.

The Signal To Workspace block writes the result of the simulation to the
MATLAB workspace as a fi object.

10-10

fi Objects with DSP System Toolbox™

yout =

(:,:,1) =

0.8415 -0.1319
-0.8415 -0.9561

(:,:,2) =

1.0504 1.6463
0.7682 0.3324

(:,:,3) =

-1.7157 -1.2383
0.2021 0.6795

(:,:,4) =

0.3776 -0.6157
-0.9364 -0.8979

(:,:,5) =

1.4015 1.7508
0.5772 0.0678

(:,:,6) =

-0.5440 0
-0.5440 0

10-11

10 Interoperability with Other Products

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 17

FractionLength: 15

fi Objects with dfilt Objects
When the Arithmetic property is set to 'fixed', you can use an existing fi
object as the input, states, or coefficients of a dfilt object in DSP System
Toolbox software. Also, fixed-point filters in the toolbox return fi objects as
outputs. Refer to the DSP System Toolbox software documentation for more
information.

10-12

Ways to Generate Code

Ways to Generate Code
There are several ways to use Fixed-Point Designer software to generate code:

• The Fixed-Point Designer fiaccel function converts your fixed-point
MATLAB code to a MEX function and can greatly accelerate the execution
speed of your fixed-point algorithms.

• The MATLAB Coder codegen function automatically converts MATLAB
code to C/C++ code. Using the MATLAB Coder software allows you to
accelerate your MATLAB code that uses Fixed-Point Designer software.
To use the codegen function with Fixed-Point Designer software, you also
need to have a MATLAB Coder license. For more information, see “C Code
Generation at the Command Line” in the MATLAB Coder documentation.

• The MATLAB Function block allows you to use MATLAB code in your
Simulink models that generate embeddable C/C++ code. To use the
MATLAB Function block with Fixed-Point Designer software, you also
need a Simulink license. For more information on the MATLAB Function
block, see the Simulink documentation.

10-13

10 Interoperability with Other Products

10-14

11

Calling Functions for Code
Generation

• “Resolution of Function Calls for Code Generation” on page 11-2

• “Resolution of File Types on Code Generation Path” on page 11-6

• “Compilation Directive %#codegen” on page 11-8

• “Call Local Functions” on page 11-9

• “Call Supported Toolbox Functions” on page 11-10

• “Call MATLAB Functions” on page 11-11

11 Calling Functions for Code Generation

Resolution of Function Calls for Code Generation
From a MATLAB function, you can call local functions, supported toolbox
functions, and other MATLAB functions. MATLAB resolves function names
for code generation as follows:

11-2

Resolution of Function Calls for Code Generation

0
�*
�$����1

�
�$����
��	�)�	$���
���������

���)1

�
�$����
��

23(435
���)1

6'�����$
*
�$����1

�
�$����
��

23(435
���)1

������7�����$)	��
23(435

*�	�'�$
����
��	
�����

��

��

��

���

0
������
*�	$���

	���������1

���

���

���

��������
�	
���

0���

8������	��

��

��

��

11-3

11 Calling Functions for Code Generation

Key Points About Resolving Function Calls
The diagram illustrates key points about how MATLAB resolves function
calls for code generation:

• Searches two paths, the code generation path and the MATLAB path

See “Compile Path Search Order” on page 11-4.

• Attempts to compile functions unless the code generation software
determines that it should not compile them or you explicitly declare them
to be extrinsic.

If a MATLAB function is not supported for code generation, you can declare
it to be extrinsic by using the construct coder.extrinsic, as described in
“Declaring MATLAB Functions as Extrinsic Functions” on page 11-12.
During simulation, the code generation software generates code for the
call to an extrinsic function, but does not generate the function’s internal
code. Therefore, simulation can run only on platforms where MATLAB
software is installed. During standalone code generation, MATLAB
attempts to determine whether the extrinsic function affects the output of
the function in which it is called — for example by returning mxArrays to
an output variable. Provided that the output does not change, MATLAB
proceeds with code generation, but excludes the extrinsic function from the
generated code. Otherwise, compilation errors occur.

The code generation software detects calls to many common visualization
functions, such as plot, disp, and figure. The software treats these
functions like extrinsic functions but you do not have to declare them
extrinsic using the coder.extrinsic function.

• Resolves file type based on precedence rules described in “Resolution of File
Types on Code Generation Path” on page 11-6

Compile Path Search Order
During code generation, function calls are resolved on two paths:

1 Code generation path

MATLAB searches this path first during code generation. The code
generation path contains the toolbox functions supported for code
generation.

11-4

Resolution of Function Calls for Code Generation

2 MATLAB path

If the function is not on the code generation path, MATLAB searches this
path.

MATLAB applies the same dispatcher rules when searching each path (see
“Function Precedence Order”).

When to Use the Code Generation Path
Use the code generation path to override a MATLAB function with a
customized version. A file on the code generation path shadows a file of the
same name on the MATLAB path.

11-5

11 Calling Functions for Code Generation

Resolution of File Types on Code Generation Path
MATLAB uses the following precedence rules for code generation:

11-6

Resolution of File Types on Code Generation Path

269/*���1

274/*���1

:/*���1

2/*���	���
269/*���	��	����

���$��#1

���

��

��

��

���

2/*���1

���

���

0���

��

������
������

8������
��

�����

11-7

11 Calling Functions for Code Generation

Compilation Directive %#codegen
Add the %#codegen directive (or pragma) to your function after the function
signature to indicate that you intend to generate code for the MATLAB
algorithm. Adding this directive instructs the MATLAB code analyzer to
help you diagnose and fix violations that would result in errors during code
generation.

function y = my_fcn(x) %#codegen

....

11-8

Call Local Functions

Call Local Functions
Local functions are functions defined in the body of MATLAB function. They
work the same way for code generation as they do when executing your
algorithm in the MATLAB environment.

The following example illustrates how to define and call a local function mean:

function [mean, stdev] = stats(vals)
%#codegen

% Calculates a statistical mean and a standard
% deviation for the values in vals.

len = length(vals);
mean = avg(vals, len);
stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);
plot(vals,'-+');

function mean = avg(array,size)
mean = sum(array)/size;

11-9

11 Calling Functions for Code Generation

Call Supported Toolbox Functions
You can call toolbox functions directly if they are supported for code
generation. For a list of supported functions, see “Functions and Objects
Supported for C and C++ Code Generation — Alphabetical List” on page 21-2.

11-10

Call MATLAB® Functions

Call MATLAB Functions
The code generation software attempts to generate code for functions, even if
they are not supported for C code generation. The software detects calls to
many common visualization functions, such as plot, disp, and figure. The
software treats these functions like extrinsic functions but you do not have
to declare them extrinsic using coder.extrinsic. During simulation, the
code generation software generates code for these functions, but does not
generate their internal code. During standalone code generation, MATLAB
attempts to determine whether the visualization function affects the output of
the function in which it is called. Provided that the output does not change,
MATLAB proceeds with code generation, but excludes the visualization
function from the generated code. Otherwise, compilation errors occur.

For example, you might want to call plot to visualize your results in the
MATLAB environment. If you generate a MEX function from a function that
calls plot and then run the generated MEX function, the code generation
software dispatches calls to the plot function to MATLAB. If you generate a
library or executable, the generated code does not contain calls to the plot
function. The code generation report highlights calls from your MATLAB
code to extrinsic functions so that it is easy to determine which functions are
supported only in the MATLAB environment.

For unsupported functions other than common visualization functions, you
must declare the functions (like pause) to be extrinsic (see “Resolution of
Function Calls for Code Generation” on page 11-2). Extrinsic functions are
not compiled, but instead executed in MATLAB during simulation (see “How
MATLAB Resolves Extrinsic Functions During Simulation” on page 11-16).

11-11

11 Calling Functions for Code Generation

There are two ways to declare a function to be extrinsic:

• Use the coder.extrinsic construct in main functions or local functions
(see “Declaring MATLAB Functions as Extrinsic Functions” on page 11-12).

• Call the function indirectly using feval (see “Calling MATLAB Functions
Using feval” on page 11-16).

Declaring MATLAB Functions as Extrinsic Functions
To declare a MATLAB function to be extrinsic, add the coder.extrinsic
construct at the top of the main function or a local function:

coder.extrinsic('function_name_1', ... , 'function_name_n');

Declaring Extrinsic Functions
The following code declares the MATLAB patch function extrinsic in the
local function create_plot:

function c = pythagoras(a,b,color) %#codegen
% Calculates the hypotenuse of a right triangle
% and displays the triangle.

c = sqrt(a^2 + b^2);
create_plot(a, b, color);

function create_plot(a, b, color)
%Declare patch and axis as extrinsic

coder.extrinsic('patch');

x = [0;a;a];
y = [0;0;b];
patch(x, y, color);
axis('equal');

The code generation software detects that axis is not supported for code
generation and automatically treats it as an extrinsic function. The compiler
does not generate code for patch and axis, but instead dispatches them to
MATLAB for execution.

11-12

Call MATLAB® Functions

To test the function, follow these steps:

1 Convert pythagoras to a MEX function by executing this command at
the MATLAB prompt:

codegen -report pythagoras -args {1, 1, [.3 .3 .3]}

2 Click the link to the code generation report and then, in the report, view
the MATLAB code for create_plot.

The report highlights the patch and axis functions to indicate that they
are supported only within the MATLAB environment.

3 Run the MEX function by executing this command:

pythagoras_mex(3, 4, [1.0 0.0 0.0]);

MATLAB displays a plot of the right triangle as a red patch object:

11-13

11 Calling Functions for Code Generation

When to Use the coder.extrinsic Construct
Use the coder.extrinsic construct to:

• Call MATLAB functions that do not produce output — such as pause
— during simulation, without generating unnecessary code (see “How
MATLAB Resolves Extrinsic Functions During Simulation” on page 11-16).

• Make your code self-documenting and easier to debug. You can scan the
source code for coder.extrinsic statements to isolate calls to MATLAB
functions, which can potentially create and propagate mxArrays (see
“Working with mxArrays” on page 11-17).

• Save typing. With one coder.extrinsic statement, each subsequent
function call is extrinsic, as long as the call and the statement are in the
same scope (see “Scope of Extrinsic Function Declarations” on page 11-15).

11-14

Call MATLAB® Functions

• Declare the MATLAB function(s) extrinsic throughout the calling function
scope (see “Scope of Extrinsic Function Declarations” on page 11-15). To
narrow the scope, use feval (see “Calling MATLAB Functions Using feval”
on page 11-16).

Rules for Extrinsic Function Declarations
Observe the following rules when declaring functions extrinsic for code
generation:

• Declare the function extrinsic before you call it.

• Do not use the extrinsic declaration in conditional statements.

Scope of Extrinsic Function Declarations
The coder.extrinsic construct has function scope. For example, consider
the following code:

function y = foo %#codegen
coder.extrinsic('rat','min');
[N D] = rat(pi);
y = 0;
y = min(N, D);

In this example, rat and min as treated as extrinsic every time they are
called in the main function foo. There are two ways to narrow the scope of
an extrinsic declaration inside the main function:

• Declare the MATLAB function extrinsic in a local function, as in this
example:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0;
y = mymin(N, D);

function y = mymin(a,b)
coder.extrinsic('min');
y = min(a,b);

11-15

11 Calling Functions for Code Generation

Here, the function rat is extrinsic every time it is called inside the main
function foo, but the function min is extrinsic only when called inside the
local function mymin.

• Call the MATLAB function using feval, as described in “Calling MATLAB
Functions Using feval” on page 11-16.

Calling MATLAB Functions Using feval
The function feval is automatically interpreted as an extrinsic function
during code generation. Therefore, you can use feval to conveniently call
functions that you want to execute in the MATLAB environment, rather than
compiled to generated code.

Consider the following example:

function y = foo
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0;
y = feval('min', N, D);

Because feval is extrinsic, the statement feval('min', N, D) is evaluated
by MATLAB — not compiled — which has the same result as declaring the
function min extrinsic for just this one call. By contrast, the function rat is
extrinsic throughout the function foo.

How MATLAB Resolves Extrinsic Functions During
Simulation
MATLAB resolves calls to extrinsic functions — functions that do not support
code generation — as follows:

11-16

Call MATLAB® Functions

During simulation, MATLAB generates code for the call to an extrinsic
function, but does not generate the function’s internal code. Therefore, you
can run the simulation only on platforms where you install MATLAB software.

During code generation, MATLAB attempts to determine whether the
extrinsic function affects the output of the function in which it is called —
for example by returning mxArrays to an output variable (see “Working
with mxArrays” on page 11-17). Provided that the output does not change,
MATLAB proceeds with code generation, but excludes the extrinsic function
from the generated code. Otherwise, MATLAB issues a compiler error.

Working with mxArrays
The output of an extrinsic function is an mxArray — also called a MATLAB
array. The only valid operations for mxArrays are:

11-17

11 Calling Functions for Code Generation

• Storing mxArrays in variables

• Passing mxArrays to functions and returning them from functions

• Converting mxArrays to known types at run time

To use mxArrays returned by extrinsic functions in other operations, you must
first convert them to known types, as described in “Converting mxArrays to
Known Types” on page 11-18.

Converting mxArrays to Known Types
To convert an mxArray to a known type, assign the mxArray to a variable
whose type is defined. At run time, the mxArray is converted to the type of the
variable assigned to it. However, if the data in the mxArray is not consistent
with the type of the variable, you get a run-time error.

For example, consider this code:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = min(N, D);

Here, the top-level function foo calls the extrinsic MATLAB function rat,
which returns two mxArrays representing the numerator N and denominator
D of the rational fraction approximation of pi. Although you can pass these
mxArrays to another MATLAB function — in this case, min — you cannot
assign the mxArray returned by min to the output y.

If you run this function foo in a MATLAB Function block in a Simulink
model, the code generates the following error during simulation:

Function output 'y' cannot be of MATLAB type.

To fix this problem, define y to be the type and size of the value that you
expect min to return — in this case, a scalar double — as follows:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0; % Define y as a scalar of type double

11-18

Call MATLAB® Functions

y = min(N,D);

Restrictions on Extrinsic Functions for Code
Generation
The full MATLAB run-time environment is not supported during code
generation. Therefore, the following restrictions apply when calling MATLAB
functions extrinsically:

• MATLAB functions that inspect the caller, or read or write to the caller’s
workspace do not work during code generation. Such functions include:

- dbstack

- evalin

- assignin

- save

• The MATLAB debugger cannot inspect variables defined in extrinsic
functions.

• Functions in generated code may produce unpredictable results if your
extrinsic function performs the following actions at run time:

- Change folders

- Change the MATLAB path

- Delete or add MATLAB files

- Change warning states

- Change MATLAB preferences

- Change Simulink parameters

Limit on Function Arguments
You can call functions with up to 64 inputs and 64 outputs.

11-19

11 Calling Functions for Code Generation

11-20

12

Code Generation for
MATLAB Classes

• “MATLAB Classes Definition for Code Generation” on page 12-2

• “Classes That Support Code Generation” on page 12-8

• “Generate Code for MATLAB Value Classes” on page 12-9

• “Generate Code for MATLAB Handle Classes and System Objects” on
page 12-15

• “MATLAB Classes in Code Generation Reports” on page 12-18

• “Troubleshooting Issues with MATLAB Classes” on page 12-21

12 Code Generation for MATLAB® Classes

MATLAB Classes Definition for Code Generation
To generate efficient standalone code for MATLAB classes, you must use
classes differently than when running your code in the MATLAB environment.

What’s Different More Information

Class must be in a single file.
Because of this limitation, code
generation is not supported for a
class definition that uses an @-folder.

“Creating a Single, Self-Contained
Class Definition File”

Restricted set of language features. “Language Limitations” on page 12-2

Restricted set of code generation
features.

“Code Generation Features Not
Compatible with Classes” on page
12-3

Definition of class properties. “Defining Class Properties for Code
Generation” on page 12-4

Use of handle classes. “Generate Code for MATLAB Handle
Classes and System Objects” on page
12-15

Calls to base class constructor. “Calls to Base Class Constructor” on
page 12-5

Global variables containing
MATLAB objects are not supported
for code generation.

N/A

Inheritance from built-in MATLAB
classes is not supported.

“Inheritance from Built-In MATLAB
Classes Not Supported” on page 12-7

Language Limitations
Although code generation support is provided for common features of classes
such as properties and methods, there are a number of advanced features
which are not supported, such as:

• Events

• Listeners

12-2

MATLAB® Classes Definition for Code Generation

• Arrays of objects

• Recursive data structures

- Linked lists

- Trees

- Graphs

• Overloadable operators subsref, subsassign, and subsindex

In MATLAB, classes can define their own versions of the subsref,
subsassign, and subsindex methods. Code generation does not support
classes that have their own definitions of these methods.

• The empty method

In MATLAB, classes have a built-in static method, empty, which creates an
empty array of the class. Code generation does not support this method.

• The following MATLAB handle class methods:

- addlistener

- delete

- eq

- findobj

- findpro

• The AbortSet property attribute

Code Generation Features Not Compatible with
Classes

• You can generate code for entry-point MATLAB functions that use classes,
but you cannot generate code directly for a MATLAB class.

For example, if ClassNameA is a class definition, you cannot generate code
by executing:

codegen ClassNameA

• If an entry-point MATLAB function has an input or output that is a
MATLAB class, you cannot generate code for this function.

12-3

12 Code Generation for MATLAB® Classes

For example, if function foo takes one input, a, that is a MATLAB object,
you cannot generate code for foo by executing:

codegen foo -args {a}

• Code generation does not support assigning an object of a value class into a
nontunable property. For example, obj.prop=v; is invalid when prop is a
nontunable property and v is an object based on a value class.

• You cannot use coder.extrinsic to declare a class or method as extrinsic.

• You cannot pass a MATLAB class to the function.

• If you use classes in code in the MATLAB Function block, you cannot use
the debugger to view class information.

• The coder.nullcopy function does not support MATLAB classes as inputs.

Defining Class Properties for Code Generation
For code generation, you must define class properties differently than you
normally would when running your code in the MATLAB environment:

• After defining a property, do not assign it an incompatible type. Do not use
a property before attempting to grow it.

When you define class properties for code generation, consider the same
factors that you take into account when defining variables. In the MATLAB
language, variables can change their class, size, or complexity dynamically
at run time so you can use the same variable to hold a value of varying
class, size, or complexity. C and C++ use static typing. Before using
variables, to determine their type, the code generation software requires a
complete assignment to each variable. Similarly, before using properties,
you must explicitly define their class, size, and complexity.

• Initial values:

- If the property does not have an explicit initial value, the code generation
software assumes that it is undefined at the beginning of the constructor.
The code generation software does not assign an empty matrix as the
default.

- If the property does not have an initial value and the code generation
software cannot determine that the property is assigned prior to first
use, the software generates a compilation error.

12-4

MATLAB® Classes Definition for Code Generation

- For System objects, if a nontunable property is a structure, you must
completely assign the structure. You cannot do partial assignment
using subscripting.

For example, for a nontunable property, you can use the following
assignment:

mySystemObject.nonTunableProperty=struct('fieldA','a','fieldB','b');

You cannot use the following partial assignments:

mySystemObject.nonTunableProperty.fieldA = a;
mySystemObject.nonTunableProperty.fieldB = b;

- If dynamic memory allocation is enabled, code generation supports
variable-size properties for handle classes. Without dynamic memory
allocation, you cannot generate code for handle classes that have
variable-size properties.

- coder.varsize is not supported for class properties.

• MATLAB computes class initial values at class loading time before code
generation. If you use persistent variables in MATLAB class property
initialization, the value of the persistent variable computed when the class
loads belongs to MATLAB; it is not the value used at code generation
time. If you use coder.target in MATLAB class property initialization,
coder.target('MATLAB') returns true (1).

Calls to Base Class Constructor
If a class constructor contains a call to the constructor of the base class, the
call to the base class constructor must come before for, if, return, switch
or while statements.

For example, if you define a class B based on class A:

classdef B < A
methods

function obj = B(varargin)
if nargin == 0

a = 1;
b = 2;

elseif nargin == 1

12-5

12 Code Generation for MATLAB® Classes

a = varargin{1};
b = 1;

elseif nargin == 2
a = varargin{1};
b = varargin{2};

end
obj = obj@A(a,b);

end

end
end

Because the class definition for B uses an if statement before calling the base
class constructor for A, you cannot generate code for function callB:

function [y1,y2] = callB
x = B;
y1 = x.p1;
y2 = x.p2;
end

However, you can generate code for callB if you define class B as:

classdef B < A
methods

function obj = NewB(varargin)
[a,b] = getaandb(varargin{:});
obj = obj@A(a,b);

end

end
end

function [a,b] = getaandb(varargin)
if nargin == 0

a = 1;
b = 2;

elseif nargin == 1
a = varargin{1};
b = 1;

12-6

MATLAB® Classes Definition for Code Generation

elseif nargin == 2
a = varargin{1};
b = varargin{2};

end
end

Inheritance from Built-In MATLAB Classes Not
Supported
You cannot generate code for classes that inherit from built-in MATLAB
classes. For example, you cannot generate code for the following class:

classdef myclass < double

12-7

12 Code Generation for MATLAB® Classes

Classes That Support Code Generation
You can generate code for MATLAB value and handle classes and user-defined
System objects. Your class can have multiple methods and properties and can
inherit from multiple classes.

To generate code for: Example:

Value classes “Generate Code for MATLAB Value
Classes” on page 12-9

Handle classes including
user-defined System objects

“Generate Code for MATLAB Handle
Classes and System Objects” on page
12-15

For more information, see:

• “Classes in the MATLAB Language”

• “MATLAB Classes Definition for Code Generation” on page 12-2

12-8

Generate Code for MATLAB® Value Classes

Generate Code for MATLAB Value Classes
This example shows how to generate code for a MATLAB value class and then
view the generated code in the code generation report.

1 In a writable folder, create a MATLAB value class, Shape. Save the code
as Shape.m.

classdef Shape
% SHAPE Create a shape at coordinates
% centerX and centerY

properties
centerX;
centerY;

end
properties (Dependent = true)

area;
end
methods

function out = get.area(obj)
out = obj.getarea();

end
function obj = Shape(centerX,centerY)

obj.centerX = centerX;
obj.centerY = centerY;

end
end
methods(Abstract = true)

getarea(obj);
end
methods(Static)

function d = distanceBetweenShapes(shape1,shape2)
xDist = abs(shape1.centerX - shape2.centerX);
yDist = abs(shape1.centerY - shape2.centerY);
d = sqrt(xDist^2 + yDist^2);

end
end

end

12-9

12 Code Generation for MATLAB® Classes

2 In the same folder, create a class, Square, that is a subclass of Shape. Save
the code as Square.m.

classdef Square < Shape
% Create a Square at coordinates center X and center Y
% with sides of length of side

properties
side;

end
methods

function obj = Square(side,centerX,centerY)
obj@Shape(centerX,centerY);
obj.side = side;

end
function Area = getarea(obj)

Area = obj.side^2;
end

end
end

3 In the same folder, create a class, Rhombus, that is a subclass of Shape.
Save the code as Rhombus.m.

classdef Rhombus < Shape
properties

diag1;
diag2;

end
methods

function obj = Rhombus(diag1,diag2,centerX,centerY)
obj@Shape(centerX,centerY);
obj.diag1 = diag1;
obj.diag2 = diag2;

end
function Area = getarea(obj)

Area = 0.5*obj.diag1*obj.diag2;
end

end
end

4 Write a function that uses this class.

12-10

Generate Code for MATLAB® Value Classes

function [TotalArea, Distance] = use_shape
%#codegen
s = Square(2,1,2);
r = Rhombus(3,4,7,10);
TotalArea = s.area + r.area;
Distance = Shape.distanceBetweenShapes(s,r);

5 Generate a static library for use_shape and generate a code generation
report.

codegen -config:lib -report use_shape

codegen generates a C static library with the default name, use_shape,
and supporting files in the default folder, codegen/lib/use_shape.

6 Click the View report link.

7 In the report, on theMATLAB code tab, click the link to the Rhombus class.

The report displays the class definition of the Rhombus class and highlights
the class constructor. On the Variables tab, it provides details of the
variables used in the class. If a variable is a MATLAB object, by default,
the report displays the object without displaying its properties. To view the
complete list of properties, expand the list as shown for obj.

12-11

12 Code Generation for MATLAB® Classes

8 At the top right side of the report, expand the Calls list.

The Calls list shows that there is a call to the Rhombus constructor from
use_shape and that this constructor calls the Shape constructor.

12-12

Generate Code for MATLAB® Value Classes

9 The constructor for the Rhombus class calls the Shape method of the base
Shape class: obj@Shape. In the report, click the Shape link in this call.

12-13

12 Code Generation for MATLAB® Classes

The link takes you to the Shape method in the Shape class definition.

12-14

Generate Code for MATLAB® Handle Classes and System Objects

Generate Code for MATLAB Handle Classes and System
Objects

This example shows how to generate code for a user-defined System object
and then view the generated code in the code generation report.

1 In a writable folder, create a System object, AddOne, which subclasses from
matlab.System. Save the code as AddOne.m.

classdef AddOne < matlab.System
% ADDONE Compute an output value that increments the input by one

methods (Access=protected)
% stepImpl method is called by the step method
function y = stepImpl(~,x)

y = x+1;
end

end
end

2 Write a function that uses this System object.

function y = testAddOne(x)
%#codegen

p = AddOne();
y = p.step(x);

end

3 Generate a MEX function for this code.

codegen -report testAddOne -args {0}

The -report option instructs codegen to generate a code generation report,
even if no errors or warnings occur. The -args option specifies that the
testAddOne function takes one scalar double input.

>> codegen -report testAddOne -args {0}
Code generation successful: View report

4 Click the View report link.

12-15

12 Code Generation for MATLAB® Classes

5 In the report, on the MATLAB Code tab Functions panel, click
testAddOne, then click the Variables tab. You can view information about
the variable p on this tab.

6 To view the class definition, on the Classes panel, click AddOne.

12-16

Generate Code for MATLAB® Handle Classes and System Objects

12-17

12 Code Generation for MATLAB® Classes

MATLAB Classes in Code Generation Reports

What Reports Tell You About Classes
Code generation reports:

• Provide a hierarchical tree of the classes used in your MATLAB code.

• Display a list of methods for each class in the MATLAB code tab.

• Display the objects used in your MATLAB code together with their
properties on the Variables tab.

• Provide a filter so that you can sort methods by class, size, and complexity.

• List the set of calls from and to the selected method in the Calls list.

How Classes Appear in Code Generation Reports

In the MATLAB Code Tab
The report displays an alphabetical hierarchical list of the classes used in the
your MATLAB code. For each class, you can:

• Expand the class information to view the class methods.

• View a class method by clicking its name. The report displays the methods
in the context of the full class definition.

• Filter the methods by size, complexity, and class by using the Filter
functions and methods option.

Default Constructors. If a class has a default constructor, the report
displays the constructor in italics.

Specializations. If the same class is specialized into multiple different
classes, the report differentiates the specializations by grouping each one
under a single node in the tree. The report associates the class definition
functions and static methods with the primary node. It associates the
instance-specific methods with the corresponding specialized node.

For example, consider a base class, Shape that has two specialized subclasses,
Rhombus and Square. The Shape class has an abstract method, getarea,

12-18

MATLAB® Classes in Code Generation Reports

and a static method, distanceBetweenShapes. The code generation report,
displays a node for the specialized Rhombus and Square classes with their
constructors and getarea method. It displays a node for the Shape class and
its associated static method, distanceBetweenShapes, and two instances of
the Shape class, Shape1 and Shape2.

Packages. If you define classes as part of a package, the report displays
the package in the list of classes. You can expand the package to view the
classes that it contains. For more information about packages, see “Packages
Create Namespaces”.

In the Variables Tab
The report displays the objects in the selected function or class. By default,
for classes that have properties, the list of properties is collapsed. Click the
+ symbol next to the object name to open the list.

The report displays the properties using just the base property name, not the
fully qualified name. For example, if your code uses variable obj1 that is a

12-19

12 Code Generation for MATLAB® Classes

MATLAB object with property prop1, then the report displays the property as
prop1 not obj1.prop1. When you sort the Variables column, the sort order
is based on the fully qualified property name.

In the Call Stack
The call stack lists the functions and methods in the order that the top-level
function calls them. It also lists the local functions that each function calls.

How to Generate a Code Generation Report
Add the -report option to your codegen command (requires a MATLAB
Coder license)

12-20

Troubleshooting Issues with MATLAB® Classes

Troubleshooting Issues with MATLAB Classes

Class class does not have a property with name name
If a MATLAB class has a method, mymethod, that returns a handle class
with a property, myprop, you cannot generate code for the following type of
assignment:

obj.mymethod().myprop=...

For example, consider the following classes:

classdef MyClass < handle
properties

myprop
end
methods

function this = MyClass
this.myprop = MyClass2;

end
function y = mymethod(this)

y = this.myprop;
end

end
end

classdef MyClass2 < handle
properties

aa
end

end

You cannot generate code for function foo.

function foo

h = MyClass;

h.mymethod().aa = 12;

12-21

12 Code Generation for MATLAB® Classes

In this function, h.mymethod() returns a handle object of type MyClass2. In
MATLAB, the assignment h.mymethod().aa = 12; changes the property of
that object. Code generation does not support this assignment.

Workaround
Rewrite the code to return the object and then assign a value to a property
of the object.

function foo

h = MyClass;

b=h.mymethod();
b.aa=12;

12-22

13

Defining Data for Code
Generation

• “Data Definition for Code Generation” on page 13-2

• “Code Generation for Complex Data” on page 13-4

• “Code Generation for Characters” on page 13-7

13 Defining Data for Code Generation

Data Definition for Code Generation
To generate efficient standalone code, you must define the following types
and classes of data differently than you normally would when running your
code in the MATLAB environment:

Data What’s Different More Information

Complex numbers • Complexity of
variables must be set
at time of assignment
and before first use

• Expressions
containing a complex
number or variable
evaluate to a complex
result, even if the
result is zero

Note Because
MATLAB does not
support complex
integer arithmetic,
you cannot generate
code for functions that
use complex integer
arithmetic

“Code Generation for
Complex Data” on page
13-4

Characters Restricted to 8 bits of
precision

“Code Generation for
Characters” on page
13-7

13-2

Data Definition for Code Generation

Data What’s Different More Information

Enumerated data • Supports
integer-based
enumerated types
only

• Restricted use in
switch statements
and for-loops

“Enumerated Data”

Function handles • Function handles
must be scalar values

• Same bound variable
cannot reference
different function
handles

• Cannot pass function
handles to or from
primary or extrinsic
functions

• Cannot view function
handles from the
debugger

“Function Handles”

13-3

13 Defining Data for Code Generation

Code Generation for Complex Data

In this section...

“Restrictions When Defining Complex Variables” on page 13-4

“Expressions With Complex Operands Yield Complex Results” on page 13-5

Restrictions When Defining Complex Variables
For code generation, you must set the complexity of variables at the time of
assignment, either by assigning a complex constant or using the complex
function, as in these examples:

x = 5 + 6i; % x is a complex number by assignment.
y = 7 + 8j; % y is a complex number by assignment.
x = complex(5,6); % x is the complex number 5 + 6i.

Once you set the type and size of a variable, you cannot cast it to another
type or size. In the following example, the variable x is defined as complex
and stays complex:

x = 1 + 2i; % Defines x as a complex variable.
y = int16(x); % Real and imaginary parts of y are int16.
x = 3; % x now has the value 3 + 0i.

Mismatches can also occur when you assign a real operand the complex result
of an operation:

z = 3; % Sets type of z to double (real)
z = 3 + 2i; % ERROR: cannot recast z to complex

As a workaround, set the complexity of the operand to match the result
of the operation:

m = complex(3); % Sets m to complex variable of value 3 + 0i
m = 5 + 6.7i; % Assigns a complex result to a complex number

13-4

Code Generation for Complex Data

Expressions With Complex Operands Yield Complex
Results
In general, expressions that contain one or more complex operands produce
a complex result in generated code, even if the value of the result is zero.
Consider the following example:

x = 2 + 3i;
y = 2 - 3i;
z = x + y; % z is 4 + 0i.

In MATLAB, this code generates the real result z = 4. During code
generation, the types for x and y are known, but their values are not. Because
either or both operands in this expression are complex, z is defined as a
complex variable requiring storage for both a real and an imaginary part. z
equals the complex result 4 + 0i in generated code, not 4 as in MATLAB code.

Exceptions to this behavior are:

• Values returned by MEX functions are real when the imaginary part of
the value is zero.

function y = foo()
y = 1 + 0i; % y is complex with imaginary part equal to zero

end

The MEX function foo_mex returns the real value 1.

z = foo_mex

• Complex arguments to extrinsic functions are real when the imaginary
part of the argument is zero.

function y = foo()
coder.extrinsic('sqrt')
x = 1 + 0i; % x is complex
y = sqrt(x); % x is real, y is real

end

• Functions that take complex arguments but produce real results return
real values.

13-5

13 Defining Data for Code Generation

y = real(x); % y is the real part of the complex number x.
y = imag(x); % y is the real-valued imaginary part of x.
y = isreal(x); % y is false (0) for a complex number x.

• Functions that take real arguments but produce complex results return
complex values.

z = complex(x,y); % z is a complex number for a real x and y.

13-6

Code Generation for Characters

Code Generation for Characters
The complete set of Unicode® characters is not supported for code generation.
Characters are restricted to 8 bits of precision in generated code. Because
many mathematical operations require more than 8 bits of precision, it is
recommended that you do not perform arithmetic with characters if you
intend to generate code from your MATLAB algorithm.

13-7

13 Defining Data for Code Generation

13-8

14

Defining Functions for Code
Generation

• “Specify Variable Numbers of Arguments” on page 14-2

• “Supported Index Expressions” on page 14-3

• “Apply Operations to a Variable Number of Arguments” on page 14-4

• “Implement Wrapper Functions” on page 14-7

• “Pass Property/Value Pairs” on page 14-8

• “Variable Length Argument Lists for Code Generation” on page 14-10

14 Defining Functions for Code Generation

Specify Variable Numbers of Arguments
You can use varargin in a function definition to specify that the function
accepts a variable number of input arguments for a given input argument.
You can use varargout in a function definition to specify that the function
returns a variable number of arguments for a given output argument.

When you use varargin and varargout for code generation, there are the
following limitations:

• You cannot use varargout in the function definition for a top-level function.

• You cannot use varargin in the function definition for a top-level function
in a MATLAB Function block in a Simulink model, or in a MATLAB
function in a Stateflow diagram.

• If you use varargin to define an argument to a top-level function, the
code generation software generates the function with a fixed number of
arguments. This fixed number of arguments is based on the number of
example arguments that you provide on the command line or in a MATLAB
Coder project test file.

Common applications of varargin and varargout for code generation are to:

• “Apply Operations to a Variable Number of Arguments” on page 14-4

• “Implement Wrapper Functions” on page 14-7

• “Pass Property/Value Pairs” on page 14-8

Code generation relies on loop unrolling to produce simple and efficient code
for varargin and varargout. This technique permits most common uses
of varargin and varargout, but some uses are not allowed (see “Variable
Length Argument Lists for Code Generation” on page 14-10).

For more information about using varargin and varargout in MATLAB
functions, see Passing Variable Numbers of Arguments.

14-2

Supported Index Expressions

Supported Index Expressions
In MATLAB, varargin and varargout are cell arrays. Generated code does
not support cell arrays, but does allow you to use the most common syntax
— curly braces {} — for indexing into varargin and varargout arrays, as
in this example:

%#codegen
function [x,y,z] = fcn(a,b,c)
[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i};
end

You can use the following index expressions. The exp arguments must be
constant expressions or depend on a loop index variable.

Expression Description

varargin{exp} Read the value of element
exp

varargin{exp1: exp2} Read the values of elements
exp1 through exp2

varargin
(read only)

varargin{:} Read the values of all
elements

varargout
(read and write)

varargout{exp} Read or write the value of
element exp

Note The use of () is not supported for indexing into varargin and
varargout arrays.

14-3

14 Defining Functions for Code Generation

Apply Operations to a Variable Number of Arguments
You can use varargin and varargout in for-loops to apply operations to
a variable number of arguments. To index into varargin and varargout
arrays in generated code, the value of the loop index variable must be known
at compile time. Therefore, during code generation, the compiler attempts
to automatically unroll these for-loops. Unrolling eliminates the loop logic
by creating a separate copy of the loop body in the generated code for each
iteration. Within each iteration, the loop index variable becomes a constant.
For example, the following function automatically unrolls its for-loop in the
generated code:

%#codegen
function [cmlen,cmwth,cmhgt] = conv_2_metric(inlen,inwth,inhgt)

[cmlen,cmwth,cmhgt] = inch_2_cm(inlen,inwth,inhgt);

function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

When to Force Loop Unrolling
To automatically unroll for-loops containing varargin and varargout
expressions, the relationship between the loop index expression and the index
variable must be determined at compile time.

In the following example, the function fcn cannot detect a logical relationship
between the index expression j and the index variable i:

%#codegen
function [x,y,z] = fcn(a,b,c)

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
j = 0;
for i = 1:length(varargin)

j = j+1;
varargout{j} = varargin{j};

14-4

Apply Operations to a Variable Number of Arguments

end

As a result, the function does not unroll the loop and generates a compilation
error:

Nonconstant expression or empty matrix.
This expression must be constant because
its value determines the size or class of some expression.

To fix the problem, you can force loop unrolling by wrapping the loop header
in the function coder.unroll, as follows:

%#codegen
function [x,y,z] = fcn(a,b,c)

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
j = 0;
for i = coder.unroll(1:length(varargin))

j = j + 1;
varargout{j} = varargin{j};

end;

Using Variable Numbers of Arguments in a for-Loop
The following example multiplies a variable number of input dimensions in
inches by 2.54 to convert them to centimeters:

%#codegen
function [cmlen,cmwth,cmhgt] = conv_2_metric(inlen,inwth,inhgt)

[cmlen,cmwth,cmhgt] = inch_2_cm(inlen,inwth,inhgt);

function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

14-5

14 Defining Functions for Code Generation

Key Points About the Example

• varargin and varargout appear in the local function inch_2_cm, not in
the top-level function conv_2_metric.

• The index into varargin and varargout is a for-loop variable

For more information, see “Variable Length Argument Lists for Code
Generation” on page 14-10.

14-6

Implement Wrapper Functions

Implement Wrapper Functions
You can use varargin and varargout to write wrapper functions that accept
up to 64 inputs and pass them directly to another function.

Passing Variable Numbers of Arguments from One
Function to Another
The following example passes a variable number of inputs to different
optimization functions, based on a specified input method:

%#codegen
function answer = fcn(method,a,b,c)
answer = optimize(method,a,b,c);

function answer = optimize(method,varargin)
if strcmp(method,'simple')

answer = simple_optimization(varargin{:});
else

answer = complex_optimization(varargin{:});
end

...

Key Points About the Example

• You can use {:} to read all elements of varargin and pass them to another
function.

• You can mix variable and fixed numbers of arguments.

For more information, see “Variable Length Argument Lists for Code
Generation” on page 14-10.

14-7

14 Defining Functions for Code Generation

Pass Property/Value Pairs
You can use varargin to pass property/value pairs in functions. However,
for code generation, you must take precautions to avoid type mismatch errors
when evaluating varargin array elements in a for-loop:

If Do This:

You assign varargin array elements
to local variables in the for-loop

Verify that for all pairs, the size,
type, and complexity are the same
for each property and the same for
each value

Properties or values have different
sizes, types, or complexity

Do not assign varargin array
elements to local variables in a
for-loop; reference the elements
directly

For example, in the following function test1, the sizes of the property strings
and numeric values are not the same in each pair:

%#codegen
function test1

v = create_value('size', 18, 'rgb', [240 9 44]);
end

function v = create_value(varargin)
v = new_value();
for i = 1 : 2 : length(varargin)

name = varargin{i};
value = varargin{i+1};
switch name

case 'size'
v = set_size(v, value);

case 'rgb'
v = set_color(v, value);

otherwise
end

end
end

14-8

Pass Property/Value Pairs

...

Generated code determines the size, type, and complexity of a local variable
based on its first assignment. In this example, the first assignments occur
in the first iteration of the for-loop:

• Defines local variable name with size equal to 4

• Defines local variable value with a size of scalar

However, in the second iteration, the size of the property string changes to
3 and the size of the numeric value changes to a vector, resulting in a type
mismatch error. To avoid such errors, reference varargin array values
directly, not through local variables, as highlighted in this code:

%#codegen
function test1

v = create_value('size', 18, 'rgb', [240 9 44]);
end

function v = create_value(varargin)
v = new_value();
for i = 1 : 2 : length(varargin)

switch varargin{i}
case 'size'

v = set_size(v, varargin{i+1});
case 'rgb'

v = set_color(v, varargin{i+1});
otherwise

end
end

end
...

14-9

14 Defining Functions for Code Generation

Variable Length Argument Lists for Code Generation
Use variable length argument lists in top-level functions according to
guidelines

When you use varargin and varargout for code generation, there are the
following limitations:

• You cannot use varargout in the function definition for a top-level function.

• You cannot use varargin in the function definition for a top-level function
in a MATLAB Function block in a Simulink model, or in a MATLAB
function in a Stateflow diagram.

• If you use varargin to define an argument to a top-level function, the
code generation software generates the function with a fixed number of
arguments. This fixed number of arguments is based on the number of
example arguments that you provide on the command line or in a MATLAB
Coder project test file.

A top-level function is:

• The function called by Simulink in a MATLAB Function block or by
Stateflow in a MATLAB function.

• The function that you provide on the command line to codegen or fiaccel.

For example, the following code generates compilation errors:

%#codegen
function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

To fix the problem, write a top-level function that specifies a fixed number
of inputs and outputs. Then call inch_2_cm as an external function or local
function, as in this example:

%#codegen
function [cmL, cmW, cmH] = conv_2_metric(inL, inW, inH)
[cmL, cmW, cmH] = inch_2_cm(inL, inW, inH);

14-10

Variable Length Argument Lists for Code Generation

function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

Use curly braces {} to index into the argument list

For code generation, you can use curly braces {}, but not parentheses (),
to index into varargin and varargout arrays. For more information, see
“Supported Index Expressions” on page 14-3.

Verify that indices can be computed at compile time

If you use an expression to index into varargin or varargout, make sure that
the value of the expression can be computed at compile time. For examples,
see “Apply Operations to a Variable Number of Arguments” on page 14-4.

Do not write to varargin

Generated code treats varargin as a read-only variable. If you want to write
to input arguments, copy the values into a local variable.

14-11

14 Defining Functions for Code Generation

14-12

15

Defining MATLAB
Variables for C/C++ Code
Generation

• “Variables Definition for Code Generation” on page 15-2

• “Best Practices for Defining Variables for C/C++ Code Generation” on page
15-3

• “Eliminate Redundant Copies of Variables in Generated Code” on page 15-7

• “Reassignment of Variable Properties” on page 15-9

• “Define and Initialize Persistent Variables” on page 15-10

• “Reuse the Same Variable with Different Properties” on page 15-11

• “Avoid Overflows in for-Loops” on page 15-16

• “Supported Variable Types” on page 15-18

15 Defining MATLAB® Variables for C/C++ Code Generation

Variables Definition for Code Generation
In the MATLAB language, variables can change their properties dynamically
at run time so you can use the same variable to hold a value of any class, size,
or complexity. For example, the following code works in MATLAB:

function x = foo(c) %#codegen
if(c>0)

x = 0;
else

x = [1 2 3];
end
disp(x);
end

However, statically-typed languages like C must be able to determine variable
properties at compile time. Therefore, for C/C++ code generation, you must
explicitly define the class, size, and complexity of variables in MATLAB
source code before using them. For example, rewrite the above source code
with a definition for x:

function x = foo(c) %#codegen
x = zeros(1,3);
if(c>0)

x = 0;
else

x = [1 2 3];
end
disp(x);
end

For more information, see “Best Practices for Defining Variables for C/C++
Code Generation” on page 15-3.

15-2

Best Practices for Defining Variables for C/C++ Code Generation

Best Practices for Defining Variables for C/C++ Code
Generation

In this section...

“Define Variables By Assignment Before Using Them” on page 15-3

“Use Caution When Reassigning Variables” on page 15-6

“Use Type Cast Operators in Variable Definitions” on page 15-6

“Define Matrices Before Assigning Indexed Variables” on page 15-6

Define Variables By Assignment Before Using Them
For C/C++ code generation, you should explicitly and unambiguously define
the class, size, and complexity of variables before using them in operations or
returning them as outputs. Define variables by assignment, but note that the
assignment copies not only the value, but also the size, class, and complexity
represented by that value to the new variable. For example:

Assignment: Defines:

a = 14.7; a as a real double scalar.

b = a; b with properties of a (real double
scalar).

c = zeros(5,2); c as a real 5-by-2 array of doubles.

d = [1 2 3 4 5; 6 7 8 9 0]; d as a real 5-by-2 array of doubles.

y = int16(3); y as a real 16-bit integer scalar.

Define properties this way so that the variable is defined on the required
execution paths during C/C++ code generation (see Defining a Variable for
Multiple Execution Paths on page 15-4).

The data that you assign to a variable can be a scalar, matrix, or structure. If
your variable is a structure, define the properties of each field explicitly (see
Defining Fields in a Structure on page 15-5).

15-3

15 Defining MATLAB® Variables for C/C++ Code Generation

Initializing the new variable to the value of the assigned data sometimes
results in redundant copies in the generated code. To avoid redundant
copies, you can define variables without initializing their values by using the
coder.nullcopy construct as described in “Eliminate Redundant Copies of
Variables in Generated Code” on page 15-7.

When you define variables, they are local by default; they do not persist
between function calls. To make variables persistent, see “Define and
Initialize Persistent Variables” on page 15-10.

Defining a Variable for Multiple Execution Paths

Consider the following MATLAB code:

...
if c > 0

x = 11;
end
% Later in your code ...
if c > 0

use(x);
end
...

Here, x is assigned only if c > 0 and used only when c > 0. This code
works in MATLAB, but generates a compilation error during code generation
because it detects that x is undefined on some execution paths (when c <= 0),.

To make this code suitable for code generation, define x before using it:

x = 0;
...
if c > 0

x = 11;
end
% Later in your code ...
if c > 0

use(x);
end
...

15-4

Best Practices for Defining Variables for C/C++ Code Generation

Defining Fields in a Structure

Consider the following MATLAB code:

...
if c > 0

s.a = 11;
disp(s);

else
s.a = 12;
s.b = 12;

end
% Try to use s
use(s);
...

Here, the first part of the if statement uses only the field a, and the else
clause uses fields a and b. This code works in MATLAB, but generates a
compilation error during C/C++ code generation because it detects a structure
type mismatch. To prevent this error, do not add fields to a structure after
you perform certain operations on the structure. For more information, see
“Structure Definition for Code Generation” on page 20-2.

To make this code suitable for C/C++ code generation, define all fields of
s before using it.

...
% Define all fields in structure s
s = struct(a ,0, b , 0);
if c > 0

s.a = 11;
disp(s);

else
s.a = 12;
s.b = 12;

end
% Use s
use(s);
...

15-5

15 Defining MATLAB® Variables for C/C++ Code Generation

Use Caution When Reassigning Variables
In general, you should adhere to the "one variable/one type" rule for C/C++
code generation; that is, each variable must have a specific class, size and
complexity. Generally, if you reassign variable properties after the initial
assignment, you get a compilation error during code generation, but there
are exceptions, as described in “Reassignment of Variable Properties” on
page 15-9.

Use Type Cast Operators in Variable Definitions
By default, constants are of type double. To define variables of other types,
you can use type cast operators in variable definitions. For example, the
following code defines variable y as an integer:

...
x = 15; % x is of type double by default.
y = uint8(x); % y has the value of x, but cast to uint8.
...

Define Matrices Before Assigning Indexed Variables
When generating C/C++ code from MATLAB, you cannot grow a variable by
writing into an element beyond its current size. Such indexing operations
produce run-time errors. You must define the matrix first before assigning
values to its elements.

For example, the following initial assignment is not allowed for code
generation:

g(3,2) = 14.6; % Not allowed for creating g
% OK for assigning value once created

For more information about indexing matrices, see “Incompatibility with
MATLAB in Matrix Indexing Operations for Code Generation” on page 22-33.

15-6

Eliminate Redundant Copies of Variables in Generated Code

Eliminate Redundant Copies of Variables in Generated
Code

In this section...

“When Redundant Copies Occur” on page 15-7

“How to Eliminate Redundant Copies by Defining Uninitialized Variables”
on page 15-7

“Defining Uninitialized Variables” on page 15-8

When Redundant Copies Occur
During C/C++ code generation, MATLAB checks for statements that attempt
to access uninitialized memory. If it detects execution paths where a variable
is used but is potentially not defined, it generates a compile-time error. To
prevent these errors, define variables by assignment before using them in
operations or returning them as function outputs.

Note, however, that variable assignments not only copy the properties of the
assigned data to the new variable, but also initialize the new variable to the
assigned value. This forced initialization sometimes results in redundant
copies in C/C++ code. To eliminate redundant copies, define uninitialized
variables by using the coder.nullcopy function, as described in “How to
Eliminate Redundant Copies by Defining Uninitialized Variables” on page
15-7.

How to Eliminate Redundant Copies by Defining
Uninitialized Variables
1 Define the variable with coder.nullcopy.

2 Initialize the variable before reading it.

When the uninitialized variable is an array, you must initialize all of its
elements before passing the array as an input to a function or operator
— even if the function or operator does not read from the uninitialized
portion of the array.

15-7

15 Defining MATLAB® Variables for C/C++ Code Generation

What happens if you access uninitialized data?

Uninitialized memory contains arbitrary values. Therefore, accessing
uninitialized data may lead to segmentation violations or nondeterministic
program behavior (different runs of the same program may yield
inconsistent results).

Defining Uninitialized Variables
In the following code, the assignment statement X = zeros(1,N) not only
defines X to be a 1-by-5 vector of real doubles, but also initializes each element
of X to zero.

function X = fcn %#codegen

N = 5;
X = zeros(1,N);
for i = 1:N

if mod(i,2) == 0
X(i) = i;

else
X(i) = 0;

end
end

This forced initialization creates an extra copy in the generated code. To
eliminate this overhead, use coder.nullcopy in the definition of X:

function X = fcn2 %#codegen

N = 5;
X = coder.nullcopy(zeros(1,N));
for i = 1:N

if mod(i,2) == 0
X(i) = i;

else
X(i) = 0;

end
end

15-8

Reassignment of Variable Properties

Reassignment of Variable Properties
For C/C++ code generation, there are certain variables that you can reassign
after the initial assignment with a value of different class, size, or complexity:

Dynamically sized variables

A variable can hold values that have the same class and complexity but
different sizes. If the size of the initial assignment is not constant, the
variable is dynamically sized in generated code. For more information, see
“Variable-Size Data”.

Variables reused in the code for different purposes

You can reassign the type (class, size, and complexity) of a variable after the
initial assignment if each occurrence of the variable can have only one type.
In this case, the variable is renamed in the generated code to create multiple
independent variables. For more information, see “Reuse the Same Variable
with Different Properties” on page 15-11.

15-9

15 Defining MATLAB® Variables for C/C++ Code Generation

Define and Initialize Persistent Variables
Persistent variables are local to the function in which they are defined,
but they retain their values in memory between calls to the function. To
define persistent variables for C/C++ code generation, use the persistent
statement, as in this example:

persistent PROD_X;

The definition should appear at the top of the function body, after the
header and comments, but before the first use of the variable. During code
generation, the value of the persistent variable is initialized to an empty
matrix by default. You can assign your own value after the definition by using
the isempty statement, as in this example:

function findProduct(inputvalue) %#codegen
persistent PROD_X

if isempty(PROD_X)
PROD_X = 1;

end
PROD_X = PROD_X * inputvalue;
end

15-10

Reuse the Same Variable with Different Properties

Reuse the Same Variable with Different Properties

In this section...

“When You Can Reuse the Same Variable with Different Properties” on
page 15-11

“When You Cannot Reuse Variables” on page 15-12

“Limitations of Variable Reuse” on page 15-14

When You Can Reuse the Same Variable with
Different Properties
You can reuse (reassign) an input, output, or local variable with different
class, size, or complexity if MATLAB can unambiguously determine the
properties of each occurrence of this variable during C/C++ code generation.
If so, MATLAB creates separate uniquely named local variables in the
generated code. You can view these renamed variables in the code generation
report (see “Use Fixed-Point Code Generation Reports” on page 9-42).

A common example of variable reuse is in if-elseif-else or switch-case
statements. For example, the following function example1 first uses the
variable t in an if statement, where it holds a scalar double, then reuses t
outside the if statement to hold a vector of doubles.

function y = example1(u) %#codegen
if all(all(u>0))

% First, t is used to hold a scalar double value
t = mean(mean(u)) / numel(u);
u = u - t;

end
% t is reused to hold a vector of doubles
t = find(u > 0);
y = sum(u(t(2:end-1)));

To compile this example and see how MATLAB renames the reused variable t,
see Variable Reuse in an if Statement on page 15-12.

15-11

15 Defining MATLAB® Variables for C/C++ Code Generation

When You Cannot Reuse Variables
You cannot reuse (reassign) variables if it is not possible to determine the
class, size, and complexity of an occurrence of a variable unambiguously
during code generation. In this case, variables cannot be renamed and a
compilation error occurs.

For example, the following example2 function assigns a fixed-point value to
x in the if statement and reuses x to store a matrix of doubles in the else
clause. It then uses x after the if-else statement. This function generates a
compilation error because after the if-else statement, variable x can have
different properties depending on which if-else clause executes.

function y = example2(use_fixpoint, data) %#codegen
if use_fixpoint
% x is fixed-point

x = fi(data, 1, 12, 3);
else

% x is a matrix of doubles
x = data;

end
% When x is reused here, it is not possible to determine its
% class, size, and complexity
t = sum(sum(x));
y = t > 0;

end

Variable Reuse in an if Statement

To see how MATLAB renames a reused variable t:

1 Create a MATLAB file example1.m containing the following code.

function y = example1(u) %#codegen
if all(all(u>0))

% First, t is used to hold a scalar double value
t = mean(mean(u)) / numel(u);
u = u - t;

end
% t is reused to hold a vector of doubles
t = find(u > 0);

15-12

Reuse the Same Variable with Different Properties

y = sum(u(t(2:end-1)));
end

2 Compile example1.

For example, to generate a MEX function, enter:

codegen -o example1x -report example1.m -args {ones(5,5)}

Note codegen requires a MATLAB Coder license.

When the compilation is complete, codegen generates a MEX function,
example1x in the current folder, and provides a link to the code generation
report.

3 Open the code generation report.

4 In the MATLAB code pane of the code generation report, place your pointer
over the variable t inside the if statement.

The code generation report highlights both instances of t in the if
statement because they share the same class, size, and complexity. It
displays the data type information for t at this point in the code. Here,
t is a scalar double.

5 In the MATLAB code pane of the report, place your pointer over the
variable t outside the for-loop.

15-13

15 Defining MATLAB® Variables for C/C++ Code Generation

This time, the report highlights both instances of t outside the if
statement. The report indicates that tmight hold up to 25 doubles. The size
of t is :25, that is, a column vector containing a maximum of 25 doubles.

6 Click the Variables tab to view the list of variables used in example1.

The report displays a list of the variables in example1. There are two
uniquely named local variables t>1 and t>2.

7 In the list of variables, place your pointer over t>1.

The code generation report highlights both instances of t in the if
statement.

8 In the list of variables, place your pointer over t>2

The code generation report highlights both instances of t outside the if
statement.

Limitations of Variable Reuse
The following variables cannot be renamed in generated code:

• Persistent variables.

• Global variables.

• Variables passed to C code using coder.ref, coder.rref, coder.wref.

• Variables whose size is set using coder.varsize.

• Variables whose names are controlled using coder.cstructname.

• The index variable of a for-loop when it is used inside the loop body.

15-14

Reuse the Same Variable with Different Properties

• The block outputs of a MATLAB Function block in a Simulink model.

• Chart-owned variables of a MATLAB function in a Stateflow chart.

15-15

15 Defining MATLAB® Variables for C/C++ Code Generation

Avoid Overflows in for-Loops
When memory integrity checks are enabled, if the code generation software
detects that a loop variable might overflow on the last iteration of the
for-loop, it reports an error.

To avoid this error, use the workarounds provided in the following table.

Loop conditions causing the
error

Workaround

• The loop counter increments by 1

• The end value equals the
maximum value of the integer
type

• The loop is not covering the full
range of the integer type

Rewrite the loop so that the end
value is not equal to the maximum
value of the integer type. For
example, replace:

N=intmax('int16')
for k=N-10:N

with:

for k=1:10

• The loop counter decrements by 1

• The end value equals the
minimum value of the integer
type

• The loop is not covering the full
range of the integer type

Rewrite the loop so that the end
value is not equal to the minimum
value of the integer type. For
example, replace:

N=intmin('int32')
for k=N+10:-1:N

with:

for k=10:-1:1

15-16

Avoid Overflows in for-Loops

Loop conditions causing the
error

Workaround

• The loop counter increments or
decrements by 1

• The start value equals the
minimum or maximum value of
the integer type

• The end value equals the
maximum or minimum value of
the integer type

The loop covers the full range of the
integer type.

Rewrite the loop casting the type
of the loop counter start, step, and
end values to a bigger integer or to
double For example, rewrite:

M= intmin('int16');
N= intmax('int16');
for k=M:N
% Loop body

end

to

M= intmin('int16');
N= intmax('int16');
for k=int32(M):int32(N)
% Loop body

end

• The loop counter increments or
decrements by a value not equal
to 1

• On last loop iteration, the loop
variable value is not equal to the
end value

Note The software error checking
is conservative. It may incorrectly
report a loop as being potentially
infinite.

Rewrite the loop so that the loop
variable on the last loop iteration is
equal to the end value.

15-17

15 Defining MATLAB® Variables for C/C++ Code Generation

Supported Variable Types
You can use the following data types for C/C++ code generation from
MATLAB:

Type Description

char Character array (string)

complex Complex data. Cast function takes real and imaginary
components

double Double-precision floating point

int8, int16, int32,
int64

Signed integer

logical Boolean true or false

single Single-precision floating point

struct Structure

uint8, uint16,
uint32, uint64

Unsigned integer

Fixed-point See “Fixed-Point Data Types” on page 1-2.

15-18

16

Design Considerations for
C/C++ Code Generation

• “When to Generate Code from MATLAB Algorithms” on page 16-2

• “Which Code Generation Feature to Use” on page 16-4

• “Prerequisites for C/C++ Code Generation from MATLAB” on page 16-6

• “MATLAB Code Design Considerations for Code Generation” on page 16-7

• “Differences in Behavior After Compiling MATLAB Code” on page 16-9

• “MATLAB Language Features Supported for C/C++ Code Generation” on
page 16-13

16 Design Considerations for C/C++ Code Generation

When to Generate Code from MATLAB Algorithms
Generating code from MATLAB algorithms for desktop and embedded
systems allows you to perform your software design, implementation, and
testing completely within the MATLAB workspace. You can:

• Verify that your algorithms are suitable for code generation

• Generate efficient, readable, and compact C/C++ code automatically, which
eliminates the need to manually translate your MATLAB algorithms and
minimizes the risk of introducing errors in the code.

• Modify your design in MATLAB code to take into account the specific
requirements of desktop and embedded applications, such as data type
management, memory use, and speed.

• Test the generated code and easily verify that your modified algorithms are
functionally equivalent to your original MATLAB algorithms.

• Generate MEX functions to:

- Accelerate MATLAB algorithms in certain applications.

- Speed up fixed-point MATLAB code.

• Generate hardware description language (HDL) from MATLAB code.

When Not to Generate Code from MATLAB Algorithms
Do not generate code from MATLAB algorithms for the following applications.
Use the recommended MathWorks product instead.

To: Use:

Deploy an application that uses
handle graphics

MATLAB Compiler™

Use Java® MATLAB Builder™ JA

Use toolbox functions that do not
support code generation

Toolbox functions that you rewrite for
desktop and embedded applications

Deploy MATLAB based GUI
applications on a supported
MATLAB host

MATLAB Compiler

16-2

When to Generate Code from MATLAB® Algorithms

To: Use:

Deploy web-based or Windows
applications

• MATLAB Builder NE

• MATLAB Builder JA

Interface C code with MATLAB MATLAB mex function

16-3

16 Design Considerations for C/C++ Code Generation

Which Code Generation Feature to Use

To... Use... Required Product To Explore Further...

Generate MEX
functions for verifying
generated code

codegen function MATLAB Coder Try this in “MEX
Function Generation
at the Command
Line”.

MATLAB Coder user
interface

MATLAB Coder Try this in “C Code
Generation Using the
Project Interface”.

Produce readable,
efficient, and compact
code from MATLAB
algorithms for
deployment to desktop
and embedded
systems.

codegen function MATLAB Coder Try this in “C Code
Generation at the
Command Line”.

MATLAB Coder user
interface

MATLAB CoderGenerate MEX
functions to accelerate
MATLAB algorithms codegen function MATLAB Coder

See “Accelerate
MATLAB
Algorithms”.

Integrate MATLAB
code into Simulink

MATLAB Function
block

Simulink Try this in “Track
Object Using
MATLAB Code”.

Speed up fixed-point
MATLAB code

fiaccel function Fixed-Point Designer Learn more in “Code
Acceleration and
Code Generation from
MATLAB” on page
9-3.

Integrate custom C
code into MATLAB
and generate efficient,
readable code

codegen function MATLAB Coder Learn more in
“Specify External
File Locations”.

16-4

Which Code Generation Feature to Use

To... Use... Required Product To Explore Further...

Integrate custom
C code into code
generated from
MATLAB

coder.ceval function MATLAB Coder Learn more in
coder.ceval.

Generate HDL from
MATLAB code

MATLAB Function
block

Simulink and
HDL Coder™

Learn more at
www.mathworks.com/
products/slhdlcoder.

16-5

http://www.mathworks.com/products/slhdlcoder/
http://www.mathworks.com/products/slhdlcoder/

16 Design Considerations for C/C++ Code Generation

Prerequisites for C/C++ Code Generation from MATLAB
To generate C/C++ or MEX code from MATLAB algorithms, you must install
the following software:

• MATLAB Coder product

• C/C++ compiler

16-6

MATLAB® Code Design Considerations for Code Generation

MATLAB Code Design Considerations for Code Generation
When writing MATLAB code that you want to convert into efficient,
standalone C/C++ code, you must consider the following:

• Data types

C and C++ use static typing. To determine the types of your variables before
use, MATLAB Coder requires a complete assignment to each variable.

• Array sizing

Variable-size arrays and matrices are supported for code generation. You
can define inputs, outputs, and local variables in MATLAB functions to
represent data that varies in size at run time.

• Memory

You can choose whether the generated code uses static or dynamic memory
allocation.

With dynamic memory allocation, you potentially use less memory at the
expense of time to manage the memory. With static memory, you get
better speed, but with higher memory usage. Most MATLAB code takes
advantage of the dynamic sizing features in MATLAB, therefore dynamic
memory allocation typically enables you to generate code from existing
MATLAB code without modifying it much. Dynamic memory allocation also
allows some programs to compile even when upper bounds cannot be found.

Static allocation reduces the memory footprint of the generated code, and
therefore is suitable for applications where there is a limited amount of
available memory, such as embedded applications.

• Speed

Because embedded applications must run in real time, the code must be
fast enough to meet the required clock rate.

To improve the speed of the generated code:

- Choose a suitable C/C++ compiler. Do not use the default compiler that
MathWorks supplies with MATLAB for Windows 32-bit platforms.

- Consider disabling run-time checks.

16-7

16 Design Considerations for C/C++ Code Generation

By default, for safety, the code generated for your MATLAB code
contains memory integrity checks and responsiveness checks. Generally,
these checks result in more generated code and slower simulation.
Disabling run-time checks usually results in streamlined generated code
and faster simulation. Disable these checks only if you have verified that
array bounds and dimension checking is unnecessary.

See Also

• “Data Definition Basics”

• “Variable-Size Data”

• “Bounded Versus Unbounded Variable-Size Data” on page 22-4

• “Control Dynamic Memory Allocation” on page 9-85

• “Control Run-Time Checks” on page 9-62

16-8

Differences in Behavior After Compiling MATLAB® Code

Differences in Behavior After Compiling MATLAB Code

In this section...

“Why Are There Differences?” on page 16-9

“Character Size” on page 16-9

“Order of Evaluation in Expressions” on page 16-9

“Termination Behavior” on page 16-10

“Size of Variable-Size N-D Arrays” on page 16-10

“Size of Empty Arrays” on page 16-11

“Floating-Point Numerical Results” on page 16-11

“NaN and Infinity Patterns” on page 16-12

“Code Generation Target” on page 16-12

“MATLAB Class Initial Values” on page 16-12

“Variable-Size Support for Code Generation” on page 16-12

Why Are There Differences?
To convert MATLAB code to C/C++ code that works efficiently, the code
generation process introduces optimizations that intentionally cause the
generated code to behave differently — and sometimes produce different
results — from the original source code. This section describes these
differences.

Character Size
MATLAB supports 16-bit characters, but the generated code represents
characters in 8 bits, the standard size for most embedded languages like C.
See “Code Generation for Characters” on page 13-7.

Order of Evaluation in Expressions
Generated code does not enforce order of evaluation in expressions. For most
expressions, order of evaluation is not significant. However, for expressions
with side effects, the generated code may produce the side effects in different

16-9

16 Design Considerations for C/C++ Code Generation

order from the original MATLAB code. Expressions that produce side effects
include those that:

• Modify persistent or global variables

• Display data to the screen

• Write data to files

• Modify the properties of handle class objects

In addition, the generated code does not enforce order of evaluation of logical
operators that do not short circuit.

For more predictable results, it is good coding practice to split expressions
that depend on the order of evaluation into multiple statements. For example,
rewrite:

A = f1() + f2();

as

A = f1();
A = A + f2();

so that the generated code calls f1 before f2.

Termination Behavior
Generated code does not match the termination behavior of MATLAB source
code. For example, optimizations remove infinite loops from generated code if
they do not have side effects. As a result, the generated code may terminate
even though the corresponding MATLAB code does not.

Size of Variable-Size N-D Arrays
For variable-size N-D arrays, the size function might return a different
result in generated code than in MATLAB source code. The size function
sometimes returns trailing ones (singleton dimensions) in generated code, but
always drops trailing ones in MATLAB. For example, for an N-D array X with
dimensions [4 2 1 1], size(X) might return [4 2 1 1] in generated code,

16-10

Differences in Behavior After Compiling MATLAB® Code

but always returns [4 2] in MATLAB. See “Incompatibility with MATLAB in
Determining Size of Variable-Size N-D Arrays” on page 22-29.

Size of Empty Arrays
The size of an empty array in generated code might be different from its size
in MATLAB source code. See “Incompatibility with MATLAB in Determining
Size of Empty Arrays” on page 22-30.

Floating-Point Numerical Results
The generated code might not produce the same floating-point numerical
results as MATLAB in the following situations:

When computer hardware uses extended precision registers

Results vary depending on how the C/C++ compiler allocates extended
precision floating-point registers. Computation results might not match
MATLAB calculations because of different compiler optimization settings or
different code surrounding the floating-point calculations.

For certain advanced library functions

The generated code might use different algorithms to implement certain
advanced library functions, such as fft, svd, eig, mldivide, and mrdivide.

For example, the generated code uses a simpler algorithm to implement
svd to accommodate a smaller footprint. Results might also vary according
to matrix properties. For example, MATLAB might detect symmetric or
Hermitian matrices at run time and switch to specialized algorithms that
perform computations faster than implementations in the generated code.

For implementation of BLAS library functions

For implementations of BLAS library functions. Generated C/C++ code uses
reference implementations of BLAS functions, which may produce different
results from platform-specific BLAS implementations in MATLAB.

16-11

16 Design Considerations for C/C++ Code Generation

NaN and Infinity Patterns
The generated code might not produce exactly the same pattern of NaN and inf
values as MATLAB code when these values are mathematically meaningless.
For example, if MATLAB output contains a NaN, output from the generated
code should also contain a NaN, but not necessarily in the same place.

Code Generation Target
The coder.target function returns different values in MATLAB than in the
generated code. The intent is to help you determine whether your function
is executing in MATLAB or has been compiled for a simulation or code
generation target. See coder.target.

MATLAB Class Initial Values
MATLAB computes class initial values at class loading time before code
generation. The code generation software uses the value that MATLAB
computed, it does not recompute the initial value. If the initialization uses
a function call to compute the initial value, the code generation software
does not execute this function. If the function modifies a global state, for
example, a persistent variable, code generation software might provide a
different initial value than MATLAB. For more information, see “Defining
Class Properties for Code Generation” on page 12-4.

Variable-Size Support for Code Generation
For incompatibilities with MATLAB in variable-size support for code
generation, see:

• “Incompatibility with MATLAB for Scalar Expansion”

• “Incompatibility with MATLAB in Determining Size of Variable-Size N-D
Arrays”

• “Incompatibility with MATLAB in Determining Size of Empty Arrays”

• “Incompatibility with MATLAB in Vector-Vector Indexing”

• “Incompatibility with MATLAB in Matrix Indexing Operations for Code
Generation”

16-12

MATLAB® Language Features Supported for C/C++ Code Generation

MATLAB Language Features Supported for C/C++ Code
Generation

MATLAB supports the following language features in generated code:

• N-dimensional arrays

• Matrix operations, including deletion of rows and columns

• Variable-sized data (see “Variable-Size Data Definition for Code
Generation” on page 22-3)

• Subscripting (see “Incompatibility with MATLAB in Matrix Indexing
Operations for Code Generation” on page 22-33)

• Complex numbers (see “Code Generation for Complex Data” on page 13-4)

• Numeric classes (see “Supported Variable Types” on page 15-18)

• Double-precision, single-precision, and integer math

• Fixed-point arithmetic (see “Code Acceleration and Code Generation from
MATLAB” on page 9-3)

• Program control statements if, switch, for, while, and break

• Arithmetic, relational, and logical operators

• Local functions

• Persistent variables (see “Define and Initialize Persistent Variables” on
page 15-10)

• Global variables.

• Structures

• Characters (see “Code Generation for Characters” on page 13-7)

• Function handles

• Frames

• Variable length input and output argument lists

• Subset of MATLAB toolbox functions

• MATLAB classes

16-13

16 Design Considerations for C/C++ Code Generation

• Ability to call functions (see “Resolution of Function Calls for Code
Generation” on page 11-2)

MATLAB Language Features Not Supported for C/C++
Code Generation
MATLAB does not support the following features in generated code:

• Anonymous functions

• Cell arrays

• Java

• Nested functions

• Recursion

• Sparse matrices

• try/catch statements

16-14

17

Code Generation for
Enumerated Data

• “Enumerated Data Definition for Code Generation” on page 17-2

• “Enumerated Types Supported for Code Generation” on page 17-3

• “When to Use Enumerated Data for Code Generation” on page 17-5

• “Generate Code for Enumerated Data from MATLAB Algorithms” on page
17-6

• “Define Enumerated Data for Code Generation” on page 17-8

• “Instantiate Enumerated Types for Code Generation” on page 17-10

• “Operations on Enumerated Data for Code Generation” on page 17-11

• “Include Enumerated Data in Control Flow Statements” on page 17-14

• “Customize Enumerated Types Based on int32” on page 17-20

• “Control Names of Enumerated Type Values in Generated Code” on page
17-26

• “Change and Reload Enumerated Data Types” on page 17-28

• “Restrictions on Use of Enumerated Data in for-Loops” on page 17-29

• “Toolbox Functions That Support Enumerated Types for Code Generation”
on page 17-30

17 Code Generation for Enumerated Data

Enumerated Data Definition for Code Generation
To generate efficient standalone code for enumerated data, you must define
and use enumerated types differently than you normally would when running
your code in the MATLAB environment:

What’s Different More Information

Supports integer-based enumerated
types only

“Enumerated Types Supported for
Code Generation” on page 17-3

Name of each enumerated data type
must be unique

“Naming Enumerated Types for
Code Generation” on page 17-9

Each enumerated data type must
be defined in a separate file on the
MATLAB path

“Define Enumerated Data for Code
Generation” on page 17-8 and “How
to Generate Code for Enumerated
Data” on page 17-6

Restricted set of operations “Operations on Enumerated Data for
Code Generation” on page 17-11

Restricted use in for-loops “Restrictions on Use of Enumerated
Data in for-Loops” on page 17-29

17-2

Enumerated Types Supported for Code Generation

Enumerated Types Supported for Code Generation

Enumerated Type Based on int32
This enumerated data type is based on the built-in type int32. Use this
enumerated type when generating code from MATLAB algorithms.

Syntax

classdef(Enumeration) type_name < int32

Example

classdef(Enumeration) PrimaryColors < int32
enumeration

Red(1),
Blue(2),
Yellow(4)

end
end

In this example, the statement classdef(Enumeration) PrimaryColors
< int32 means that the enumerated type PrimaryColors is based on the
built-in type int32. As such, PrimaryColors inherits the characteristics
of the int32 type, as well as defining its own unique characteristics. For
example, PrimaryColors is restricted to three enumerated values:

Enumerated Value Enumerated Name Underlying Numeric
Value

Red(1) Red 1

Blue(2) Blue 2

Yellow(4) Yellow 4

How to Use
Define enumerated data in MATLAB code and compile the source file. For
example, to generate C/C++ code from your MATLAB source, you can use

17-3

17 Code Generation for Enumerated Data

codegen, as described in “Generate Code for Enumerated Data from MATLAB
Algorithms” on page 17-6.

Note codegen requires a MATLAB Coder license.

17-4

When to Use Enumerated Data for Code Generation

When to Use Enumerated Data for Code Generation
You can use enumerated types to represent program states and to control
program logic, especially when you need to restrict data to a finite set of
values and refer to these values by name. Even though you can sometimes
achieve these goals by using integers or strings, enumerated types offer the
following advantages:

• Provide more readable code than integers

• Allow more robust error checking than integers or strings

For example, if you mistype the name of an element in the enumerated
type, you get a compile-time error that the element does not belong to the
set of allowable values.

• Produce more efficient code than strings

For example, comparisons of enumerated values execute faster than
comparisons of strings.

17-5

17 Code Generation for Enumerated Data

Generate Code for Enumerated Data from MATLAB
Algorithms

Step Action How?

1
Define an enumerated data type
that inherits from int32.

See “Define Enumerated Data for
Code Generation” on page 17-8.

2
Instantiate the enumerated type
in your MATLAB algorithm.

See “Instantiate Enumerated
Types for Code Generation” on
page 17-10.

3
Compile the function with
codegen.

See “How to Generate Code for
Enumerated Data” on page 17-6.

This workflow requires a MATLAB Coder license.

How to Generate Code for Enumerated Data
Use the command codegen to generate MEX, C, or C++ code from the
MATLAB algorithm that contains the enumerated data (requires a MATLAB
Coder license). Each enumerated data type must be defined on the MATLAB
path in a separate file as a class derived from the built-in type int32. See
“Define Enumerated Data for Code Generation” on page 17-8.

If your function has inputs, you must specify the properties of these inputs
to codegen. For an enumerated data input, use the -args option to pass
one of its allowable values as a sample value. For example, the following
codegen command specifies that the function displayState takes one input
of enumerated data type sysMode.

codegen displayState -args {sysMode.ON}

After executing this command, codegen generates a platform-specific MEX
function that you can test in MATLAB. For example, to test displayState,
type the following command:

displayState(sysMode.OFF)

You should get the following result:

17-6

Generate Code for Enumerated Data from MATLAB® Algorithms

ans =

RED

17-7

17 Code Generation for Enumerated Data

Define Enumerated Data for Code Generation
Follow these steps to define enumerated data for code generation from
MATLAB algorithms:

1 Create a class definition file.

In the MATLAB Command Window, select File > New > Class.

2 Enter the class definition as follows:

classdef(Enumeration) EnumTypeName < int32

For example, the following code defines an enumerated type called sysMode:

classdef(Enumeration) sysMode < int32
...

end

EnumTypeName is a case-sensitive string that must be unique among data
type names and workspace variable names. It must inherit from the
built-in type int32.

3 Define enumerated values in an enumeration section as follows:

classdef(Enumeration) EnumTypeName < int32
enumeration

EnumName(N)
...

end
end

For example, the following code defines a set of two values for enumerated
type sysMode:

classdef(Enumeration) sysMode < int32
enumeration

OFF(0)
ON(1)

end
end

17-8

Define Enumerated Data for Code Generation

Each enumerated value consists of a string EnumName and an underlying
integer N. Each EnumName must be unique within its type, but can also
appear in other enumerated types. The underlying integers need not be
either consecutive or ordered, nor must they be unique within the type
or across types.

4 Save the file on the MATLAB path.

The name of the file must match the name of the enumerated data type.
The match is case sensitive.

To add a folder to the MATLAB search path, type addpath pathname at
the MATLAB command prompt. For more information, see “What Is the
MATLAB Search Path?”, addpath, and savepath.

For examples of enumerated data type definitions, see “Define Enumerated
Data for Code Generation” on page 17-8.

Naming Enumerated Types for Code Generation
You must use a unique name for each enumerated data type. The name of an
enumerated data type cannot match the name of a toolbox function supported
for code generation, or another data type or a variable in the MATLAB base
workspace. Otherwise, a name conflict occurs.

For example, you cannot name an enumerated data type mode because
MATLAB for code generation provides a toolbox function of the same name.

For a list of toolbox functions supported for code generation, see “Functions
and Objects Supported for C and C++ Code Generation — Alphabetical List”
on page 21-2.

17-9

17 Code Generation for Enumerated Data

Instantiate Enumerated Types for Code Generation
To instantiate an enumerated type for code generation from MATLAB
algorithms, use dot notation to specify ClassName.EnumName. For an example,
see “Include Enumerated Data in Control Flow Statements” on page 17-14.

17-10

Operations on Enumerated Data for Code Generation

Operations on Enumerated Data for Code Generation
To generate efficient standalone code for enumerated data, you are restricted
to the following operations. The examples are based on the definitions of the
enumeration type LEDcolor described in “Class Definition: LEDcolor” on
page 17-14.

Assignment Operator, =

Example Result

xon = LEDcolor.GREEN
xoff = LEDcolor.RED

xon =

GREEN
xoff =

RED

Relational Operators, < > <= >= == ~=

Example Result

xon == xoff ans =

0

xon <= xoff ans =

1

xon > xoff ans =

0

17-11

17 Code Generation for Enumerated Data

Cast Operation

Example Result

double(LEDcolor.RED) ans =

2

z = 2
y = LEDcolor(z)

z =

2

y =

RED

Indexing Operation

Example Result

m = [1 2]
n = LEDcolor(m)
p = n(LEDcolor.GREEN)

m =

1 2

n =

GREEN RED

p =

GREEN

17-12

Operations on Enumerated Data for Code Generation

Control Flow Statements: if, switch, while

Statement Example Executable
Example

if
if state == sysMode.ON

led = LEDcolor.GREEN;
else

led = LEDcolor.RED;
end

“if Statement with
Enumerated Data
Types” on page
17-14

switch
switch button

case VCRButton.Stop
state = VCRState.Stop;

case VCRButton.PlayOrPause
state = VCRState.Play;

case VCRButton.Next
state = VCRState.Forward;

case VCRButton.Previous
state = VCRState.Rewind;

otherwise
state = VCRState.Stop;

end

“switch Statement
with Enumerated
Data Types” on
page 17-15

while
while state ~= State.Ready

switch state
case State.Standby

initialize();
state = State.Boot;

case State.Boot
boot();
state = State.Ready;

end
end

“while Statement
with Enumerated
Data Types” on
page 17-18

17-13

17 Code Generation for Enumerated Data

Include Enumerated Data in Control Flow Statements
The following control statements work with enumerated operands in
generated code. However, there are restrictions (see “Restrictions on Use of
Enumerated Data in for-Loops” on page 17-29).

if Statement with Enumerated Data Types
This example is based on the definition of the enumeration types LEDcolor
and sysMode. The function displayState uses these enumerated data types
to activate an LED display.

Class Definition: sysMode

classdef(Enumeration) sysMode < int32
enumeration

OFF(0)
ON(1)

end
end

This definition must reside on the MATLAB path in a file with the same
name as the class, sysMode.m.

Class Definition: LEDcolor

classdef(Enumeration) LEDcolor < int32
enumeration

GREEN(1),
RED(2),

end
end

This definition must reside on the MATLAB path in a file called LEDcolor.m.

MATLAB Function: displayState
This function uses enumerated data to activate an LED display, based on the
state of a device. It lights a green LED display to indicate the ON state and
lights a red LED display to indicate the OFF state.

17-14

Include Enumerated Data in Control Flow Statements

function led = displayState(state)
%#codegen

if state == sysMode.ON
led = LEDcolor.GREEN;

else
led = LEDcolor.RED;

end

Build and Test a MEX Function for displayState

1 Generate a MEX function for displayState. Use the -args option to pass
one of the allowable values for the enumerated data input as a sample
value.

codegen displayState -args {sysMode.ON}

2 Test the function. For example,

displayState(sysMode.OFF)

You should get the following result:

ans =

RED

switch Statement with Enumerated Data Types
This example is based on the definition of the enumeration types VCRState
and VCRButton. The function VCR uses these enumerated data types to set
the state of the VCR.

Class Definition: VCRState

classdef(Enumeration) VCRState < int32
enumeration

Stop(0),
Pause(1),
Play(2),
Forward(3),

17-15

17 Code Generation for Enumerated Data

Rewind(4)
end

end

This definition must reside on the MATLAB path in a file with the same
name as the class, VCRState.m.

Class Definition: VCRButton

classdef(Enumeration) VCRButton < int32
enumeration

Stop(1),
PlayOrPause(2),
Next(3),
Previous(4)

end
end

This definition must reside on the MATLAB path in a file with the same name
as the class, VCRButton.m.

MATLAB Function: VCR
This function uses enumerated data to set the state of a VCR, based on the
initial state of the VCR and the state of the VCR button.

function s = VCR(button)
%#codegen

persistent state

if isempty(state)
state = VCRState.Stop;

end

switch state
case {VCRState.Stop, VCRState.Forward, VCRState.Rewind}

state = handleDefault(button);
case VCRState.Play

switch button

17-16

Include Enumerated Data in Control Flow Statements

case VCRButton.PlayOrPause, state = VCRState.Pause;
otherwise, state = handleDefault(button);

end
case VCRState.Pause

switch button
case VCRButton.PlayOrPause, state = VCRState.Play;
otherwise, state = handleDefault(button);

end
end
s = state;

function state = handleDefault(button)
switch button

case VCRButton.Stop, state = VCRState.Stop;
case VCRButton.PlayOrPause, state = VCRState.Play;
case VCRButton.Next, state = VCRState.Forward;
case VCRButton.Previous, state = VCRState.Rewind;
otherwise, state = VCRState.Stop;

end

Build and Test a MEX Function for VCR

1 Generate a MEX function for VCR. Use the -args option to pass one of the
allowable values for the enumerated data input as a sample value.

codegen -args {VCRButton.Stop} VCR

2 Test the function. For example,

s = VCR(VCRButton.Stop)

You should get the following result:

s =

Stop

17-17

17 Code Generation for Enumerated Data

while Statement with Enumerated Data Types
This example is based on the definition of the enumeration type State. The
function Setup uses this enumerated data type to set the state of a device.

Class Definition: State

classdef(Enumeration) State < int32
enumeration

Standby(0),
Boot(1),
Ready(2)

end
end

This definition must reside on the MATLAB path in a file with the same
name as the class, State.m.

MATLAB Function: Setup
The following function Setup uses enumerated data to set the state of a device.

function s = Setup(initState)
%#codegen

state = initState;

if isempty(state)
state = State.Standby;

end

while state ~= State.Ready
switch state

case State.Standby
initialize();
state = State.Boot;

case State.Boot
boot();
state = State.Ready;

end
end

17-18

Include Enumerated Data in Control Flow Statements

s = state;

function initialize()
% Perform initialization.

function boot()
% Boot the device.

Build and Test a MEX Executable for Setup

1 Generate a MEX executable for Setup. Use the -args option to pass one of
the allowable values for the enumerated data input as a sample value.

codegen Setup -args {State.Standby}

2 Test the function. For example,

s = Setup(State.Standby)

You should get the following result:

s =

Ready

17-19

17 Code Generation for Enumerated Data

Customize Enumerated Types Based on int32

About Customizing Enumerated Types
You can customize an enumerated type by using the same techniques that
work with MATLAB classes, as described in Modifying Superclass Methods
and Properties. A primary source of customization are the methods associated
with an enumerated type.

Enumerated class definitions can include an optional methods section.
You can override the following methods to customize the behavior of an
enumerated type. To override a method, include a customized version of the
method in the methods section in the enumerated class definition. If you do
not want to override the inherited methods, omit the methods section.

17-20

Customize Enumerated Types Based on int32

Method Description Default Value
Returned or
Specified

When to Use

addClassNameToEnumNames Specifies whether
the class name
becomes a prefix in
the generated code.

true — prefix is
used

If you do not want
the class name to
become a prefix
in the generated
code, override
this method to set
the return value
to false. See
“Control Names
of Enumerated
Type Values in
Generated Code” on
page 17-26.

getDefaultValue Returns the default
enumerated value.

'' If you want the
default value for the
enumerated type
to be something
other than the
first value listed
in the enumerated
class definition,
override this
method to specify a
default value. See
“Specify a Default
Enumerated Value”
on page 17-22.

17-21

17 Code Generation for Enumerated Data

Method Description Default Value
Returned or
Specified

When to Use

getHeaderFile Specifies the file
in which the
enumerated class
is defined for code
generation.

'' If you want to use
an enumerated
class definition
that is specified in
a custom header
file, override this
method to return
the path to this
header file. In
this case, the code
generation software
does not generate
the class definition.
See “Specify a
Header File” on
page 17-23

Specify a Default Enumerated Value
The code generation software and related generated code use an enumerated
data type’s default value when you do not provide an initial value.

Unless you specify otherwise, the default value for an enumerated type is the
first value in the enumerated class definition. To specify a different default
value, add your own getDefaultValue method to the methods section. The
following code shows a shell for the getDefaultValue method:

function retVal = getDefaultValue()
% GETDEFAULTVALUE Returns the default enumerated value.
% This value must be an instance of the enumerated class.
% If this method is not defined, the first enumerated value is used.

retVal = ThisClass.EnumName;
end

To customize this method, provide a value for ThisClass.EnumName that
specifies the desired default.ThisClass must be the name of the class within

17-22

Customize Enumerated Types Based on int32

which the method exists. EnumName must be the name of an enumerated value
defined in that class. For example:

classdef(Enumeration) LEDcolor < int32
enumeration

GREEN(1),
RED(2),

end
methods (Static)
function y = getDefaultValue()

y = LEDcolor.RED;
end

end
end

This example defines the default as LEDcolor.RED. If this method does not
appear, the default value would be LEDcolor.GREEN, because that is the first
value listed in the enumerated class definition.

Specify a Header File
To prevent the declaration of an enumerated type from being embedded in the
generated code, allowing you to provide the declaration in an external file,
include the following method in the enumerated class’s methods section:

function y = getHeaderFile()
% GETHEADERFILE File where type is defined for generated code.
% If specified, this file is #included where required in the code.
% Otherwise, the type is written out in the generated code.
y = 'filename';
end

Substitute a legal filename for filename. Be sure to provide a filename
suffix, typically .h. Providing the method replaces the declaration that would
otherwise have appeared in the generated code with a #include statement
like:

#include "imported_enum_type.h"

The getHeaderFile method does not create the declaration file itself. You
must provide a file of the specified name that declares the enumerated data

17-23

17 Code Generation for Enumerated Data

type. The file can also contain definitions of enumerated types that you do not
use in your MATLAB code.

For example, to use the definition of LEDcolor in my_LEDcolor.h:

1 Modify the definition of LEDcolor to override the getHeaderFile method
to return the name of the external header file:

classdef(Enumeration) LEDcolor < int32
enumeration

GREEN(1),
RED(2),

end

methods(Static)
function y=getHeaderFile()

y='my_LEDcolor.h';
end

end
end

2 In the current folder, provide a header file, my_LEDcolor.h, that contains
the definition:

typedef enum LEDcolor
{

GREEN = 1,
RED

} LEDcolor;

3 Generate a library for the function displayState that takes one input
of enumerated data type sysMode.

codegen -config:lib -report displayState -args {sysMode.ON}

codegen generates a C static library with the default name, displayState,
and supporting files in the default folder, codegen/lib/displayState.

4 Click the View Report link.

17-24

Customize Enumerated Types Based on int32

5 In the report, on the C Code tab, click the link to the
displayState_types.h file.

The header file contains a #include statement for the external header file.

#include "my_LEDcolor.h"

It does not include a declaration for the enumerated class.

17-25

17 Code Generation for Enumerated Data

Control Names of Enumerated Type Values in Generated
Code

This example shows how to control the name of enumerated type values in
code generated by MATLAB Coder. (Requires a MATLAB Coder license.)
The example uses the enumerated data type definitions and function
displayState described in “Include Enumerated Data in Control Flow
Statements” on page 17-14.

1 Generate a library for the function displayState that takes one input
of enumerated data type sysMode.

codegen -config:lib -report displayState -args {sysMode.ON}

codegen generates a C static library with the default name, displayState,
and supporting files in the default folder, codegen/lib/displayState.

2 Click the View Report link.

3 In the report, on the C Code tab, click the link to the
displayState_types.h file.

The report displays the header file containing the enumerated data type
definition.

typedef enum LEDcolor
{

LEDcolor_GREEN = 1,
LEDcolor_RED

} LEDcolor;

The enumerated value names include the class name prefix LEDcolor_.

4 Modify the definition of LEDcolor to override the
addClassNameToEnumNames method. Set the return value to false instead
of true so that the enumerated value names in the generated code do not
contain the class prefix.

classdef(Enumeration) LEDcolor < int32
enumeration

GREEN(1),

17-26

Control Names of Enumerated Type Values in Generated Code

RED(2),
end

methods(Static)
function y=addClassNameToEnumNames()

y=false;
end

end
end

5 Clear existing class instances:

clear classes

6 Generate code again.

codegen -config:lib -report displayState -args {sysMode.ON}

7 Open the code generation report and look at the enumerated type definition
in displayState_types.h.

typedef enum LEDcolor
{

GREEN = 1,
RED

} LEDcolor;

This time the enumerated value names do not include the class name prefix.

For more information, see:

• codegen

• “Include Enumerated Data in Control Flow Statements” on page 17-14 for
a description of the example function displayState and its enumerated
type definitions

17-27

17 Code Generation for Enumerated Data

Change and Reload Enumerated Data Types
You can change the definition of an enumerated data type by editing and
saving the file that contains the definition. You do not need to inform
MATLAB that a class definition has changed. MATLAB automatically reads
the modified definition when you save the file. However, the class definition
changes do not take full effect if class instances (enumerated values) exist
that reflect the previous class definition. Such instances might exist in the
base workspace or might be cached. The following table explains options for
removing instances of an enumerated data type from the base workspace
and cache.

If In Base Workspace... If In Cache...

Do one of the following:
• Locate and delete specific obsolete
instances.

• Delete the classes from the
workspace by using the clear
classes command. For more
information, see clear.

• Clear MEX functions that are
caching instances of the class.

17-28

Restrictions on Use of Enumerated Data in for-Loops

Restrictions on Use of Enumerated Data in for-Loops
Do not use enumerated data as the loop counter variable in for-
loops

To iterate over a range of enumerated data with consecutive values, you can
cast the enumerated data to int32 in the loop counter.

For example, suppose you define an enumerated type ColorCodes as follows:

classdef(Enumeration) ColorCodes < int32
enumeration

Red(1),
Blue(2),
Green(3)
Yellow(4)
Purple(5)

end
end

Because the enumerated values are consecutive, you can use ColorCodes
data in a for-loop like this:

...
for i = int32(ColorCodes.Red):int32(ColorCodes.Purple)

c = ColorCodes(i);
...

end

17-29

17 Code Generation for Enumerated Data

Toolbox Functions That Support Enumerated Types for
Code Generation

The following MATLAB toolbox functions support enumerated types for code
generation:

• cast

• cat

• circshift

• flipdim

• fliplr

• flipud

• histc

• ipermute

• isequal

• isequaln

• isfinite

• isinf

• isnan

• issorted

• length

• permute

• repmat

• reshape

• rot90

• shiftdim

• sort

• sortrows

17-30

Toolbox Functions That Support Enumerated Types for Code Generation

• squeeze

17-31

17 Code Generation for Enumerated Data

17-32

18

Code Generation for
Function Handles

• “Function Handle Definition for Code Generation” on page 18-2

• “Define and Pass Function Handles for Code Acceleration” on page 18-3

• “Function Handle Limitations for Code Generation” on page 18-5

18 Code Generation for Function Handles

Function Handle Definition for Code Generation
You can use function handles to invoke functions indirectly and parameterize
operations that you repeat frequently. You can perform the following
operations with function handles:

• Define handles that reference user-defined functions and built-in functions
supported for code generation (see “Functions and Objects Supported for C
and C++ Code Generation — Alphabetical List” on page 21-2)

Note You cannot define handles that reference extrinsic MATLAB
functions.

• Define function handles as scalar values

• Pass function handles as arguments to other functions (excluding extrinsic
functions)

To generate efficient standalone code for enumerated data, you are restricted
to using a subset of the operations you can perform with function handles in
MATLAB, as described in “Function Handle Limitations for Code Generation”
on page 18-5

18-2

Define and Pass Function Handles for Code Acceleration

Define and Pass Function Handles for Code Acceleration
The following code example shows how to define and call function handles
for code acceleration.

function [y1, y2] = addval(m)
%#codegen

disp(m);

% Pass function handle to addone
% to add one to each element of m
y1 = map(@addone, m);
disp(y1);

% Pass function handle to addtwo
% to add two to each element of m
y2 = map(@addtwo, m);
disp(y2);

function y = map(f,m)
y = m;
for i = 1:numel(y)

y(i) = f(y(i));
end

function y = addone(u)
y = u + 1;

function y = addtwo(u)
y = u + 2;

This code passes function handles @addone and @addtwo to the function map
which increments each element of the matrix m by the amount prescribed
by the referenced function. Note that map stores the function handle in the
input variable f and then uses f to invoke the function — in this case addone
first and then addtwo.

You can use the function fiaccel to convert the function addval to a MEX
executable that you can run in MATLAB. Follow these steps:

18-3

18 Code Generation for Function Handles

1 At the MATLAB command prompt, define and initialize a 3-by-3 matrix:

m = fi(magic(3));

2 Use fiaccel to compile the function to a MEX executable:

fiaccel addval -args {m}

3 Execute the function:

[y1, y2] = addval_mex(m);
8 1 6
3 5 7
4 9 2

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 11
9 2 7
4 6 8
5 10 3

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 11
10 3 8
5 7 9
6 11 4

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 11

18-4

Function Handle Limitations for Code Generation

Function Handle Limitations for Code Generation
Function handles must be scalar values.

You cannot store function handles in matrices or structures.

You cannot use the same bound variable to reference different
function handles.

After you bind a variable to a specific function, you cannot use the same
variable to reference two different function handles, as in this example

%Incorrect code
...
x = @plus;
x = @minus;
...

This code produces a compilation error.

You cannot pass function handles to or from extrinsic functions.

You cannot pass function handles to or from feval and other extrinsic
MATLAB functions. For more information, see “Declaring MATLAB
Functions as Extrinsic Functions” on page 11-12

You cannot pass function handles to or from primary functions.

You cannot pass function handles as inputs to or outputs from primary
functions. For example, consider this function:

function x = plotFcn(fhandle, data)

assert(isa(fhandle,'function_handle') && isa(data,'double'));

plot(data, fhandle(data));
x = fhandle(data);

In this example, the function plotFcn receives a function handle and its
data as primary inputs. plotFcn attempts to call the function referenced by

18-5

18 Code Generation for Function Handles

the fhandle with the input data and plot the results. However, this code
generates a compilation error, indicating that the function isa does not
recognize 'function_handle' as a class name when called inside a MATLAB
function to specify properties of primary inputs.

You cannot view function handles from the debugger

You cannot display or watch function handles from the debugger. They
appear as empty matrices.

18-6

19

Generate Efficient and
Reusable Code

• “Optimization Strategies” on page 19-3

• “Modularize MATLAB Code” on page 19-6

• “Eliminate Redundant Copies of Function Inputs” on page 19-7

• “Inline Code” on page 19-9

• “Control Inlining Using Configuration Object” on page 19-11

• “Fold Function Calls into Constants” on page 19-14

• “Control Stack Space Usage” on page 19-16

• “Stack Allocation and Performance” on page 19-17

• “Rewrite Logical Array Indexing as a Loop” on page 19-18

• “Dynamic Memory Allocation and Performance” on page 19-19

• “Minimize Dynamic Memory Allocation” on page 19-21

• “Provide Maximum Size for Variable-Size Arrays” on page 19-22

• “Disable Dynamic Memory Allocation During Code Generation” on page
19-28

• “Set Dynamic Memory Allocation Threshold” on page 19-29

• “Excluding Unused Paths from Generated Code” on page 19-32

• “Prevent Code Generation for Unused Execution Paths” on page 19-33

• “Generate Code with Parallel for-Loops (parfor)” on page 19-36

• “Minimize Redundant Operations in Loops” on page 19-38

19 Generate Efficient and Reusable Code

• “Unroll for-Loops” on page 19-40

• “Support for Integer Overflow and Non-Finites” on page 19-43

• “Integrate Custom Code” on page 19-45

• “MATLAB® Coder™ Optimizations in Generated Code” on page 19-51

• “Generate Reusable Code” on page 19-55

19-2

Optimization Strategies

Optimization Strategies
MATLAB Coder introduces certain optimizations when generating C/C++
code or MEX functions from your MATLAB code. For more information, see
“MATLAB Coder Optimizations in Generated Code”.

To optimize your generated code further, you can:

• Adapt your MATLAB code.

• Control code generation using the configuration object from the
command-line or the Project Settings dialog box.

To optimize the execution speed of generated code, for these conditions,
perform the following actions as necessary:

Condition Action

You have for-loops whose iterations are
independent of each other.

“Generate Code with Parallel for-Loops
(parfor)”

You have variable-size arrays in your MATLAB
code.

“Minimize Dynamic Memory Allocation”

You have multiple variable-size arrays in your
MATLAB code. You want dynamical memory
allocation for larger arrays and static allocation
for smaller ones.

“Set Dynamic Memory Allocation Threshold”

You want your generated function to be called
by reference.

“Eliminate Redundant Copies of Function
Inputs”

You are calling small functions in your
MATLAB code.

“Inline Code”

You have limited target memory for your
generated code. You want to inline small
functions and generate separate code for larger
ones.

“Control Inlining Using Configuration Object”

You do not want to generate code for
expressions that contain constants only.

“Fold Function Calls into Constants”

19-3

19 Generate Efficient and Reusable Code

Condition Action

You have loop operations in your MATLAB
code that do not depend on the loop index.

“Minimize Redundant Operations in Loops”

You have integer operations in your MATLAB
code. You know beforehand that integer
overflow will not occur during execution of your
generated code.

“Disable Support for Integer Overflow”

You know beforehand that Inf-s and NaN-s will
not occur during execution of your generated
code.

“Disable Support for Non-Finites”

You have for-loops with few iterations. “Unroll for-Loops”

You already have legacy C/C++ code optimized
for your target environment.

“Integrate Custom Code”

To optimize the memory usage of generated code, for these conditions, perform
the following actions as necessary:

Condition Action

You have if/else/elseif
statements or
switch/case/otherwise statements
in your MATLAB code. You do
not require some branches of the
statements in your generated code.

“Prevent Code Generation for
Unused Execution Paths”

You have logical array indexing
in your MATLAB code. For more
information, see “Using Logicals in
Array Indexing”.

“Rewrite Logical Array Indexing as
a Loop”

You want your generated function to
be called by reference.

“Eliminate Redundant Copies of
Function Inputs”

You have limited stack space for
your generated code.

“Control Stack Space Usage”

You are calling small functions in
your MATLAB code.

“Inline Code”

19-4

Optimization Strategies

Condition Action

You have limited target memory for
your generated code. You want to
inline small functions and generate
separate code for larger ones.

“Control Inlining Using
Configuration Object”

You do not want to generate code for
expressions that contain constants
only.

“Fold Function Calls into Constants”

You have loop operations in your
MATLAB code that do not depend on
the loop index.

“Minimize Redundant Operations in
Loops”

You have integer operations in
your MATLAB code. You know
beforehand that integer overflow
will not occur during execution of
your generated code.

“Disable Support for Integer
Overflow”

You know beforehand that Inf-s and
NaN-s will not occur during execution
of your generated code.

“Disable Support for Non-Finites”

19-5

19 Generate Efficient and Reusable Code

Modularize MATLAB Code
For large MATLAB code, streamline code generation by modularizing the
code:

1 Break up your MATLAB code into smaller, self-contained sections.

2 Save each section in a MATLAB function.

3 Generate C/C++ code for each function.

4 Call the generated C/C++ functions in sequence from a wrapper MATLAB
function using coder.ceval.

5 Generate C/C++ code for the wrapper function.

Besides streamlining code generation for the original MATLAB code, this
approach also supplies you with C/C++ codes for the individual sections. You
can reuse these codes later by integrating them with other generated C/C++
code using coder.ceval.

19-6

Eliminate Redundant Copies of Function Inputs

Eliminate Redundant Copies of Function Inputs
You can reduce the number of copies in your generated code by writing
functions that use the same variable as both an input and an output. For
example:

function A = foo(A, B) %#codegen
A = A * B;
end

This coding practice uses a reference parameter optimization. When a
variable acts as both input and output, MATLAB passes the variable by
reference in the generated code instead of redundantly copying the input to a
temporary variable. In the preceding example, input A is passed by reference
in the generated code because it also acts as an output for function foo:

...
/* Function Definitions */
void foo(double *A, double B)
{

*A *= B;
}
...

The reference parameter optimization reduces memory usage and execution
time, especially when the variable passed by reference is a large data
structure. To achieve these benefits at the call site, call the function with the
same variable as both input and output.

By contrast, suppose you rewrite function foo without the optimization:

function y = foo2(A, B) %#codegen
y = A * B;
end

MATLAB generates code that passes the inputs by value and returns the
value of the output:

...
/* Function Definitions */
double foo2(double A, double B)

19-7

19 Generate Efficient and Reusable Code

{
return A * B;

}
...

In some cases, the output of the function cannot be a modified version of its
inputs. If you do not use the inputs later in the function, you can modify
your code to operate on the inputs instead of on a copy of the inputs. One
method is to create additional return values for the function. For example,
consider the code:

function y1=foo(u1) %#codegen
x1=u1+1;
y1=bar(x1);

end

function y2=bar(u2)
% Since foo does not use x1 later in the function,
% it would be optimal to do this operation in place
x2=u2.*2;
% The change in dimensions in the following code
% means that it cannot be done in place
y2=[x2,x2];

end

You can modify this code to eliminate redundant copies.

function y1=foo(u1) %#codegen
u1=u1+1;
[y1, u1]=bar(u1);

end

function [y2, u2]=bar(u2)
u2=u2.*2;

% The change in dimensions in the following code
% still means that it cannot be done in place
y2=[u2,u2];

end

19-8

Inline Code

Inline Code
MATLAB uses internal heuristics to determine whether or not to inline
functions in the generated code. You can use the coder.inline directive to
fine-tune these heuristics for individual functions. For more information,
see coder.inline.

In this section...

“Prevent Function Inlining” on page 19-9

“Use Inlining in Control Flow Statements” on page 19-9

Prevent Function Inlining
In this example, function foo is not inlined in the generated code:

function y = foo(x)
coder.inline('never');
y = x;

end

Use Inlining in Control Flow Statements
You can use coder.inline in control flow code. If the software detects
contradictory coder.inline directives, the generated code uses the default
inlining heuristic and issues a warning.

Suppose you want to generate code for a division function that will be
embedded in a system with limited memory. To optimize memory use in the
generated code, the following function, inline_division, manually controls
inlining based on whether it performs scalar division or vector division:

function y = inline_division(dividend, divisor)

% For scalar division, inlining produces smaller code
% than the function call itself.
if isscalar(dividend) && isscalar(divisor)

coder.inline('always');
else
% Vector division produces a for-loop.

19-9

19 Generate Efficient and Reusable Code

% Prohibit inlining to reduce code size.
coder.inline('never');

end

if any(divisor == 0)
error('Can not divide by 0');

end

y = dividend / divisor;

Related
Examples

• “Control Inlining Using Configuration Object”

19-10

Control Inlining Using Configuration Object

Control Inlining Using Configuration Object
This example shows how to control inlining behavior using the codegen
configuration object. Restrict inlining when:

• The size of generated code exceeds desired limits due to excessive inlining of
functions. Suppose you include the statement, coder.inline('always'),
inside a certain function. You then call that function at a large number of
different sites in your code. The generated code can be large due to the
function being inlined every time it is called.

The call sites must be different. For instance, inlining does not lead to large
code if the function to be inlined is called several times inside a loop.

• You have limited RAM or stack space.

In this section...

“Control Size of Functions Inlined” on page 19-11

“Control Size of Functions After Inlining” on page 19-12

“Control Stack Size Limit on Inlined Functions” on page 19-12

Control Size of Functions Inlined
You can control the maximum size of functions that can be inlined from
the Project Settings dialog box or the command line. The function size is
measured in terms of an abstract number of instructions, not actual MATLAB
instructions or instructions in the target processor. Experiment with this
parameter to obtain the inlining behavior that you want.

• In the Project Settings dialog box, on the All Settings tab, set the value of
the field, Inline threshold, to the maximum size that you want.

• At the command line, create a codegen configuration object. Set the value
of the property, InlineThreshold, to the maximum size that you want.

cfg = coder.config('lib');
cfg.InlineThreshold = 100;

Generate code using this configuration object.

19-11

19 Generate Efficient and Reusable Code

Control Size of Functions After Inlining
You can control the maximum size of functions after inlining from the Project
Settings dialog box or the command line. The function size is measured in
terms of an abstract number of instructions, not actual MATLAB instructions
or instructions in the target processor. Experiment with this parameter to
obtain the inlining behavior that you want.

• In the Project Settings dialog box, on the All Settings tab, set the value of
the field, Inline threshold max, to the maximum size that you want.

• At the command line, create a codegen configuration object. Set the value
of the property, InlineThresholdMax, to the maximum size that you want.

cfg = coder.config('lib');
cfg.InlineThresholdMax = 100;

Generate code using this configuration object.

Control Stack Size Limit on Inlined Functions
Specifying a limit on the stack space constrains the amount of inlining
allowed. For out-of-line functions, stack space for variables local to the
function is released when the function returns. However, for inlined functions,
stack space remains occupied by the local variables even after the function
is executed. The value of the property, InlineStackLimit, is measured in
bytes. Based on information from the target hardware settings, the software
estimates the number of stack variables that can be accomodated by a certain
value of InlineStackLimit. This estimate excludes possible C compiler
optimizations such as putting variables in registers.

You can control the stack size limit on inlined functions from the Project
Settings dialog box or the command line.

• In the Project Settings dialog box, on the All Settings tab, set the value of
the field, Inline stack limit, to the maximum size that you want.

• At the command line, create a codegen configuration object. Set the value
of the property, InlineThresholdMax, to the maximum size that you want.

cfg = coder.config('lib');
cfg.InlineStackLimit = 2000;

19-12

Control Inlining Using Configuration Object

Generate code using this configuration object.

Related
Examples

• “Inline Code”

19-13

19 Generate Efficient and Reusable Code

Fold Function Calls into Constants
This example shows how to specify constants in generated code using
coder.const. The code generation software folds an expression or a function
call in a coder.const statement into a constant in generated code. Because
the generated code does not have to evaluate the expression or call the
function every time, this optimization reduces the execution time of the
generated code.

Write a function AddShift that takes an input Shift and adds it to the
elements of a vector. The vector consists of the square of the first 10 natural
numbers. AddShift generates this vector.

function y = AddShift(Shift) %#codegen
y = (1:10).^2+Shift;

Generate code for AddShift using the codegen command. Open the Code
Generation Report.

codegen -config:lib -launchreport AddShift -args 0

The code generation software generates code for creating the vector. It adds
Shift to each element of the vector during vector creation. The definition of
AddShift in generated code looks as follows:

void AddShift(double Shift, double y[10])
{

int k;
for (k = 0; k < 10; k++) {

y[k] = (double)((1 + k) * (1 + k)) + Shift;
}

}

Replace the statement

y = (1:10).^2+Shift;

with

y = coder.const((1:10).^2)+Shift;

19-14

Fold Function Calls into Constants

Generate code for AddShift using the codegen command. Open the Code
Generation Report.

codegen -config:lib -launchreport AddShift -args 0

The code generation software creates the vector containing the squares of the
first 10 natural numbers. In the generated code, it adds Shift to each element
of this vector. The definition of AddShift in generated code looks as follows:

void AddShift(double Shift, double y[10])
{

int i0;
static const signed char iv0[10] = { 1, 4, 9, 16, 25, 36,

49, 64, 81, 100 };

for (i0 = 0; i0 < 10; i0++) {
y[i0] = (double)iv0[i0] + Shift;

}
}

See Also coder.const

19-15

19 Generate Efficient and Reusable Code

Control Stack Space Usage
This example shows how to set the maximum stack space used by the
generated code. Set the maximum stack usage when:

• You have limited stack space, for instance, in case of embedded targets.

• Your C compiler reports a run-time stack overflow.

The value of the property, InlineStackLimit, is measured in bytes. Based on
information from the target hardware settings, the software estimates the
number of stack variables that can be accommodated by a certain value of
InlineStackLimit. This estimate excludes possible C compiler optimizations
such as putting variables in registers.

Control Stack Space Usage Using Project Interface

1 On the Build tab Settings pane, set the Output type to C/C++ Static
Library, C/C++ Dynamic Library, or C/C++ Executable (depending on
your requirements).

2 Click theMore settings link to open the Project Settings dialog box.

3 On the Memory tab, set the field, Stack usage max, to the value that
you want.

Control Stack Space Usage from Command Line

1 Create a configuration object for code generation.

Use coder.config with arguments 'lib','dll' or 'exe' (depending on
your requirements). For example:

cfg = coder.config('lib');

2 Set the property, StackUsageMax, to the value that you want.

cfg.StackUsageMax=400000;

Concepts • “Stack Allocation and Performance”

19-16

Stack Allocation and Performance

Stack Allocation and Performance
By default, local variables are allocated on the stack. Large variables that do
not fit on the stack are statically allocated in memory.

Stack allocation typically uses memory more efficiently than static allocation.
However, stack space is sometimes limited, typically in embedded processors.
MATLAB Coder allows you to manually set a limit on the stack space usage to
make your generated code suitable for your target hardware. You can choose
this limit based on the target hardware configurations. For more information,
see “Control Stack Space Usage”.

19-17

19 Generate Efficient and Reusable Code

Rewrite Logical Array Indexing as a Loop
Rewriting logical array indexing as a loop can optimize the generated code for
both speed and readability. For more information on logical array indexing,
see “Using Logicals in Array Indexing”.

For example, the MATLAB function, foo, uses logical array indexing.

function x = foo(x,N) %#codegen
assert(all(size(x) == [1 100]))
x(x>N) = N;

The generated C code for this function is not very efficient. Rewrite the
MATLAB code to use a loop instead of logical indexing:

function x = foo_rewrite(x,N) %#codegen
assert(all(size(x) == [1 100]))
for ii=1:numel(x)

if x(ii) > N
x(ii) = N;

end
end

19-18

Dynamic Memory Allocation and Performance

Dynamic Memory Allocation and Performance
To achieve faster execution of generated code, minimize dynamic (or run-time)
memory allocation of arrays.

MATLAB Coder does not provide a size for unbounded arrays in generated
code. Instead, such arrays are referenced indirectly through pointers. For
such arrays, memory cannot be allocated during compilation of generated
code. Based on storage requirements for the arrays, memory is allocated and
freed at run time as required. This run-time allocation and freeing of memory
leads to slower execution of the generated code. For more information on
dynamic memory allocation, see “Bounded Versus Unbounded Variable-Size
Data”.

When Dynamic Memory Allocation Occurs
Dynamic memory allocation occurs when the code generation software cannot
find upper bounds for variable-size arrays. The software cannot find upper
bounds when you specify the size of an array using a variable that is not a
compile-time constant. An example of such a variable is an input variable (or
a variable computed from an input variable).

Instances in the MATLAB code that might lead to dynamic memory allocation
are:

• Array initialization: You specify array size using a variable whose value
is known only at run time.

• After initialization of an array:

- You declare the array as variable-size using coder.varsize without
explicit upper bounds. After this declaration, you expand the array by
concatenation inside a loop. The number of loop runs is known only
at run time.

- You use a reshape function on the array. At least one of the size
arguments to the reshape function is known only at run time.

If you know the maximum possible size of the array, you can avoid dynamic
memory allocation. You can then provide an upper bound for the array and

19-19

19 Generate Efficient and Reusable Code

prevent dynamic memory allocation in generated code. For more information,
see “Minimize Dynamic Memory Allocation” on page 19-21.

19-20

Minimize Dynamic Memory Allocation

Minimize Dynamic Memory Allocation
When possible, you should minimize dynamic memory allocation since it leads
to slower execution of generated code. Dynamic memory allocation occurs
when the code generation software cannot find upper bounds for variable-size
arrays.

You can avoid dynamic memory allocation of a variable-size array if you know
its maximum possible size. To do so, follow these steps:

1 “Provide Maximum Size for Variable-Size Arrays” on page 19-22.

2 Depending on your requirements, do one of the following:

• “Disable Dynamic Memory Allocation During Code Generation” on page
19-28.

• “Set Dynamic Memory Allocation Threshold”

Caution If a variable-size array in the MATLAB code does not have
a maximum size, disabling dynamic memory allocation leads to a code
generation error. Before disabling dynamic memory allocation, you must
provide a maximum size for variable-size arrays in your MATLAB code.

Concepts • “Dynamic Memory Allocation and Performance”

19-21

19 Generate Efficient and Reusable Code

Provide Maximum Size for Variable-Size Arrays
To constrain array size for variable-size arrays, do one of the following:

•

Constrain Array Size Using assert Statements

If the variable specifying array size is not a compile-time constant, use
an assert statement with relational operators to constrain the variable.
Doing so helps the code generation software to determine a maximum size
for the array.

The following examples constrain array size using assert statements:

-
When Array Size Is Specified by Input Variables

Define a function array_init which initializes an array y with input
variable N:

function y = array_init (N)
assert(N <= 25); % Generates exception if N > 25
y = zeros(1,N);

The assert statement constrains input N to a maximum size of 25. In
the absence of the assert statement, y is assigned a pointer to an array
in the generated code, thus allowing dynamic memory allocation.

-
When Array Size Is Obtained from Computation Using Input
Variables

Define a function, array_init_from_prod, which takes two input
variables, M and N, and uses their product to specify the maximum size
of an array, y.

function y = array_init_from_prod (M,N)
size=M*N;

19-22

Provide Maximum Size for Variable-Size Arrays

assert(size <= 25); % Generates exception if size > 25
y=zeros(1,size);

The assert statement constrains the product of M and N to a maximum
of 25.

Alternatively, if you restrict M and N individually, it leads to dynamic
memory allocation:

function y = array_init_from_prod (M,N)
assert(M <= 5);
assert(N <= 5);
size=M*N;
y=zeros(1,size);

This code causes dynamic memory allocation because M and N can both
have unbounded negative values. Therefore, their product can be
unbounded and positive even though, individually, their positive values
are bounded.

Tip Place the assert statement on a variable immediately before it is
used to specify array size.

Tip You can use assert statements to restrict array sizes in most cases.
When expanding an array inside a loop, this strategy does not work if the
number of loop runs is known only at run time.

•

Restrict Concatenations in a Loop Using coder.varsize with Upper
Bounds

You can expand arrays beyond their initial size by concatenation. When
you concatenate additional elements inside a loop, there are two syntax
rules for expanding arrays.

1

19-23

19 Generate Efficient and Reusable Code

Array size during initialization is not a compile-time constant

If the size of an array during initialization is not a compile-time constant,
you can expand it by concatenating additional elements:

function out=ExpandArray(in) % Expand an array by five elements
out = zeros(1,in);
for i=1:5

out = [out 0];
end

2

Array size during initialization is a compile-time constant

Before concatenating elements, you have to declare the array as
variable-size using coder.varsize:

function out=ExpandArray() % Expand an array by five elements
out = zeros(1,5);
coder.varsize('out');
for i=1:5

out = [out 0];
end

Either case leads to dynamic memory allocation. To prevent dynamic
memory allocation in such cases, use coder.varsize with explicit upper
bounds. This example shows how to use coder.varsize with explicit upper
bounds:

Restrict Concatenations Using coder.varsize with Upper Bounds

1 Define a function, RunningAverage, that calculates the running average
of an N-element subset of an array:

function avg=RunningAverage(N)

% Array whose elements are to be averaged
NumArray=[1 6 8 2 5 3];

% Initialize average:

19-24

Provide Maximum Size for Variable-Size Arrays

% These will also be the first two elements of the function output
avg=[0 0];

% Place a bound on the argument
coder.varsize('avg',[1 8]);

% Loop to calculate running average
for i=1:N

s=0;
s=s+sum(NumArray(1:i));
avg=[avg s/i];

% Increase the size of avg as required by concatenation
end

The output, avg, is an array that you can expand as required to
accommodate the running averages. As a new running average is
calculated, it is added to the array avg through concatenation, thereby
expanding the array.

Because the maximum possible number of running averages is equal to
the number of elements in NumArray, you can supply an explicit upper
bound for avg in the coder.varsize statement. In this example, the
upper bound is 8 (the two initial elements plus the six elements of
NumArray).

2 Generate code for RunningAverage with input argument of type double:

codegen -config:lib -report RunningAverage -args 2

In the generated code, avg is assigned an array of size 8 (static memory
allocation). The function definition for RunningAverage appears as
follows (using built-in C types):

void RunningAverage (double N, double avg_data[8], int avg_size[2])

3 By contrast, if you remove the explicit upper bound, the generated code
dynamically allocates avg.

Replace the statement

coder.varsize('avg',[1 8]);

19-25

19 Generate Efficient and Reusable Code

with:

coder.varsize('avg');

4 Generate code for RunningAverage with input argument of type double:

codegen -config:lib -report RunningAverage -args 2

In the generated code, avg is assigned a pointer to an array, thereby
allowing dynamic memory allocation. The function definition for
RunningAverage appears as follows (using built-in C types):

void Test(double N, emxArray_real_T *avg)

Note Dynamic memory allocation also occurs if you precede
coder.varsize('avg') with the following assert statement:

assert(N < 6);

The assert statement does not restrict the number of concatenations
within the loop.

•

Constrain Array Size When Rearranging a Matrix

The statement out = reshape(in,m,n,...) takes an array, in, as an
argument and returns array, out, having the same elements as in, but
reshaped as an m-by-n-by-... matrix. If one of the size variables m,n,....
is not a compile-time constant, then dynamic memory allocation of out
takes place.

To avoid dynamic memory allocation, use an assert statement before the
reshape statement to restrict the size variables m,n,... to numel(in).
This example shows how to use an assert statement before a reshape
statement:

19-26

Provide Maximum Size for Variable-Size Arrays

Rearrange a Matrix into Given Number of Rows

1 Define a function, ReshapeMatrix, which takes an input variable, N, and
reshapes a matrix, mat, to have N rows:

function [out1,out2] = ReshapeMatrix(N)

mat = [1 2 3 4 5; 4 5 6 7 8]
% Since mat has 10 elements, N must be a factor of 10
% to pass as argument to reshape

out1 = reshape(mat,N,[]);
% N is not restricted

assert(N < numel(mat));
% N is restricted to number of elements in mat

out2 = reshape(mat,N,[]);

2 Generate code for ReshapeArray using the codegen command (the input
argument does not have to be a factor of 10):

codegen -config:lib -report ReshapeArray -args 3

While out1 is dynamically allocated, out2 is assigned an array with size
100 (=10 X 10) in the generated code.

Tip If your system has limited memory, do not use the assert statement
in this way. For an n-element matrix, the assert statement creates an
n-by-n matrix, which might be large.

Related
Examples

• “Minimize Dynamic Memory Allocation”
• “Disable Dynamic Memory Allocation During Code Generation”
• “Set Dynamic Memory Allocation Threshold”

Concepts • “Dynamic Memory Allocation and Performance”

19-27

19 Generate Efficient and Reusable Code

Disable Dynamic Memory Allocation During Code
Generation

Disabling dynamic memory allocation during code generation leads to faster
execution of generated code. You can disable dynamic memory allocation
explicitly from the project settings dialog box or the command line.

To disable dynamic memory allocation in the Project Settings box :

1 On the MATLAB Coder project Build tab, click More settings.

2 In the Project Settings dialog box Memory tab, under Enable
variable-sizing, set Dynamic memory allocation to Never.

To disable dynamic memory allocation from the command line:

1 In the MATLAB workspace, define the configuration object:

cfg=coder.config('lib');

2 Set the DynamicMemoryAllocation property of the configuration object to
Off:

cfg.DynamicMemoryAllocation = 'Off';

Disabling dynamic memory allocation leads to a code generation error if a
variable-size array in the MATLAB code does not have a maximum upper
bound. Therefore, you can also use this feature to identify variable-size arrays
in your MATLAB code that do not have a maximum upper bound. These
arrays are the ones that are dynamically allocated in the generated code.

Related
Examples

• “Minimize Dynamic Memory Allocation”
• “Provide Maximum Size for Variable-Size Arrays”
• “Set Dynamic Memory Allocation Threshold”

Concepts • “Dynamic Memory Allocation and Performance”

19-28

Set Dynamic Memory Allocation Threshold

Set Dynamic Memory Allocation Threshold
This example shows how to specify a dynamic memory allocation threshold
for variable-size arrays. Dynamic memory allocation optimizes storage
requirements for variable-size arrays but causes slower execution of
generated code. Instead of disabling dynamic memory allocation for all
variable-sizearrays, you can disable it only for arrays below a certain size.
Set a dynamic memory allocation threshold to disable dynamic memory
allocation for array size below the threshold and enable it for array size at or
above the threshold.

Use this strategy when you want to:

• Disable dynamic memory allocation for smaller arrays. For smaller arrays,
it can be more efficient to speed up generated code by allocating memory
statically. Though static memory allocation can lead to unused storage
space, it might not be a significant consideration for smaller arrays.

• Enable dynamic memory allocation for larger arrays. For larger arrays,
you can reduce storage requirements significantly using dynamic memory
allocation.

Set Dynamic Memory Allocation Threshold Using
Project Interface

1 On the Build tab Settings pane, click the More settings link to open
the Project Settings dialog box.

2 On the Memory tab, select Enable variable-sizing.

3 On the same tab, select the For arrays with max size at or above
threshold option in the Dynamic memory allocation list.

4 Set the Dynamic memory allocation threshold to the value that you
want.

19-29

19 Generate Efficient and Reusable Code

The Dynamic memory allocation threshold value is measured in bytes.
Based on information from the target hardware settings, the software
estimates the size of the array that can be accommodated by a certain value
of DynamicMemoryAllocationThreshold. This estimate excludes possible
C compiler optimizations such as putting variables in registers.

19-30

Set Dynamic Memory Allocation Threshold

Set Dynamic Memory Allocation Threshold from
Command Line

1 Create a configuration object for code generation. Use coder.config with
arguments 'lib','dll' or 'exe' (depending on your requirements). For
example:

cfg = coder.config('lib');

2 Set the property, DynamicMemoryAllocation, to 'Threshold'.

cfg.DynamicMemoryAllocation='Threshold';

3 Set the property, DynamicMemoryAllocationThreshold, to the value that
you want.

cfg.DynamicMemoryAllocationThreshold = 40000;

The value stored in DynamicMemoryAllocationThreshold is measured
in bytes. Based on information from the target hardware settings, the
software estimates the size of the array that can be accommodated by a
certain value of DynamicMemoryAllocationThreshold. This estimate
excludes possible C compiler optimizations such as putting variables in
registers.

Related
Examples

• “Minimize Dynamic Memory Allocation”
• “Provide Maximum Size for Variable-Size Arrays”
• “Disable Dynamic Memory Allocation During Code Generation”

Concepts • “Dynamic Memory Allocation and Performance”

19-31

19 Generate Efficient and Reusable Code

Excluding Unused Paths from Generated Code
In certain situations, you do not need some branches of an : if, elseif,
else statement or a switch, case, otherwise statement in your generated
code. For instance :

• You have a MATLAB function that performs mutiple tasks determined by
a control-flow variable. You might not need some of the tasks in the code
generated from this function.

• You have an if/elseif/if statement in a MATLAB function performing
different tasks based on the nature (type/value) of the input. In some cases,
you know the nature of the input beforehand. If so, you do not need some
branches of the if statement.

You can prevent code generation for the unused branches of an
if/elseif/else statement or a switch/case/otherwise statement. Declare
the control-flow variable as a constant. The code generation software
generates code only for the branch that is chosen by the control-flow variable.

Related
Examples

• “Prevent Code Generation for Unused Execution Paths”

19-32

Prevent Code Generation for Unused Execution Paths

Prevent Code Generation for Unused Execution Paths

In this section...

“Prevent Code Generation When Local Variable Controls Flow” on page
19-33

“Prevent Code Generation When Input Variable Controls Flow” on page
19-34

If a variable controls the flow of an : if, elseif, else statement or a
switch, case, otherwise statement, declare it as constant so that code
generation takes place for one branch of the statement only.

Depending on the nature of the control-flow variable, you can declare it as
constant in two ways:

• If the variable is local to the MATLAB function, assign it to a constant
value in the MATLAB code. For an example, see “Prevent Code Generation
When Local Variable Controls Flow” on page 19-33.

• If the variable is an input to the MATLAB function, you can declare it
as constant using coder.Constant. For an example, see “Prevent Code
Generation When Input Variable Controls Flow” on page 19-34.

Prevent Code Generation When Local Variable
Controls Flow

1 Define a function SquareOrCube which takes an input variable, in, and
squares or cubes its elements based on whether the choice variable, ch,
is set to s or c:

function out = SquareOrCube(ch,in) %#codegen
if ch=='s'

out = in.^2;
elseif ch=='c'

out = in.^3;
else

out = 0;
end

19-33

19 Generate Efficient and Reusable Code

2 Generate code for SquareOrCube using the codegen command:

codegen -config:lib SquareOrCube -args {'s',zeros(2,2)}

The generated C code squares or cubes the elements of a 2-by-2 matrix
based on the input for ch.

3 Add the following line to the definition of SquareOrCube:

ch = 's';

The generated C code squares the elements of a 2-by-2 matrix. The choice
variable, ch, and the other branches of the if/elseif/if statement do
not appear in the generated code.

Prevent Code Generation When Input Variable
Controls Flow

1 Define a function MathFunc, which performs different mathematical
operations on an input, in, depending on the value of the input, flag:

function out = MathFunc(flag,in) %#codegen
%# codegen
switch flag

case 1
out=sin(in);

case 2
out=cos(in);

otherwise
out=sqrt(in);

end

2 Generate code for MathFunc using the codegen command:

codegen -config:lib MathFunc -args {1,zeros(2,2)}

The generated C code performs different math operations on the elements
of a 2-by-2 matrix based on the input for flag.

3 Generate code for MathFunc, declaring the argument, flag, as a constant
using coder.Constant:

19-34

Prevent Code Generation for Unused Execution Paths

codegen -config:lib MathFunc -args {coder.Constant(1),zeros(2,2)}

The generated C code finds the sine of the elements of a 2-by-2 matrix. The
variable, flag, and the switch/case/otherwise statement do not appear
in the generated code.

Concepts • “Excluding Unused Paths from Generated Code”

19-35

19 Generate Efficient and Reusable Code

Generate Code with Parallel for-Loops (parfor)
This example shows how to generate C code for a MATLAB algorithm that
contains a parfor-loop.

1 Write a MATLAB function that contains a parfor-loop. For example:

function a = test_parfor %#codegen
a=ones(10,256);
r=rand(10,256);
parfor i=1:10

a(i,:)=real(fft(r(i,:)));
end

2 Generate C code for test_parfor. At the MATLAB command line, enter:

codegen -config:lib test_parfor

Because you did not specify the maximum number of threads to use, the
generated C code executes the loop iterations in parallel on the available
number of cores.

3 To specify a maximum number of threads, rewrite the function
test_parfor as follows:

function a = test_parfor(u) %#codegen
a=ones(10,256);
r=rand(10,256);
parfor (i=1:10,u)

a(i,:)=real(fft(r(i,:)));
end

4 Generate C code for test_parfor. Use -args 0 to specify that the input, u,
is a scalar double. At the MATLAB command line, enter:

codegen -config:lib test_parfor -args 0

In the generated code, the iterations of the parfor-loop run on at most the
number of cores specified by the input, u. If less than u cores are available,
the iterations run on the cores available at the time of the call.

19-36

Generate Code with Parallel for-Loops (parfor)

Concepts • “Algorithm Acceleration Using Parallel for-Loops (parfor)”
• “Classification of Variables in parfor-Loops”
• “Reduction Assignments in parfor-Loops”

19-37

19 Generate Efficient and Reusable Code

Minimize Redundant Operations in Loops
This example shows how to minimize redundant operations in loops. When a
loop operation does not depend on the loop index, performing it inside a loop is
redundant. This redundancy often goes unnoticed when you are performing
multiple operations in a single MATLAB statement inside a loop. For
example, in the following code, the inverse of the matrix B is being calculated
100 times inside the loop although it does not depend on the loop index:

for i=1:100
C=C + inv(B)*A^i*B;

end

Performing such redundant loop operations can lead to unnecessary
processing. To avoid unnecessary processing, move operations outside loops
as long as they do not depend on the loop index.

1 Define a function, SeriesFunc(A,B,n), that calculates the sum of n terms
in the following power series expansion:

C B AB B A B 1 1 1 2 ...

function C=SeriesFunc(A,B,n)

% Initialize C with a matrix having same dimensions as A
C=zeros(size(A));

% Perform the series sum
for i=1:n

C=C+inv(B)*A^i*B;
end

2 Generate code for SeriesFunc with 4-by-4 matrices passed as input
arguments for A and B:

X = coder.typeof(zeros(4));
codegen -config:lib -launchreport SeriesFunc -args {X,X,10}

19-38

Minimize Redundant Operations in Loops

In the generated code, the inversion of B is performed n times inside the
loop. It is more economical to perform the inversion operation once outside
the loop because it does not depend on the loop index.

3 Modify SeriesFunc as follows:

function C=SeriesFunc(A,B,n)

% Initialize C with a matrix having same dimensions as A
C=zeros(size(A));

% Perform the inversion outside the loop
inv_B=inv(B);

% Perform the series sum
for i=1:n

C=C+inv_B*A^i*B;
end

This procedure performs the inversion of B only once, leading to faster
execution of the generated code.

19-39

19 Generate Efficient and Reusable Code

Unroll for-Loops
Unrolling for-loops eliminates the loop logic by creating a separate copy of
the loop body in the generated code for each iteration. Within each iteration,
the loop index variable becomes a constant.

You can also force loop unrolling for individual functions by wrapping the loop
header in a coder.unroll function. For more information, see coder.unroll.

Limit Copying the for-loop Body in Generated Code
To limit the number of times that you copy the body of a for-loop in generated
code:

1 Write a MATLAB function getrand(n) that uses a for-loop to generate a
vector of length n and assign random numbers to specific elements. Add a
test function test_unroll. This function calls getrand(n) with n equal
to values both less than and greater than the threshold for copying the
for-loop in generated code.

function [y1, y2] = test_unroll() %#codegen
% The directive %#codegen indicates that the function
% is intended for code generation

% Calling getrand 8 times triggers unroll
y1 = getrand(8);
% Calling getrand 50 times does not trigger unroll
y2 = getrand(50);

function y = getrand(n)
% Turn off inlining to make
% generated code easier to read
coder.inline('never');

% Set flag variable dounroll to repeat loop body
% only for fewer than 10 iterations
dounroll = n < 10;
% Declare size, class, and complexity
% of variable y by assignment
y = zeros(n, 1);
% Loop body begins

19-40

Unroll for-Loops

for i = coder.unroll(1:2:n, dounroll)
if (i > 2) && (i < n-2)

y(i) = rand();
end;

end;
% Loop body ends

2 In the default output folder, codegen/lib/test_unroll, generate C static
library code for test_unroll :

codegen -config:lib test_unroll

In test_unroll.c, the generated C code for getrand(8) repeats the body
of the for-loop (unrolls the loop) because the number of iterations is less
than 10:

static void getrand(double y[8])
{

/* Turn off inlining to make */
/* generated code easier to read */
/* Set flag variable dounroll to repeat loop body */
/* only for fewer than 10 iterations */
/* Declare size, class, and complexity */
/* of variable y by assignment */
memset(&y[0], 0, sizeof(double) << 3);

/* Loop body begins */
y[2] = b_rand();
y[4] = b_rand();

/* Loop body ends */
}

The generated C code for getrand(50) does not unroll the for-loop because
the number of iterations is greater than 10:

static void b_getrand(double y[50])
{

int i;
int b_i;

19-41

19 Generate Efficient and Reusable Code

/* Turn off inlining to make */
/* generated code easier to read */
/* Set flag variable dounroll to repeat loop body */
/* only for fewer than 10 iterations */
/* Declare size, class, and complexity */
/* of variable y by assignment */
memset(&y[0], 0, 50U * sizeof(double));

/* Loop body begins */
for (i = 0; i < 25; i++) {

b_i = (i << 1) + 1;
if ((b_i > 2) && (b_i < 48)) {

y[b_i - 1] = b_rand();
}

}

19-42

Support for Integer Overflow and Non-Finites

Support for Integer Overflow and Non-Finites
In addition to code generated for your MATLAB function, the code-generation
software generates supporting code for the following situations:

• The result of an integer operation falls outside the range that a data type
can represent. This situation is known as integer overflow.

• Non-finite values (inf and NaN) are generated from an operation. The
supporting code is contained in the files rt_nonfinite.c, rtGetInf.c and
rtGetNaN.c (with corresponding header files).

You can suppress generation of the supporting code if you know beforehand
that such situations will not arise. This action reduces the size and increases
the speed of generated code at the cost of potentially producing results that do
not match simulation in case the situations arise.

Disable Support for Integer Overflow
You can disable support for integer overflow in the project settings dialog box
or at the command line. On disabling this support, the overflow behavior of
your generated code depends on your target C compiler. Most C compilers
wrap on overflow.

• In the project settings dialog box:

1 On the Build tab Settings pane, click theMore settings link to open
the Project Settings dialog box.

2 To disable support for integer overflow, on the Speed tab, clear
Saturate on integer overflow.

• At the command line:

1 Create a configuration object for code generation. Use coder.config
with arguments 'lib','dll' or 'exe' (depending on your requirements).
For example:

cfg = coder.config('lib');

2 To disable support for integer overflow, set the
SaturateOnIntegerOverflow property to false.

19-43

19 Generate Efficient and Reusable Code

cfg.SaturateOnIntegerOverflow = false;

Disable Support for Non-Finites
You can disable support for non-finites (inf and NaN) in the project settings
dialog box or at the command line.

• In the project settings dialog box:

1 On the Build tab Settings pane, set the Output type to C/C++ Static
Library, C/C++ Dynamic Library, or C/C++ Executable (depending on
your requirements).

2 Click theMore settings link to open the Project Settings dialog box.

3 To disable support for integer overflow, on the Speed tab, clearSupport
non-finite numbers.

• At the command line:

1 Create a configuration object for code generation. Use coder.config
with arguments 'lib','dll' or 'exe' (depending on your requirements).
For example:

cfg = coder.config('lib');

2 To disable support for integer overflow, set the SupportNonFinite
property to false.

cfg.SupportNonFinite = false;

19-44

Integrate Custom Code

Integrate Custom Code
This example shows how to integrate custom code to enhance performance
of generated code. Although MATLAB Coder generates optimized code for
most applications, you might have legacy code optimized for your specific
requirements. For example:

• You have custom libraries optimized for your target environment.

• You have custom libraries for functions not supported by MATLAB Coder.

• You have custom libraries that meet standards set by your company.

In such cases, you can integrate your custom code with the code generated by
MATLAB Coder.

This example illustrates how to integrate the function cublasSgemm from the
NVIDIA® CUDA® Basic Linear Algebra Subroutines (CUBLAS) library in
generated code. This function performs matrix multiplication on a Graphics
Processing Unit (GPU).

1 Define a class ExternalLib_API that derives from the class
coder.ExternalDependency. ExternalLib_API defines an interface to the
CUBLAS library through the following methods:

• getDescriptiveName: Returns a descriptive name for ExternalLib_API
to be used for error messages.

• isSupportedContext: Determines if the build context supports the
CUBLAS library.

• updateBuildInfo: Adds header file paths and link files to the build
information.

• GPU_MatrixMultiply: Defines the interface to the CUBLAS library
function cublasSgemm.

ExternalLib_API.m

classdef ExternalLib_API < coder.ExternalDependency
%#codegen

methods (Static)

19-45

19 Generate Efficient and Reusable Code

function bName = getDescriptiveName(~)
bName = 'ExternalLib_API';

end

function tf = isSupportedContext(ctx)
if ctx.isMatlabHostTarget()

tf = true;
else

error('CUBLAS library not available for this target');
end

end

function updateBuildInfo(buildInfo, ctx)
[~, linkLibExt, ~, ~] = ctx.getStdLibInfo();

% Include header file path
% Include header files later using coder.cinclude
hdrFilePath = 'C:\My_Includes';
buildInfo.addIncludePaths(hdrFilePath);

% Include link files
linkFiles = strcat('libcublas', linkLibExt);
linkPath = 'C:\My_Libs';
linkPriority = '';
linkPrecompiled = true;
linkLinkOnly = true;
group = '';
buildInfo.addLinkObjects(linkFiles, linkPath, ...

linkPriority, linkPrecompiled, linkLinkOnly, group);

linkFiles = strcat('libcudart', linkLibExt);
buildInfo.addLinkObjects(linkFiles, linkPath, ...

linkPriority, linkPrecompiled, linkLinkOnly, group);

end

%API for library function 'cuda_MatrixMultiply'
function C = GPU_MatrixMultiply(A, B)

assert(isa(A,'single'), 'A must be single.');

19-46

Integrate Custom Code

assert(isa(B,'single'), 'B must be single.');

if(coder.target('MATLAB'))
C=A*B;

else

% Include header files
% for external functions and typedefs
% Header path included earlier using updateBuildInfo
coder.cinclude('"cuda_runtime.h"');
coder.cinclude('"cublas_v2.h"');

% Compute dimensions of input matrices
m = int32(size(A, 1));
k = int32(size(A, 2));
n = int32(size(B, 2));

% Declare pointers to matrices on destination GPU
d_A = coder.opaque('float*');
d_B = coder.opaque('float*');
d_C = coder.opaque('float*');

% Compute memory to be allocated for matrices
% Single = 4 bytes
size_A = m*k*4;
size_B = k*n*4;
size_C = m*n*4;

% Define error variables
error = coder.opaque('cudaError_t');
cudaSuccessV = coder.opaque('cudaError_t', ...

'cudaSuccess');

% Assign memory on destination GPU
error = coder.ceval('cudaMalloc', ...

coder.wref(d_A), size_A);
assert(error == cudaSuccessV, ...

'cudaMalloc(A) failed');
error = coder.ceval('cudaMalloc', ...

coder.wref(d_B), size_B);

19-47

19 Generate Efficient and Reusable Code

assert(error == cudaSuccessV, ...
'cudaMalloc(B) failed');

error = coder.ceval('cudaMalloc', ...
coder.wref(d_C), size_C);

assert(error == cudaSuccessV, ...
'cudaMalloc(C) failed');

% Define direction of copying
hostToDevice = coder.opaque('cudaMemcpyKind', ...

'cudaMemcpyHostToDevice');

% Copy matrices to destination GPU
error = coder.ceval('cudaMemcpy', ...

d_A, coder.rref(A), size_A, hostToDevice);
assert(error == cudaSuccessV, 'cudaMemcpy(A) failed');

error = coder.ceval('cudaMemcpy', ...
d_B, coder.rref(B), size_B, hostToDevice);

assert(error == cudaSuccessV, 'cudaMemcpy(B) failed');

% Define type and size for result
C = zeros(m, n, 'single');

error = coder.ceval('cudaMemcpy', ...
d_C, coder.rref(C), size_C, hostToDevice);

assert(error == cudaSuccessV, 'cudaMemcpy(C) failed');

% Define handle variables for external library
handle = coder.opaque('cublasHandle_t');
blasSuccess = coder.opaque('cublasStatus_t', ...

'CUBLAS_STATUS_SUCCESS');

% Initialize external library
ret = coder.opaque('cublasStatus_t');
ret = coder.ceval('cublasCreate', coder.wref(handle));
assert(ret == blasSuccess, 'cublasCreate failed');

TRANSA = coder.opaque('cublasOperation_t', ...
'CUBLAS_OP_N');

19-48

Integrate Custom Code

alpha = single(1);
beta = single(0);

% Multiply matrices on GPU
ret = coder.ceval('cublasSgemm', handle, ...

TRANSA,TRANSA,m,n,k, ...
coder.rref(alpha),d_A,m, ...
d_B,k, ...
coder.rref(beta),d_C,k);

assert(ret == blasSuccess, 'cublasSgemm failed');

% Copy result back to local host
deviceToHost = coder.opaque('cudaMemcpyKind', ...

'cudaMemcpyDeviceToHost');
error = coder.ceval('cudaMemcpy', coder.wref(C), ...

d_C, size_C, deviceToHost);
assert(error == cudaSuccessV, 'cudaMemcpy(C) failed');

end
end

end
end

2 To perform the matrix multiplication using the interface defined in method
GPU_MatrixMultiply and the build information in ExternalLib_API,
include the following line in your MATLAB code:

C= ExternalLib_API.GPU_MatrixMultiply(A,B);

For instance, you can define a MATLAB function Matrix_Multiply that
solely performs this matrix multiplication.

function C = Matrix_Multiply(A, B) %#codegen
C= ExternalLib_API.GPU_MatrixMultiply(A,B);

3 Define a MEX configuration object using coder.config. For using the
CUBLAS libraries, set the target language for code generation to C++.

cfg=coder.config('mex');
cfg.TargetLang='C++';

19-49

19 Generate Efficient and Reusable Code

4 Generate code for Matrix_Multiply using cfg as the configuration object
and two 2 X 2 matrices of type single as arguments. Since cublasSgemm
supports matrix multiplication for data type float, the corresponding
MATLAB matrices must have type single.

codegen -config cfg Matrix_Multiply ...
-args {ones(2,'single'),ones(2,'single')}

5 Test the generated MEX function Matrix_Multiply_mex using two 2 X 2
identity matrices of type single.

Matrix_Multiply_mex(eye(2,'single'),eye(2,'single'))

The output is also a 2 X 2 identity matrix.

See Also coder.ceval | coder.opaque | coder.rref | coder.wref | assert |
coder.ExternalDependency | coder.BuildConfig

Related
Examples

• “Encapsulate Interface to an External C Library”

Concepts • “Encapsulating the Interface to External Code”

19-50

MATLAB® Coder™ Optimizations in Generated Code

MATLAB Coder Optimizations in Generated Code

In this section...

“Constant Folding” on page 19-51

“Loop Fusion” on page 19-52

“Successive Matrix Operations Combined” on page 19-53

“Unreachable Code Elimination” on page 19-53

In order to improve the execution speed and memory usage of generated code,
MATLAB Coder introduces the following optimizations:

Constant Folding
When possible, the code generation software evaluates expressions in your
MATLAB code that involve compile-time constants only. In the generated
code, it replaces these expressions with the result of the evaluations. This
behavior is known as constant folding. Because of constant folding, the
generated code does not have to evaluate the constants during execution.

The following example shows MATLAB code that is constant-folded during
code generation. The function MultiplyConstant multiplies every element in
a matrix by a scalar constant. The function evaluates this constant using the
product of three compile-time constants, a, b and c.

function out=MultiplyConstant(in) %#codegen
a=pi^4;
b=1/factorial(4);
c=exp(-1);
out=in.*(a*b*c);

end

The code generation software evaluates the expressions involving
compile-time constants, a,b, and c. It replaces these expressions with the
result of the evaluation in generated code.

Constant folding can occur when the expressions involve scalars only. To
explicitly enforce constant folding of expressions in other cases, use the

19-51

19 Generate Efficient and Reusable Code

coder.const function. For more information, see “Fold Function Calls into
Constants”.

Control Constant Folding
You can control the maximum number of instructions that can be
constant-folded from the command line or the Project Settings dialog box.

• At the command line, create a configuration object for code generation. Set
the property ConstantFoldingTimeout to the value that you want.

cfg=coder.config('lib');
cfg.ConstantFoldingTimeout = 200;

• In the Project Settings dialog box, on the All Settings tab, set the field
Constant folding timeout to the value that you want.

Loop Fusion
When possible, the code generation software fuses successive loops with
the same number of runs into a single loop in the generated code. This
optimization reduces loop overhead.

The following code contains successive loops, which are fused during code
generation. The function SumAndProduct evaluates the sum and product
of the elements in an array Arr. The function uses two separate loops to
evaluate the sum y_f_sum and product y_f_prod.

function [y_f_sum,y_f_prod] = SumAndProduct(Arr) %#codegen
y_f_sum = 0;
y_f_prod = 1;
for i = 1:length(Arr)

y_f_sum = y_f_sum+Arr(i);
end
for i = 1:length(Arr)

y_f_prod = y_f_prod*Arr(i);
end

The code generated from this MATLAB code evaluates the sum and product
in a single loop.

19-52

MATLAB® Coder™ Optimizations in Generated Code

Successive Matrix Operations Combined
When possible, the code generation software converts successive matrix
operations in your MATLAB code into a single loop operation in generated
code. This optimization reduces excess loop overhead involved in performing
the matrix operations in separate loops.

The following example contains code where successive matrix operations take
place. The function ManipulateMatrix multiplies every element of a matrix
Mat with a factor. To every element in the result, the function then adds a
shift :

function Res=ManipulateMatrix(Mat,factor,shift)
Res=Mat*factor;
Res=Res+shift;

end

The generated code combines the multiplication and addition into a single
loop operation.

Unreachable Code Elimination
When possible, the code generation software suppresses code generation from
unreachable procedures in your MATLAB code. For instance, if a branch of
an if, elseif, else statement is unreachable, then code is not generated
for that branch.

The following example contains unreachable code, which is eliminated during
code generation. The function SaturateValue returns a value based on the
range of its input x.

function y_b = SaturateValue(x) %#codegen
if x>0

y_b = x;
elseif x>10 %This is redundant

y_b = 10;
else

y_b = -x;
end

19-53

19 Generate Efficient and Reusable Code

The second branch of the if, elseif, else statement is unreachable. If the
variable x is greater than 10, it is also greater than 0. Therefore, the first
branch is executed in preference to the second branch.

MATLAB Coder does not generate code for the unreachable second branch.

19-54

Generate Reusable Code

Generate Reusable Code
With MATLAB, you can generate reusable code in the following ways:

• Write reusable functions using standard MATLAB function file names
which you can call from different locations, for example, in a Simulink
model or MATLAB function library.

• Compile external functions on the MATLAB path and integrate them into
generated C code for embedded targets.

See “Resolution of Function Calls for Code Generation”.

Common applications include:

• Overriding generated library function with a custom implementation.

• Implementing a reusable library on top of standard library functions that
can be used with Simulink.

• Swapping between different implementations of the same function.

19-55

19 Generate Efficient and Reusable Code

19-56

20

Code Generation for
MATLAB Structures

• “Structure Definition for Code Generation” on page 20-2

• “Structure Operations Allowed for Code Generation” on page 20-3

• “Define Scalar Structures for Code Generation” on page 20-4

• “Define Arrays of Structures for Code Generation” on page 20-7

• “Make Structures Persistent” on page 20-9

• “Index Substructures and Fields” on page 20-10

• “Assign Values to Structures and Fields” on page 20-12

• “Pass Large Structures as Input Parameters” on page 20-14

20 Code Generation for MATLAB® Structures

Structure Definition for Code Generation
To generate efficient standalone code for structures, you must define and use
structures differently than you normally would when running your code in
the MATLAB environment:

What’s Different More Information

Use a restricted set of operations. “Structure Operations Allowed for
Code Generation” on page 20-3

Observe restrictions on properties
and values of scalar structures.

“Define Scalar Structures for Code
Generation” on page 20-4

Make structures uniform in arrays. “Define Arrays of Structures for
Code Generation” on page 20-7

Reference structure fields
individually during indexing.

“Index Substructures and Fields” on
page 20-10

Avoid type mismatch when assigning
values to structures and fields.

“Assign Values to Structures and
Fields” on page 20-12

20-2

Structure Operations Allowed for Code Generation

Structure Operations Allowed for Code Generation
To generate efficient standalone code for MATLAB structures, you are
restricted to the following operations:

• Define structures as local and persistent variables by assignment and
using the struct function

• Index structure fields using dot notation

• Define primary function inputs as structures

• Pass structures to local functions

20-3

20 Code Generation for MATLAB® Structures

Define Scalar Structures for Code Generation

In this section...

“Restriction When Using struct” on page 20-4

“Restrictions When Defining Scalar Structures by Assignment” on page 20-4

“Adding Fields in Consistent Order on Each Control Flow Path” on page
20-4

“Restriction on Adding New Fields After First Use” on page 20-5

Restriction When Using struct
When you use the struct function to create scalar structures for code
generation, you cannot create structures of cell arrays.

Restrictions When Defining Scalar Structures by
Assignment
When you define a scalar structure by assigning a variable to a preexisting
structure, you do not need to define the variable before the assignment.
However, if you already defined that variable, it must have the same class,
size, and complexity as the structure you assign to it. In the following
example, p is defined as a structure that has the same properties as the
predefined structure S:

...
S = struct('a', 0, 'b', 1, 'c', 2);
p = S;
...

Adding Fields in Consistent Order on Each Control
Flow Path
When you create a structure, you must add fields in the same order on each
control flow path. For example, the following code generates a compiler
error because it adds the fields of structure x in a different order in each
if statement clause:

function y = fcn(u) %#codegen

20-4

Define Scalar Structures for Code Generation

if u > 0
x.a = 10;
x.b = 20;

else
x.b = 30; % Generates an error (on variable x)
x.a = 40;

end
y = x.a + x.b;

In this example, the assignment to x.a comes before x.b in the first if
statement clause, but the assignments appear in reverse order in the else
clause. Here is the corrected code:

function y = fcn(u) %#codegen
if u > 0

x.a = 10;
x.b = 20;

else
x.a = 40;
x.b = 30;

end
y = x.a + x.b;

Restriction on Adding New Fields After First Use
You cannot add fields to a structure after you perform the following operations
on the structure:

• Reading from the structure

• Indexing into the structure array

• Passing the structure to a function

For example, consider this code:

...
x.c = 10; % Defines structure and creates field c
y = x; % Reads from structure
x.d = 20; % Generates an error
...

20-5

20 Code Generation for MATLAB® Structures

In this example, the attempt to add a new field d after reading from structure
x generates an error.

This restriction extends across the structure hierarchy. For example, you
cannot add a field to a structure after operating on one of its fields or nested
structures, as in this example:

function y = fcn(u) %#codegen

x.c = 10;
y = x.c;
x.d = 20; % Generates an error

In this example, the attempt to add a new field d to structure x after reading
from the structure’s field c generates an error.

20-6

Define Arrays of Structures for Code Generation

Define Arrays of Structures for Code Generation

In this section...

“Ensuring Consistency of Fields” on page 20-7

“Using repmat to Define an Array of Structures with Consistent Field
Properties” on page 20-7

“Defining an Array of Structures Using Concatenation” on page 20-8

Ensuring Consistency of Fields
When you create an array of MATLAB structures with the intent of
generating code, you must be sure that each structure field in the array has
the same size, type, and complexity.

Once you have created the array of structures, you can make the structure
fields variable-size using coder.varsize. For more information, see “Declare
a variable-size structure field.”.

Using repmat to Define an Array of Structures with
Consistent Field Properties
You can create an array of structures from a scalar structure by using the
MATLAB repmat function, which replicates and tiles an existing scalar
structure:

1 Create a scalar structure, as described in “Define Scalar Structures for
Code Generation” on page 20-4.

2 Call repmat, passing the scalar structure and the dimensions of the array.

3 Assign values to each structure using standard array indexing and
structure dot notation.

For example, the following code creates X, a 1-by-3 array of scalar structures.
Each element of the array is defined by the structure s, which has two fields,
a and b:

...

20-7

20 Code Generation for MATLAB® Structures

s.a = 0;
s.b = 0;
X = repmat(s,1,3);
X(1).a = 1;
X(2).a = 2;
X(3).a = 3;
X(1).b = 4;
X(2).b = 5;
X(3).b = 6;
...

Defining an Array of Structures Using Concatenation
To create a small array of structures, you can use the concatenation operator,
square brackets ([]), to join one or more structures into an array (see
“Concatenating Matrices”). For code generation, the structures that you
concatenate must have the same size, class, and complexity.

For example, the following code uses concatenation and a local function to
create the elements of a 1-by-3 structure array:

...
W = [sab(1,2) sab(2,3) sab(4,5)];

function s = sab(a,b)
s.a = a;
s.b = b;

...

20-8

Make Structures Persistent

Make Structures Persistent
To make structures persist, you define them to be persistent variables and
initialize them with the isempty statement, as described in “Define and
Initialize Persistent Variables” on page 15-10.

For example, the following function defines structure X to be persistent and
initializes its fields a and b:

function f(u) %#codegen
persistent X

if isempty(X)
X.a = 1;
X.b = 2;

end

20-9

20 Code Generation for MATLAB® Structures

Index Substructures and Fields
Use these guidelines when indexing substructures and fields for code
generation:

Reference substructure field values individually using dot notation

For example, the following MATLAB code uses dot notation to index fields
and substructures:

...
substruct1.a1 = 15.2;
substruct1.a2 = int8([1 2;3 4]);

mystruct = struct('ele1',20.5,'ele2',single(100),
'ele3',substruct1);

substruct2 = mystruct;
substruct2.ele3.a2 = 2*(substruct1.a2);
...

The generated code indexes elements of the structures in this example by
resolving symbols as follows:

Dot Notation Symbol Resolution

substruct1.a1 Field a1 of local structure substruct1

substruct2.ele3.a1 Value of field a1 of field ele3, a substructure of local structure
substruct2

substruct2.ele3.a2(1,1) Value in row 1, column 1 of field a2 of field ele3, a substructure
of local structure substruct2

Reference field values individually in structure arrays

To reference the value of a field in a structure array, you must index into the
array to the structure of interest and then reference that structure’s field
individually using dot notation, as in this example:

...

20-10

Index Substructures and Fields

y = X(1).a % Extracts the value of field a
% of the first structure in array X

...

To reference all the values of a particular field for each structure in an array,
use this notation in a for loop, as in this example:

...
s.a = 0;
s.b = 0;
X = repmat(s,1,5);
for i = 1:5

X(i).a = i;
X(i).b = i+1;

end

This example uses the repmat function to define an array of structures, each
with two fields a and b as defined by s. See “Define Arrays of Structures for
Code Generation” on page 20-7 for more information.

Do not reference fields dynamically

You cannot reference fields in a structure by using dynamic names, which
express the field as a variable expression that MATLAB evaluates at run time
(see “Generate Field Names from Variables”).

20-11

20 Code Generation for MATLAB® Structures

Assign Values to Structures and Fields
Use these guidelines when assigning values to a structure, substructure,
or field for code generation:

Field properties must be consistent across structure-to-structure
assignments

If: Then:

Assigning one structure to another
structure.

Define each structure with the same
number, type, and size of fields.

Assigning one structure to a
substructure of a different structure
and vice versa.

Define the structure with the same
number, type, and size of fields as
the substructure.

Assigning an element of one
structure to an element of another
structure.

The elements must have the same
type and size.

Do not use field values as constants

The values stored in the fields of a structure are not treated as constant
values in generated code. Therefore, you cannot use field values to set the size
or class of other data. For example, the following code generates a compiler
error if variable-sizing is disabled:

...
Y.a = 3;
Y.b = 5;
X = zeros(Y.a,Y.b); % Generates an error

In this example, even though you set fields a and b of structure Y to the
values 3 and 5 respectively, Y.a and Y.b are not constants in generated code.
Therefore, they are not valid arguments to pass to the function zeros.

20-12

Assign Values to Structures and Fields

Note An exception to this behavior occurs if the structure is declared
completely using the struct function

...
Y = struct('a',3,'b',5);
X = zeros(Y.a,Y.b); % Generates a fixed-size 3 X 5 matrix

Do not assign mxArrays to structures

You cannot assign mxArrays to structure elements; convert mxArrays to
known types before code generation (see “Working with mxArrays” on page
11-17).

20-13

20 Code Generation for MATLAB® Structures

Pass Large Structures as Input Parameters
If you generate a MEX function for a MATLAB function that takes a large
structure as an input parameter, for example, a structure containing fields
that are matrices, the MEX function might fail to load. This load failure
occurs because, when you generate a MEX function from a MATLAB function
that has input parameters, the code generation software allocates memory for
these input parameters on the stack. To avoid this issue, pass the structure
by reference to the MATLAB function. For example, if the original function
signature is:

y = foo(a, S)

where S is the structure input, rewrite the function to:

[y, S] = foo(a, S)

20-14

21

Functions, Classes, and
System Objects Supported
for Code Generation

• “Functions and Objects Supported for C and C++ Code Generation —
Alphabetical List” on page 21-2

• “Functions and Objects Supported for C and C++ Code Generation —
Categorical List” on page 21-135

21 Functions, Classes, and System Objects Supported for Code Generation

Functions and Objects Supported for C and C++ Code
Generation — Alphabetical List

You can generate efficient C and C++ code for a subset of MATLAB built-in
functions and toolbox functions, classes, and System objects that you call
from MATLAB code. These function, classes, and System objects appear in
alphabetical order in the following table.

To find supported functions, classes, and System objects by MATLAB
category or toolbox, see “Functions and Objects Supported for C and C++ Code
Generation — Categorical List” on page 21-135.

Note For more information on code generation for fixed-point algorithms,
refer to “Code Acceleration and Code Generation from MATLAB” on page 9-3.

Name Product Remarks and Limitations

abs MATLAB —

abs Fixed-Point
Designer

—

accumneg Fixed-Point
Designer

—

accumpos Fixed-Point
Designer

—

acos MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing
in complex(x).

acosd MATLAB —

21-2

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

acosh MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing
in complex(x).

acot MATLAB —

acotd MATLAB —

acoth MATLAB —

acsc MATLAB —

acscd MATLAB —

acsch MATLAB —

add Fixed-Point
Designer

Code generation in MATLAB does not support
the syntax F.add(a,b). You must use the
syntax add(F,a,b).

affine2d Image
Processing
Toolbox™

When generating code, you can only specify
singular objects—arrays of objects are not
supported.

aictest Phased Array
System
Toolbox™

Does not support variable-size inputs.

albersheim Phased Array
System Toolbox

Does not support variable-size inputs.

all MATLAB “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

all Fixed-Point
Designer

—

ambgfun Phased Array
System Toolbox

Does not support variable-size inputs.

and MATLAB —

21-3

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

any MATLAB “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

any Fixed-Point
Designer

—

aperture2gain Phased Array
System Toolbox

Does not support variable-size inputs.

asec MATLAB —

asecd MATLAB —

asech MATLAB —

asin MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing
in complex(x).

asind MATLAB —

asinh MATLAB —

assert MATLAB • Generates specified error messages at
compile time only if all input arguments
are constants or depend on constants.
Otherwise, generates specified error
messages at run time.

• For standalone code generation, excluded
from the generated code.

• See “Rules for Using assert Function” on
page 23-19.

assignDetectionsToTracks Computer
Vision System
Toolbox™

Compile-time constant input: No restriction.
Supports MATLAB Function block: Yes

atan MATLAB —

21-4

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

atan2 MATLAB —

atan2 Fixed-Point
Designer

—

atan2d MATLAB —

atand MATLAB —

atanh MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing
in complex(x).

az2broadside Phased Array
System Toolbox

Does not support variable-size inputs.

azel2phitheta Phased Array
System Toolbox

Does not support variable-size inputs.

azel2phithetapat Phased Array
System Toolbox

Does not support variable-size inputs.

azel2uv Phased Array
System Toolbox

Does not support variable-size inputs.

azel2uvpat Phased Array
System Toolbox

Does not support variable-size inputs.

azelaxes Phased Array
System Toolbox

Does not support variable-size inputs.

21-5

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

barthannwin Signal
Processing
Toolbox™

Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

bartlett Signal
Processing
Toolbox

Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

beat2range Phased Array
System Toolbox

Does not support variable-size inputs.

besselap Signal
Processing
Toolbox

Filter order must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

beta MATLAB —

betacdf Statistics
Toolbox™

—

betainc MATLAB Always returns a complex result.

21-6

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

betaincinv MATLAB Always returns a complex result.

betainv Statistics
Toolbox

—

betaln MATLAB —

betapdf Statistics
Toolbox

—

betarnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

betastat Statistics
Toolbox

—

bi2de Communications
System
Toolbox™

—

billingsleyicm Phased Array
System Toolbox

Does not support variable-size inputs.

bin2dec MATLAB • Does not match MATLAB when the input
is empty.

binaryFeatures Computer
Vision System
Toolbox

—

binocdf Statistics
Toolbox

—

binoinv Statistics
Toolbox

—

binopdf Statistics
Toolbox

—

21-7

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

binornd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

binostat Statistics
Toolbox

—

bitand MATLAB —

bitand Fixed-Point
Designer

• Not supported for slope-bias scaled fi
objects.

bitandreduce Fixed-Point
Designer

—

bitcmp MATLAB —

bitcmp Fixed-Point
Designer

—

bitconcat Fixed-Point
Designer

—

bitget MATLAB —

bitget Fixed-Point
Designer

—

bitmax MATLAB —

bitor MATLAB —

bitor Fixed-Point
Designer

• Not supported for slope-bias scaled fi
objects.

bitorreduce Fixed-Point
Designer

—

bitreplicate Fixed-Point
Designer

—

21-8

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

bitrevorder Signal
Processing
Toolbox

—

bitrol Fixed-Point
Designer

—

bitror Fixed-Point
Designer

—

bitset MATLAB —

bitset Fixed-Point
Designer

—

bitshift MATLAB —

bitshift Fixed-Point
Designer

—

bitsliceget Fixed-Point
Designer

—

bitsll Fixed-Point
Designer

• Generated code may not handle out of range
shifting.

bitsra Fixed-Point
Designer

• Generated code may not handle out of range
shifting.

bitsrl Fixed-Point
Designer

• Generated code may not handle out of range
shifting.

bitxor MATLAB —

bitxor Fixed-Point
Designer

• Not supported for slope-bias scaled fi
objects.

bitxorreduce Fixed-Point
Designer

—

21-9

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

blackman Signal
Processing
Toolbox

Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

blackmanharris Signal
Processing
Toolbox

Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

blanks MATLAB —

blkdiag MATLAB —

bohmanwin Signal
Processing
Toolbox

Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

break MATLAB —

21-10

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

BRISKPoints Computer
Vision System
Toolbox

Compile-time constant inputs: No restriction
Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

broadside2az Phased Array
System Toolbox

Does not support variable-size inputs.

bsxfun MATLAB “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

buttap Signal
Processing
Toolbox

Filter order must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

butter Signal
Processing
Toolbox

Filter coefficients must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

21-11

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

buttord Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

bwlookup Image
Processing
Toolbox

• For best results, specify an input image of
class logical.

bwmorph Image
Processing
Toolbox

• The text string specifying the operation
must be a constant and, for best results,
specify an input image of class logical.

bwpack Image
Processing
Toolbox

Generated code for this function uses a
precompiled platform-specific shared library.

bwselect Image
Processing
Toolbox

Supports only the 3 and 4 input argument
syntaxes: BW2 = bwselect(BW,c,r) and BW2
= bwselect(BW,c,r,n). The optional fourth
input argument, n, must be a compile-time
constant. In addition, with code generation,
bwselect only supports only the 1 and 2 output
argument syntaxes: BW2 = bwselect(___) or
[BW2, idx] = bwselect(___).

Generated code for this function uses a
precompiled platform-specific shared library.

bwunpack Image
Processing
Toolbox

Generated code for this function uses a
precompiled platform-specific shared library.

21-12

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

ca2tf DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

cart2pol MATLAB —

cart2sph MATLAB —

cart2sphvec Phased Array
System Toolbox

Does not support variable-size inputs.

cast MATLAB —

cat MATLAB
• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

cbfweights Phased Array
System Toolbox

Does not support variable-size inputs.

cdf Statistics
Toolbox

—

ceil MATLAB —

ceil Fixed-Point
Designer

—

cfirpm Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

char MATLAB —

21-13

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

cheb1ap Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

cheb1ord Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

cheb2ap Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

21-14

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

cheb2ord Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

chebwin Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

cheby1 Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

21-15

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

cheby2 Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

chi2cdf Statistics
Toolbox

—

chi2inv Statistics
Toolbox

—

chi2pdf Statistics
Toolbox

—

chi2rnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

chi2stat Statistics
Toolbox

—

chol MATLAB —

circpol2pol Phased Array
System Toolbox

Does not support variable-size inputs.

circshift MATLAB —

cl2tf DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

class MATLAB —

21-16

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

colon MATLAB • Does not accept complex inputs.

• Does not accept a logical interval,i.

• Does not accept vector inputs.

• Inputs must be constants.

• Uses single-precision arithmetic to produce
single-precision results.

comm.ACPR Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.AGC Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.Algebraic-
Deinterleaver

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.APPDecoder Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.AWGNChannel Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.BarkerCode Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.BCHDecoder Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.BCHEncoder Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.Binary-
SymmetricChannel

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.BlockDeinterleaver Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.BlockInterleaver Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.BPSKDemodulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

21-17

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

comm.BPSKModulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.CCDF Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.Constellation-
Diagram

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.Convolutional-
Deinterleaver

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.Convolutional-
Encoder

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.Convolutional-
Interleaver

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.CPFSKDemodulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.CPFSKModulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.CPMCarrier-
PhaseSynchronizer

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.CPMDemodulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.CPMModulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.CRCDetector Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.CRCGenerator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.DBPSKDemodulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.DBPSKModulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

21-18

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

comm.Descrambler Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.DifferentialDecoder Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.DifferentialEncoder Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.DiscreteTimeVCO Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.DPSKDemodulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.DPSKModulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.DQPSKDemodulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.DQPSKModulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.EarlyLateGate-
TimingSynchronizer

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.ErrorRate Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.EVM Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.FSKDemodulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.FSKModulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.GardnerTiming-
Synchronizer

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.GeneralQAM-
Demodulator

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

21-19

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

comm.GeneralQAM-
Modulator

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.GeneralQAMTCM-
Demodulator

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.GeneralQAMTCM-
Modulator

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.GMSKDemodulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.GMSKModulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.GMSKTiming-
Synchronizer

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.GoldSequence Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.HadamardCode Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.HDLCRCDetector Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.HDLCRCGenerator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.HDLRSDecoder Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.HDLRSEncoder Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.Helical-
Deinterleaver

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

21-20

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

comm.HelicalInterleaver Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.IntegrateAnd-
DumpFilter

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.KasamiSequence Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.LDPCDecoder Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.LDPCEncoder Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.LTEMIMOChannel Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.MatrixDeinterleaver Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.MatrixHelical-
ScanDeinterleaver

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.MatrixHelical-
ScanInterLeaver

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.MatrixInterleaver Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.Memoryless-
Nonlinearity

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.MER Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.MIMOChannel Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.MLSEEqualizer Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.MSKDemodulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

21-21

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

comm.MSKModulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.MSKTiming-
Synchronizer

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.MeullerMullerTiming-
Synchronizer

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.Multiplexed-
Deinterleaver

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.Multiplexed-
Interleaver

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.OFDMDemodulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.OFDMModulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.OSTBCCombiner Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.OSTBCEncoder Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.OQPSKDemodulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.OQPSKModulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.PAMDemodulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.PAMModulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.PhaseRequency-
Offset

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.PhaseNoise Communications
System Toolbox

“Code Generation with System Objects and
Functions”

21-22

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

comm.PNSequence Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.PSKCoarseFrequency-
Estimator

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.PSKCoarseFrequence-
Estimator

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.PSKDemodulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.PSKModulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.PSKTCMDemodulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.PSKTCMModulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.QAMCoarseFrequency-
Estimator

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.QPSKDemodulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.QPSKModulator Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.RaisedCosine-
ReceiveFilter

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.RaisedCosine-
TransmitFilter

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.RayleighChannel Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.RectangularQAM-
Demodulator

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.Rectangular-
Modulator

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

21-23

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

comm.RectangularQAMTCM-
Demodulator

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.RectangularQAMTCM-
Modulator

Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.RicianChannel Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.RSDecoder Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.RSEncoder Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.Scrambler Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.SphereDecoder Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.ThermalNoise Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.TurboDecoder Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.TurboEncoder Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.ViterbiDecoder Communications
System Toolbox

“Code Generation with System Objects and
Functions”

comm.WalshCode Communications
System Toolbox

“Code Generation with System Objects and
Functions”

compan MATLAB —

complex MATLAB —

complex Fixed-Point
Designer

—

21-24

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

computer MATLAB • Information about the computer on which
the code generation software is running.

• Use only when the code generation target is
S-function (Simulation) or MEX-function.

cond MATLAB —

conj MATLAB —

conj Fixed-Point
Designer

—

conndef Image
Processing
Toolbox

All input arguments must be compile-time
constants.

continue MATLAB —

conv MATLAB “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

conv Fixed-Point
Designer

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

- In generated code, the output for
variable-sized signals is computed using
the SumMode property of the governing
fimath.

- In MATLAB, the output for variable-sized
signals is computed using the SumMode
property of the governing fimath
when both inputs are nonscalar.
However, if either input is a scalar,
MATLAB computes the output using the
ProductMode of the governing fimath.

21-25

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

conv2 MATLAB —

convergent Fixed-Point
Designer

—

convn MATLAB —

cordicabs Fixed-Point
Designer

• Variable-size signals are not supported.

cordicangle Fixed-Point
Designer

• Variable-size signals are not supported.

cordicatan2 Fixed-Point
Designer

• Variable-size signals are not supported.

cordiccart2pol Fixed-Point
Designer

• Variable-size signals are not supported.

cordiccexp Fixed-Point
Designer

• Variable-size signals are not supported.

cordiccos Fixed-Point
Designer

• Variable-size signals are not supported.

cordicpol2cart Fixed-Point
Designer

• Variable-size signals are not supported.

cordicrotate Fixed-Point
Designer

• Variable-size signals are not supported.

cordicsin Fixed-Point
Designer

• Variable-size signals are not supported.

cordicsincos Fixed-Point
Designer

• Variable-size signals are not supported.

21-26

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

cornerPoints Computer
Vision System
Toolbox

Compile-time constant input: No restriction
Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

corrcoef MATLAB • Row-vector input is only supported when the
first two inputs are vectors and nonscalar.

cos MATLAB —

cos Fixed-Point
Designer

—

cosd MATLAB —

cosh MATLAB —

cot MATLAB —

cotd MATLAB —

coth MATLAB —

cov MATLAB “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

cross MATLAB • If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

csc MATLAB —

cscd MATLAB —

csch MATLAB —

ctranspose MATLAB —

21-27

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

ctranspose Fixed-Point
Designer

—

cumprod MATLAB • Logical inputs are not supported. Cast input
to double first.

cumsum MATLAB • Logical inputs are not supported. Cast input
to double first.

cumtrapz MATLAB —

db2pow Signal
Processing
Toolbox

—

dct Signal
Processing
Toolbox

• Code generation for this function requires
the DSP System Toolbox software.

• Length of transform dimension must
be a power of two. If specified, the pad
or truncation value must be constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

de2bi Communications
System Toolbox

—

deal MATLAB —

deblank MATLAB • Supports only inputs from the char class.

• Input values must be in the range 0-127.

21-28

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

dec2bin MATLAB • If input d is double, d must be less than
2^52.

• If input d is single, d must be less than
2^23.

• Unless you specify input n to be constant and
n is large enough that the output has a fixed
number of columns regardless of the input
values, this function requires variable-sizing
support. Without variable-sizing support,
n must be at least 52 for double, 23 for
single, 16 for char, 32 for int32, 16 for
int16, and so on.

dec2hex MATLAB • If input d is double, d must be less than
2^52.

• If input d is single, d must be less than
2^23.

• Unless you specify input n to be constant and
n is large enough that the output has a fixed
number of columns regardless of the input
values, this function requires variable-sizing
support. Without variable-sizing support, n
must be at least 13 for double, 6 for single,
4 for char, 8 for int32, 4 for int16, and so
on.

dechirp Phased Array
System Toolbox

Does not support variable-size inputs.

deconv MATLAB “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

del2 MATLAB —

delayseq Phased Array
System Toolbox

Does not support variable-size inputs.

21-29

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

depressionang Phased Array
System Toolbox

Does not support variable-size inputs.

det MATLAB —

detectBRISKFeatures Computer
Vision System
Toolbox

Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectFASTFeatures Computer
Vision System
Toolbox

Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectHarrisFeatures Computer
Vision System
Toolbox

Compile-time constant input: FilterSize
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectMinEigenFeatures Computer
Vision System
Toolbox

Compile-time constant input: FilterSize
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectMSERFeatures Computer
Vision System
Toolbox

Compile-time constant input: No restriction
Supports MATLAB Function block: No
For code generation, the function outputs
regions.PixelList as an array. The region
sizes are defined in regions.Lengths.

detectSURFFeatures Computer
Vision System
Toolbox

Compile-time constant input: No restrictions
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

21-30

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

detrend MATLAB • If supplied and not empty, the input
argument bp must satisfy the following
requirements:

- Be real.

- Be sorted in ascending order.

- Restrict elements to integers in the
interval [1, n-2]. n is the number of
elements in a column of input argument X
, or the number of elements in X when X
is a row vector.

- Contain all unique values.

- “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

diag MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

• For variable-size inputs that are
variable-length vectors (1-by-: or :-by-1),
diag:

- Treats the input as a vector input.

- Returns a matrix with the given vector
along the specified diagonal.

• For variable-size inputs that are not
variable-length vectors, diag:

- Treats the input as a matrix.

- Does not support inputs that are vectors
at run time.

- Returns a variable-length vector.

If the input is variable-size (:m-by-:n) and
has shape 0-by-0 at run time, the output is

21-31

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

0-by-1 not 0-by-0. However, if the input is a
constant size 0-by-0, the output is [].

• For variable-size inputs that are not
variable-length vectors (1-by-: or :-by-1),
diag treats the input as a matrix from which
to extract a diagonal vector. This behavior
occurs even if the input array is a vector at
run time. To force diag to build a matrix
from variable-size inputs that are not 1-by-:
or :-by-1, use:

- diag(x(:)) instead of diag(x)

- diag(x(:),k) instead of diag(x,k)

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

diag Fixed-Point
Designer

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

diff MATLAB • If supplied, the arguments representing
the number of times to apply diff and the
dimension along which to calculate the
difference must be constants.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

disparity Computer
Vision System
Toolbox

Compile-time constant input: Method.
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

21-32

http://www.mathworks.com/support/sysreq/current_release/

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

divide Fixed-Point
Designer

• Any non-fi input must be constant. Its
value must be known at compile time so that
it can be cast to a fi object.

• Complex and imaginary divisors are not
supported.

• The syntax T.divide(a,b) is not supported.

dop2speed Phased Array
System Toolbox

Does not support variable-size inputs.

dopsteeringvec Phased Array
System Toolbox

Does not support variable-size inputs.

dot MATLAB —

double MATLAB —

double Fixed-Point
Designer

—

downsample Signal
Processing
Toolbox

—

dpss Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

dsp.AdaptiveLattice-
Filter

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.AffineProjection-
Filter

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

21-33

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

dsp.AllpoleFilter DSP System
Toolbox • “System Objects in MATLAB Code

Generation”

• Only the Denominator property is tunable
for code generation.

dsp.AnalyticSignal DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ArrayPlot DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ArrayVectorAdder DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ArrayVectorDivider DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ArrayVector-
Multiplier

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ArrayVector-
Subtractor

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.AudioFileReader DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.AudioRecorder DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.AudioFileWriter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.AudioPlayer DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Autocorrelator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

21-34

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

dsp.BiquadFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.BurgAREstimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.BurgSpectrum-
Estimator

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CepstralToLPC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CICDecimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CICInterpolator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Convolver DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Counter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Crosscorrelator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CrossSpectrum-
Estimator

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CumulativeProduct DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CumulativeSum DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DCBlocker DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DCT DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Delay DSP System
Toolbox

“System Objects in MATLAB Code Generation”

21-35

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

dsp.DelayLine DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DigitalDownConverter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DigitalUpConverter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DigitalFilter DSP System
Toolbox

• “System Objects in MATLAB Code
Generation”

• The SOSMatrix and Scalevalues properties
are not supported for code generation.

dsp.FastTransversal-
Filter

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FFT DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FilteredXLMSFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FIRDecimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FIRFilter DSP System
Toolbox

• “System Objects in MATLAB Code
Generation”

• Only the Numerator property is tunable for
code generation.

dsp.FIRInterpolator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FIRRateConverter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FrequencyDomain-
AdaptiveFilter

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

21-36

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

dsp.Histogram DSP System
Toolbox • This object has no tunable properties for

code generation.

• “System Objects in MATLAB Code
Generation”

dsp.IDCT DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.IFFT DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.IIRFilter DSP System
Toolbox • Only the Numerator and Denominator

properties are tunable for code generation.

• “System Objects in MATLAB Code
Generation”

dsp.Interpolator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.KalmanFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LDLFactor DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LevinsonSolver DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LMSFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LowerTriangular-
Solver

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LPCToAutocorrelation DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LPCToCepstral DSP System
Toolbox

“System Objects in MATLAB Code Generation”

21-37

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

dsp.LPCToLSF DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LPCToLSP DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LPCToRC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LSFToLPC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LSPToLPC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LUFactor DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Maximum DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Mean DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Median DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Minimum DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.NCO DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Normalizer DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.PeakFinder DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.PhaseUnwrapper DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.RCToAutocorrelation DSP System
Toolbox

“System Objects in MATLAB Code Generation”

21-38

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

dsp.RCToLPC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.RMS DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.RLSFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ScalarQuantizer-
Decoder

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ScalarQuantizer-
Encoder

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.SignalSource DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.SineWave DSP System
Toolbox • This object has no tunable properties for

code generation.

• “System Objects in MATLAB Code
Generation”

dsp.SpectrumAnalyzer DSP System
Toolbox

This System object™ does not generate code.
It is automatically declared as an extrinsic
variable using the coder.extrinsic function.

dsp.SpectrumEstimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.StandardDeviation DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.TimeScope DSP System
Toolbox

This System object does not generate code. It is
automatically declared as an extrinsic variable
using the coder.extrinsic function.

dsp.TransferFunction-
Estimator

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.UDPReceiver DSP System
Toolbox

“System Objects in MATLAB Code Generation”

21-39

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

dsp.UDPSender DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.UpperTriangular-
Solver

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.VariableFraction-
Delay

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.VariableIntegerDelay DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Variance DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.VectorQuantizer-
Decoder

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.VectorQuantizer-
Encoder

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Window DSP System
Toolbox • This object has no tunable properties for

code generation.

• “System Objects in MATLAB Code
Generation”

dsp.ZeroCrossing-
Detector

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

edge Image
Processing
Toolbox

The method, direction, and sigma arguments
must be a compile-time constants. In addition,
nonprogrammatic syntaxes are not supported.
For example, the syntax edge(im), where edge
does not return a value but displays an image
instead, is not supported.

Generated code for this function uses a
precompiled platform-specific shared library.

effearthradius Phased Array
System Toolbox

Does not support variable-size inputs.

21-40

http://www.mathworks.com/support/sysreq/current_release/

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

eig MATLAB • QZ algorithm used in all cases, whereas
MATLAB might use different algorithms
for different inputs. Consequently, V might
represent a different basis of eigenvectors,
and the eigenvalues in D might not be in the
same order as in MATLAB.

• With one input, [V,D] = eig(A), the
results will be similar to those obtained
using [V,D] = eig(A,eye(size(A)),'qz')
in MATLAB, except that for code generation,
the columns of V are normalized.

• Options 'balance', 'nobalance' are not
supported for the standard eigenvalue
problem, and 'chol' is not supported for the
symmetric generalized eigenvalue problem.

• Outputs are of complex type.

ellip Signal
Processing
Toolbox

Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

ellipap Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

21-41

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

ellipke MATLAB —

ellipord Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

end MATLAB —

end Fixed-Point
Designer

—

epipolarLine Computer
Vision System
Toolbox

Compile-time constant input: No restrictions.
Supports MATLAB Function block: Yes

eps MATLAB —

eps Fixed-Point
Designer

• Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi
single and fi double signals.

eq MATLAB —

eq Fixed-Point
Designer

Not supported for fixed-point signals with
different biases.

erf MATLAB —

erfc MATLAB —

erfcinv MATLAB —

erfcx MATLAB —

erfinv MATLAB —

error MATLAB For standalone code generation, excluded from
the generated code.

21-42

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

espritdoa Phased Array
System Toolbox

Does not support variable-size inputs.

estimateFundamental-
Matrix

Computer
Vision System
Toolbox

Compile-time constant input: Method,
OutputClass, DistanceType, and
ReportRuntimeError.
Supports MATLAB Function block: Yes

estimateGeometric-
Transform

Computer
Vision System
Toolbox

Compile-time constant input: transformType
Supports MATLAB Function block: No

estimateUncalibrated
Rectification

Computer
Vision System
Toolbox

Compile-time constant input: transformType
Supports MATLAB Function block: No

extractFeatures Computer
Vision System
Toolbox

Generates platform-dependent library: Yes for
BRISK, FREAK, and SURF methods only.
Compile-time constant input: Method
Supports MATLAB Function block: Yes for
Block method only.
Generated code for this function uses a
precompiled platform-specific shared library.

extractHOGFeatures Computer
Vision System
Toolbox

Compile-time constant input: No
Supports MATLAB Function block: No

evcdf Statistics
Toolbox

—

evinv Statistics
Toolbox

—

evpdf Statistics
Toolbox

—

21-43

http://www.mathworks.com/support/sysreq/current_release/

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

evrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

evstat Statistics
Toolbox

—

exp MATLAB —

expcdf Statistics
Toolbox

—

expint MATLAB —

expinv Statistics
Toolbox

—

expm MATLAB —

expm1 MATLAB —

exppdf Statistics
Toolbox

—

exprnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

expstat Statistics
Toolbox

—

eye MATLAB classname must be a built-in MATLAB
numeric type. Does not invoke the static
eye method for other classes. For example,
eye(m, n, 'myclass') does not invoke
myclass.eye(m,n).

21-44

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

factor MATLAB • The maximum double precision input is
2^33.

• The maximum single precision input is 2^25.

• The input n cannot have type int64 or
uint64.

factorial MATLAB —

false MATLAB • Dimensions must be real, nonnegative,
integers.

fcdf Statistics
Toolbox

—

fclose MATLAB —

fft MATLAB • Length of input vector must be a power of 2.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

fft2 MATLAB • Length of input matrix dimensions must
each be a power of 2.

fftn MATLAB • Length of input matrix dimensions must
each be a power of 2.

fftshift MATLAB —

fi Fixed-Point
Designer

• Use to create a fixed-point constant or
variable.

• The default constructor syntax without
input arguments is not supported.

• The rand
fi('PropertyName',PropertyValue...)
is not supported. To use property
name/property value pairs, you must first
specify the value v of the fi object as in
fi(v,'PropertyName',PropertyValue...).

21-45

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

• If the input value is not known at
compile time, you must provide complete
numerictype information.

• All properties related to data type must be
constant for code generation.

• numerictype object information must be
available for non-fixed-point Simulink
inputs.

filter MATLAB
• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

filter Fixed-Point
Designer

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

filter2 MATLAB —

filtfilt Signal
Processing
Toolbox

Filter coefficients must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

21-46

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

fimath Fixed-Point
Designer

• Fixed-point signals coming in to a MATLAB
Function block from Simulink are assigned
the fimath object defined in the MATLAB
Function dialog in the Model Explorer.

• Use to create fimath objects in generated
code.

• If the ProductMode property of the fimath
object is set to anything other than
FullPrecision, the ProductWordLength
and ProductFractionLength properties
must be constant.

• If the SumMode property of the fimath
object is set to anything other than
FullPrecision, the SumWordLength and
SumFractionLength properties must be
constant.

find MATLAB • Issues an error if a variable-sized input
becomes a row vector at run time.

Note This limitation does not apply when
the input is scalar or a variable-length row
vector.

• For variable-sized inputs, the shape of empty
outputs, 0-by-0, 0-by-1, or 1-by-0, depends
on the upper bounds of the size of the input.
The output might not match MATLAB
when the input array is a scalar or [] at run
time. If the input is a variable-length row
vector, the size of an empty output is 1-by-0,
otherwise it is 0-by-1.

21-47

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

findpeaks Signal
Processing
Toolbox

—

finv Statistics
Toolbox

—

fir1 Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

fir2 Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

firceqrip DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

21-48

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

fircls Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

fircls1 Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

fireqint DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firgr DSP System
Toolbox

• All inputs must be constant. Expressions
or variables are allowed if their values do
not change.

• Does not support syntaxes that have cell
array input.

firhalfband DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

21-49

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

firlpnorm DSP System
Toolbox

• All inputs must be constant. Expressions
or variables are allowed if their values do
not change.

• Does not support syntaxes that have cell
array input.

firls Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

firminphase DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firnyquist DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firpr2chfb DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firpm Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

21-50

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

firpmord Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

fix MATLAB —

fix Fixed-Point
Designer

—

fixed.Quantizer Fixed-Point
Designer

—

flattopwin Signal
Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

flintmax MATLAB —

flip MATLAB —

flipdim MATLAB

Note flipdim will be removed in a future
release. Use flip instead.

fliplr MATLAB —

flipud MATLAB —

21-51

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

floor MATLAB —

floor Fixed-Point
Designer

—

fminsearch MATLAB • Ignores the Display option. Does not print
status information during execution. Check
the exitflag output for the exit condition.

• The output structure does not include the
algorithm or message fields.

• Ignores the OutputFcn and PlotFcns
options.

fopen MATLAB • Does not support:

- machineformat, encoding, or fileID
inputs

- message output

- fopen(`all')

• If you disable extrinsic calls, you cannot
return fileIDs created with fopen to
MATLAB or extrinsic functions. You can
only use such fileIDs internally.

• You can open up to 20 files when generating
C/C++ executables, static libraries, or
dynamic libraries.

• The generated code does not report errors
from invalid file identifiers. Write your own
file open error handling in your MATLAB
code. Test whether fopen returns -1 which
indicates that the file open failed. For
example:

...
fid = fopen(filename, 'r');
if fid == -1

% fopen failed

21-52

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

else
%fopen successful, okay to call fread
A = fread(fid);
...

for MATLAB —

fpdf Statistics
Toolbox

—

fprintf MATLAB • Does not support:

- b and t subtypes on %u, %o %x, and %X
formats

- $ flag for reusing input arguments

- printing arrays

• There is no automatic casting. Input
arguments must match their format types
for predictable results.

• Escaped characters are limited to the
decimal range of 0–127.

• A call to fprintf with fileID equal to 1 or
2 becomes printf in the generated C/C++
code in the following cases:

- The fprintf call is inside a parfor loop.

- Extrinsic calls are disabled.

• When the MATLAB behavior differs from
the C compiler behavior, fprintf matches
the C compiler behavior in the following
cases:

- The format specifier has a corresponding
C format specifier, for example, %e or %E.

- The fprintf call is inside a parfor loop.

- Extrinsic calls are disabled.

21-53

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

• When you call fprintf with the format
specifier %s, do not put a null character
in the middle of the input string. Use
fprintf(fid, '%c', char(0)) to write a
null character.

• When you call fprintf with an integer
format specifier, the type of the integer
argument must be a type that the target
hardware can represent as a native C type.
For example, if you call fprintf('%d',
int64(n)), the target hardware must have a
native C type that supports a 64-bit integer.

fread MATLAB • precision must be a constant.

• The source and output that precision
specifies cannot have values long, ulong,
unsigned long, bitN, or ubitN.

• You cannot use the machineformat input.

• If the source or output that precision
specifies is a C type, for example, int, the
target and production sizes for that type
must:

- Match.

- Map directly to a MATLAB type.

• If the fread call reads the entire file, all
of the data must fit in the largest array
available for code generation.

• If sizeA is not constant or contains a
nonfinite element, then dynamic memory
allocation is required.

• Treats a char value for source or output
as a signed 8-bit integer. Use values only
between 0 and 127.

21-54

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

• The generated code does not report file
read errors. Write your own file read error
handling in your MATLAB code. Test
that the number of bytes read matches the
number of bytes that you requested. For
example:

...

N = 100;

[vals,numRead] = fread(fid, N,'*double');

if numRead ~= N

%fewer elements read than expected

end

...

freqspace MATLAB —

freqz Signal
Processing
Toolbox

When called with no output arguments, and
without a semicolon at the end, freqz returns
the complex frequency response of the input
filter, evaluated at 512 points.

If the semicolon is added, the function produces
a plot of the magnitude and phase response of
the filter.

See “freqzWith No Output Arguments”.

frnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

fspecial Image
Processing
Toolbox

All inputs must be constants at compilation
time. Expressions or variables are allowed if
their values do not change.

fspl Phased Array
System Toolbox

Does not support variable-size inputs.

21-55

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

fstat Statistics
Toolbox

—

full MATLAB —

fzero MATLAB • The first argument must be a function
handle. Does not support structure, inline
function, or string inputs for the first
argument.

• Supports up to three output arguments.
Does not support the fourth output
argument (the output structure).

gain2aperture Phased Array
System Toolbox

Does not support variable-size inputs.

gamcdf Statistics
Toolbox

—

gaminv Statistics
Toolbox

—

gamma MATLAB —

gammainc MATLAB Output is always complex.

gammaincinv MATLAB Output is always complex.

gammaln MATLAB —

gampdf Statistics
Toolbox

—

gamrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

gamstat Statistics
Toolbox

—

21-56

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

gausswin Signal
Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

gcd MATLAB —

ge MATLAB —

ge Fixed-Point
Designer

• Not supported for fixed-point signals with
different biases.

geocdf Statistics
Toolbox

—

geoinv Statistics
Toolbox

—

geomean Statistics
Toolbox

—

geopdf Statistics
Toolbox

—

geornd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

geostat Statistics
Toolbox

—

get Fixed-Point
Designer

• The syntax structure = get(o) is not
supported.

21-57

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

getlsb Fixed-Point
Designer

—

getmsb Fixed-Point
Designer

—

getrangefromclass Image
Processing
Toolbox

—

gevcdf Statistics
Toolbox

—

gevinv Statistics
Toolbox

—

gevpdf Statistics
Toolbox

—

gevrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

gevstat Statistics
Toolbox

—

global2localcoord Phased Array
System Toolbox

Does not support variable-size inputs.

gpcdf Statistics
Toolbox

—

gpinv Statistics
Toolbox

—

gppdf Statistics
Toolbox

—

21-58

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

gprnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

gpstat Statistics
Toolbox

—

gradient MATLAB —

grazingang Phased Array
System Toolbox

Does not support variable-size inputs.

gt MATLAB —

gt Fixed-Point
Designer

• Not supported for fixed-point signals with
different biases.

hadamard MATLAB —

hamming Signal
Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

hankel MATLAB —

21-59

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

hann Signal
Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

harmmean Statistics
Toolbox

—

hdlram Fixed-Point
Designer

—

hex2dec MATLAB —

hex2num MATLAB • For n = hex2num(S), size(S,2) <=
length(num2hex(0))

hilb MATLAB —

hist MATLAB • Histogram bar plotting not supported; call
with at least one output argument.

• If supplied, the second argument x must be
a scalar constant.

• Inputs must be real.

histc MATLAB • The output of a variable-size array that
becomes a column vector at run time is a
column-vector, not a row-vector.

• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

horizonrange Phased Array
System Toolbox

Does not support variable-size inputs.

21-60

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

horzcat Fixed-Point
Designer

—

hygecdf Statistics
Toolbox

—

hygeinv Statistics
Toolbox

—

hygepdf Statistics
Toolbox

—

hygernd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

hygestat Statistics
Toolbox

—

hypot MATLAB —

icdf Statistics
Toolbox

—

idct Signal
Processing
Toolbox

• Code generation for this function requires
the DSP System Toolbox software.

• Length of transform dimension must
be a power of two. If specified, the pad
or truncation value must be constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

21-61

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

if, elseif, else MATLAB —

idivide MATLAB • For efficient generated code, MATLAB rules
for divide by zero are supported only for the
'round' option.

ifft MATLAB • Length of input vector must be a power of 2.

• Output of ifft block is complex.

• Does not support the 'symmetric' option.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

ifft2 MATLAB • Length of input matrix dimensions must
each be a power of 2.

• Does not support the 'symmetric' option.

ifftn MATLAB • Length of input matrix dimensions must
each be a power of 2.

• Does not support the 'symmetric' option.

ifftshift MATLAB —

ifir DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iircomb DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iirgrpdelay DSP System
Toolbox

• All inputs must be constant. Expressions
or variables are allowed if their values do
not change.

• Does not support syntaxes that have cell
array input.

21-62

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

iirlpnorm DSP System
Toolbox

• All inputs must be constant. Expressions
or variables are allowed if their values do
not change.

• Does not support syntaxes that have cell
array input.

iirlpnormc DSP System
Toolbox

• All inputs must be constant. Expressions
or variables are allowed if their values do
not change.

• Does not support syntaxes that have cell
array input.

iirnotch DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iirpeak DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

im2double Image
Processing
Toolbox

—

im2int16 Image
Processing
Toolbox

Generated code for this function uses a
precompiled platform-specific shared library.

im2single Image
Processing
Toolbox

—

im2uint8 Image
Processing
Toolbox

Generated code for this function uses a
precompiled platform-specific shared library.

im2uint16 Image
Processing
Toolbox

Generated code for this function uses a
precompiled platform-specific shared library.

imag MATLAB —

21-63

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

imag Fixed-Point
Designer

—

imbothat Image
Processing
Toolbox

The input image IM must be either 2-D or
3-D image. The structuring element input
argument SE must be a compile-time constant.

Generated code for this function uses a
precompiled platform-specific shared library.

imclose Image
Processing
Toolbox

The input image IM must be either 2-D or
3-D image. The structuring element input
argument SE must be a compile-time constant.

Generated code for this function uses a
precompiled platform-specific shared library.

imcomplement Image
Processing
Toolbox

Does not support int64 and uint64 data types.

imdilate Image
Processing
Toolbox

The input image IM must be either 2-D or 3-D
image. The SE, PACKOPT, and SHAPE input
arguments must be a compile-time constant.
The structuring element argument SE must
be a single element—arrays of structuring
elements are not supported. To obtain the
same result as that obtained using an array
of structuring elements, call the function
sequentially.

Generated code for this function uses a
precompiled platform-specific shared library.

21-64

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

imerode Image
Processing
Toolbox

The input image IM must be either 2-D or 3-D
image. The SE, PACKOPT, and SHAPE input
arguments must be a compile-time constant.
The structuring element argument SE must
be a single element—arrays of structuring
elements are not supported. To obtain the
same result as that obtained using an array
of structuring elements, call the function
sequentially.

Generated code for this function uses a
precompiled platform-specific shared library.

imextendedmax Image
Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant.

Generated code for this function uses a
precompiled platform-specific shared library.

imextendedmin Image
Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant.

Generated code for this function uses a
precompiled platform-specific shared library.

imfill Image
Processing
Toolbox

The optional input connectivity, conn and
the string 'holes' must be compile time
constants.

Supports only up to 3-D inputs. (No N-D
support.)

The interactive mode to select points,
imfill(BW,0,CONN) is not supported in code
generation.

locations can be a P-by-1 vector, in which
case it contains the linear indices of the
starting locations. locations can also be a
P-by-ndims(I) matrix, in which case each
row contains the array indices of one of the
starting locations. Once you select a format at
compile-time, you cannot change it at run-time.

21-65

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

However, the number of points in locations can
be varied at run-time.

Generated code for this function uses a
precompiled platform-specific shared library.

imfilter Image
Processing
Toolbox

The input image can be either 2-D or 3-D. The
value of the input argument, options, must be
a compile-time constant.

Generated code for this function uses a
precompiled platform-specific shared library.

imhist Image
Processing
Toolbox

The optional second input argument, n, must
be a compile-time constant. In addition,
nonprogrammatic syntaxes are not supported.
For example, the syntaxes where imhist
displays the histogram are not supported.

Generated code for this function uses a
precompiled platform-specific shared library.

imhmax Image
Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant

Generated code for this function uses a
precompiled platform-specific shared library.

imhmin Image
Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant

Generated code for this function uses a
precompiled platform-specific shared library.

imopen Image
Processing
Toolbox

The input image IM must be either 2-D or
3-D image. The structuring element input
argument SE must be a compile-time constant.

Generated code for this function uses a
precompiled platform-specific shared library.

21-66

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

imreconstruct Image
Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant.

Generated code for this function uses a
precompiled platform-specific shared library.

imref2d Image
Processing
Toolbox

The XWorldLimits, YWorldLimits and
ImageSize properties can be set only during
object construction. When generating code,
you can only specify singular objects—arrays
of objects are not supported.

imref3d Image
Processing
Toolbox

The XWorldLimits, YWorldLimits,
ZWorldLimits and ImageSize properties can
be set only during object construction. When
generating code, you can only specify singular
objects—arrays of objects are not supported.

imregionalmax Image
Processing
Toolbox

The optional second input argument, conn,
must be a compile-time constant.

Generated code for this function uses a
precompiled platform-specific shared library.

imregionalmin Image
Processing
Toolbox

The optional second input argument, conn,
must be a compile-time constant.

Generated code for this function uses a
precompiled platform-specific shared library.

imtophat Image
Processing
Toolbox

The input image IM must be either 2-D or
3-D image. The structuring element input
argument SE must be a compile-time constant.

Generated code for this function uses a
precompiled platform-specific shared library.

21-67

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

imwarp Image
Processing
Toolbox

Geometric transformation object input, tform,
must be either affine2d or projective2d.
Additionally, the interpolation method and
optional parameter names must be string
constants.

Generated code for this function uses a
precompiled platform-specific shared library.

ind2sub MATLAB • The first argument should be a valid size
vector. Size vectors for arrays with more
than intmax elements are not supported.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

inf MATLAB • Dimensions must be real, nonnegative,
integers.

insertMarker Computer
Vision System
Toolbox

Compile-time constant input: marker
Supports MATLAB Function block: Yes

insertShape Computer
Vision System
Toolbox

Compile-time constant input: shape and
SmoothEdges
Supports MATLAB Function block: Yes

int8, int16, int32, int64 MATLAB No integer overflow detection for int64 in
MEX or MATLAB Function block simulation
on Windows 32-bit platforms.

int8, int16, int32, int64 Fixed-Point
Designer

—

integralImage Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes

interp1 MATLAB “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

21-68

http://www.mathworks.com/support/sysreq/current_release/

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

interp2 MATLAB • Xq and Yq must be the same size. Use
meshgrid to evaluate on a grid.

• For best results, provide X and Y as vectors.

• For the 'cubic' method, reports an error if
the grid does not have uniform spacing. In
this case, use the 'spline' method.

• For best results when you use the 'spline'
method:

- Use meshgrid to create the inputs Xq and
Yq.

- Use a small number of interpolation
points relative to the dimensions of V.
Interpolating over a large set of scattered
points can be inefficient.

interp3 MATLAB • Xq, Yq, and Zq must be the same size. Use
meshgrid to evaluate on a grid.

• For best results, provide X, Y, and Z as
vectors.

• For the 'cubic' method, reports an error if
the grid does not have uniform spacing. In
this case, use the 'spline' method.

• For best results when you use the 'spline'
method:

- Use meshgrid to create the inputs Xq, Yq,
and Zq.

- Use a small number of interpolation
points relative to the dimensions of V.
Interpolating over a large set of scattered
points can be inefficient.

21-69

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

intersect MATLAB • When you do not specify the 'rows' option:

- Inputs A and B must be vectors. If you
specify the 'legacy' option, inputs A and
B must be row vectors.

- The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

- The input [] is not supported. Use
a 1-by-0 or 0-by-1 input, for example,
zeros(1,0), to represent the empty set.

- If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never
0-by-0.

• When you specify both the 'legacy' option
and the 'rows' option, the outputs ia and
ib are column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output C is 0-by-0.

• When the setOrder is 'sorted' or when
you specify the 'legacy' option, the inputs
must already be sorted in ascending order.
The first output, C, is sorted in ascending
order.

• Complex inputs must be single or double.

• When one input is complex and the other
input is real, do one of the following:

- Set setOrder to 'stable'.

- Sort the real input in complex ascending
order (by absolute value). Suppose the
real input is x. Use sort(complex(x))or
sortrows(complex(x)).

21-70

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

intfilt Signal
Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

intmax MATLAB —

intmin MATLAB —

inv MATLAB Singular matrix inputs can produce nonfinite
values that differ from MATLAB results.

invhilb MATLAB —

ipermute MATLAB “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

iptcheckconn Image
Processing
Toolbox

All input arguments must be compile-time
constants.

iqr Statistics
Toolbox

—

isa MATLAB —

iscell MATLAB —

ischar MATLAB —

iscolumn MATLAB —

iscolumn Fixed-Point
Designer

—

isdeployed MATLAB
Compiler

• Returns true and false as appropriate for
MEX and SIM targets

• Returns false for other targets

21-71

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

isempty MATLAB —

isempty Fixed-Point
Designer

—

isEpipoleInImage Computer
Vision System
Toolbox

Compile-time constant input: No restrictions.
Supports MATLAB Function block: Yes

isequal MATLAB —

isequal Fixed-Point
Designer

—

isequaln MATLAB —

isfi Fixed-Point
Designer

—

isfield MATLAB • Does not support cell input for second
argument

isfimath Fixed-Point
Designer

—

isfimathlocal Fixed-Point
Designer

—

isfinite MATLAB —

isfinite Fixed-Point
Designer

—

isfloat MATLAB —

isinf MATLAB —

isinf Fixed-Point
Designer

—

isinteger MATLAB —

isletter MATLAB • Input values from the char class must be in
the range 0-127

islogical MATLAB —

21-72

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

ismac MATLAB • Returns true or false based on the MATLAB
version used for code generation.

• Use only when the code generation target is
S-function (Simulation) or MEX-function.

ismatrix MATLAB —

ismcc MATLAB
Compiler

• Returns true and false as appropriate for
MEX and SIM targets.

• Returns false for other targets.

ismember MATLAB • The second input, B, must be sorted in
ascending order.

• Complex inputs must be single or double.

isnan MATLAB —

isnan Fixed-Point
Designer

—

isnumeric MATLAB —

isnumeric Fixed-Point
Designer

—

isnumerictype Fixed-Point
Designer

—

isobject MATLAB —

ispc MATLAB • Returns true or false based on the MATLAB
version you use for code generation.

• Use only when the code generation target is
S-function (Simulation) or MEX-function.

isprime MATLAB • The maximum double precision input is
2^33.

• The maximum single precision input is 2^25.

• The input X cannot have type int64 or
uint64.

21-73

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

isreal MATLAB —

isreal Fixed-Point
Designer

—

isrow MATLAB —

isrow Fixed-Point
Designer

—

isscalar MATLAB —

isscalar Fixed-Point
Designer

—

issigned Fixed-Point
Designer

—

issorted MATLAB “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

isspace MATLAB • Input values from the char class must be
in the range 0–127.

issparse MATLAB —

isstrprop MATLAB
• Supports only inputs from char and integer
classes.

• Input values must be in the range 0-127.

isstruct MATLAB —

istrellis Communications
System Toolbox

—

isunix MATLAB • Returns true or false based on the MATLAB
version used for code generation.

• Use only when the code generation target is
S-function (Simulation) or MEX-function.

isvector MATLAB —

21-74

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

isvector Fixed-Point
Designer

—

kaiser Signal
Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

kaiserord Signal
Processing
Toolbox

—

kron MATLAB —

kurtosis Statistics
Toolbox

—

label2rgb Image
Processing
Toolbox

Referring to the standard syntax:

RGB = label2rgb(L, map, zerocolor, order)

• Submit at least two input arguments: the
label matrix, L, and the colormap matrix,
map.

• map must be an n-by-3, double, colormap
matrix. You cannot use a string containing
the name of a MATLAB colormap function
or a function handle of a colormap function.

• If you set the boundary color zerocolor
to the same color as one of the regions,
label2rgb will not issue a warning.

• If you supply a value for order, it must be
'noshuffle'.

21-75

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

lcm MATLAB —

lcmvweights Phased Array
System Toolbox

Does not support variable-size inputs.

ldivide MATLAB —

le MATLAB —

le Fixed-Point
Designer

• Not supported for fixed-point signals with
different biases.

length MATLAB —

length Fixed-Point
Designer

—

levinson Signal
Processing
Toolbox

• Code generation for this function requires
the DSP System Toolbox software.

• If specified, the order of recursion must be
a constant. Expressions or variables are
allowed if their values do not change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

lineToBorderPoints Computer
Vision System
Toolbox

Compile-time constant input: No restrictions.
Supports MATLAB Function block: Yes

21-76

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

linsolve MATLAB • The option structure must be a constant.

• Supports only a scalar option structure
input. It does not support arrays of option
structures.

• Only optimizes these cases:

- UT

- LT

- UHESS = true (the TRANSA can be either
true or false)

- SYM = true and POSDEF = true

Other options are equivalent to using
mldivide.

linspace MATLAB —

load MATLAB • Use only when generating MEX or code for
Simulink simulation. To load compile-time
constants, use coder.load.

• Does not support use of the function without
assignment to a structure or array. For
example, use S = load(filename), not
load(filename).

• The output S must be the name of a
structure or array without any subscripting.
For example, S[i] = load('myFile.mat')
is not allowed.

• Arguments to load must be compile-time
constant strings.

• Does not support loading objects.

• If the MAT-file contains unsupported
constructs, use load(filename,variables)
to load only the supported constructs.

21-77

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

• You cannot use save in a function intended
for code generation. The code generation
software does not support the save
function. Furthermore, you cannot use
coder.extrinsic with save. Prior to
generating code, you can use save to save
the workspace data to a MAT-file.

You must use coder.varsize to explicitly
declare variable-size data loaded using the
load function.

local2globalcoord Phased Array
System Toolbox

Does not support variable-size inputs.

log MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing
in complex(x).

log2 MATLAB —

log10 MATLAB —

log1p MATLAB —

logical MATLAB —

logical Fixed-Point
Designer

—

logncdf Statistics
Toolbox

—

logninv Statistics
Toolbox

—

lognpdf Statistics
Toolbox

—

21-78

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

lognrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

lognstat Statistics
Toolbox

—

logspace MATLAB —

lower MATLAB • Supports only char inputs.

• Input values must be in the range 0-127.

lowerbound Fixed-Point
Designer

—

lsb Fixed-Point
Designer

• Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi
single and double signals.

lt MATLAB —

lteZadoffChuSeq Communications
System Toolbox

—

lt Fixed-Point
Designer

• Not supported for fixed-point signals with
different biases.

lu MATLAB —

mad Statistics
Toolbox

Input dim cannot be empty.

magic MATLAB “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

21-79

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

matchFeatures Computer
Vision System
Toolbox

Generates platform-dependent library: Yes
for MATLAB host. The function generates
portable C code for non-host target.
Compile-time constant input: Method and
Metric.
Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.

max MATLAB
• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

max Fixed-Point
Designer

—

maxflat Signal
Processing
Toolbox

Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

mdltest Phased Array
System Toolbox

Does not support variable-size inputs.

mean MATLAB • Does not support the type parameter.

• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

21-80

http://www.mathworks.com/support/sysreq/current_release/

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

mean Fixed-Point
Designer • If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

mean2 Image
Processing
Toolbox

—

median MATLAB
• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

median Fixed-Point
Designer

—

meshgrid MATLAB —

mfilename MATLAB —

min MATLAB
• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

min Fixed-Point
Designer

—

minus MATLAB —

minus Fixed-Point
Designer

• Any non-fi input must be constant. Its
value must be known at compile time so that
it can be cast to a fi object.

21-81

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

mkpp MATLAB • The output structure pp differs from the pp
structure in MATLAB. In MATLAB, ppval
cannot use the pp structure from the code
generation software. For code generation,
ppval cannot use a pp structure created by
MATLAB. unmkpp can use a MATLAB pp
structure for code generation.

To create a MATLAB pp structure from a
pp structure created by the code generation
software:

- In code generation, use unmkpp to return
the piecewise polynomial details to
MATLAB.

- In MATLAB, use mkpp to create the pp
structure.

• If you do not provide d, then coefs must be
two-dimensional and have a fixed number
of columns. In this case, the number of
columns is the order.

• To define a piecewise constant polynomial,
coefs must be a column vector or d must
have at least two elements.

• If you provide d and d is 1, d must be a
constant. Otherwise, if the input to ppval is
nonscalar, the shape of the output of ppval
can differ from ppval in MATLAB.

• If you provide d, it must have a fixed length.
One of the following sets of statements must
be true:

1 Suppose that m = length(d) and
npieces = length(breaks) - 1.

size(coefs,j) = d(j)
size(coefs,m+1) = npieces

21-82

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

size(coefs,m+2) = order

j = 1,2,...,m. The dimension m+2 must be
fixed length.

2 Suppose that m = length(d) and
npieces = length(breaks) - 1.

size(coefs,1) = prod(d)*npieces
size(coefs,2) = order

The second dimension must be fixed
length.

• If you do not provide d, the following
statements must be true:

Suppose that m = length(d) and npieces
= length(breaks) - 1.

size(coefs,1) = prod(d)*npieces
size(coefs,2) = order

The second dimension must be fixed length.

mldivide MATLAB —

mnpdf Statistics
Toolbox

—

mod MATLAB • Performs the arithmetic using the output
class. Results might not match MATLAB
due to differences in rounding errors.

If one of the inputs has type int64 or
uint64, then both inputs must have the
same type.

21-83

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

mode MATLAB • Does not support third output argument C
(cell array).

• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

moment Statistics
Toolbox

If order is nonintegral and X is real, use
moment(complex(X), order).

mpower MATLAB —

mpower Fixed-Point
Designer

• The exponent input, k, must be constant;
that is, its value must be known at compile
time.

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

- In generated code, the output for
variable-sized signals is computed using
the SumMode property of the governing
fimath.

- In MATLAB, the output for variable-sized
signals is computed using the SumMode
property of the governing fimath
when both inputs are nonscalar.
However, if either input is a scalar,
MATLAB computes the output using the
ProductMode of the governing fimath.

21-84

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

mpy Fixed-Point
Designer

• Code generation in MATLAB does not
support the syntax F.mpy(a,b). You must
use the syntax mpy(F,a,b).

• When you provide complex inputs to the mpy
function inside a MATLAB Function block,
you must declare the input as complex
before running the simulation. To do so, go
to the Ports and data manager and set
the Complexity parameter for all known
complex inputs to On.

mrdivide MATLAB —

mrdivide Fixed-Point
Designer

—

MSERRegions Computer
Vision System
Toolbox

Compile-time constant input: No restrictions.
Supports MATLAB Function block: Yes
For code generation, you must specify both the
pixellist cell array and the length of each
array, as the second input. The object outputs,
regions.PixelList as an array. The region
sizes are defined in regions.Lengths.
Generated code for this function uses a
precompiled platform-specific shared library.

mtimes MATLAB “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

21-85

http://www.mathworks.com/support/sysreq/current_release/

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

mtimes Fixed-Point
Designer

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

- In generated code, the output for
variable-sized signals is computed using
the SumMode property of the governing
fimath.

- In MATLAB, the output for variable-sized
signals is computed using the SumMode
property of the governing fimath
when both inputs are nonscalar.
However, if either input is a scalar,
MATLAB computes the output using the
ProductMode of the governing fimath.

mvdrweights Phased Array
System Toolbox

Does not support variable-size inputs.

NaN or nan MATLAB • Dimensions must be real, nonnegative,
integers.

nancov Statistics
Toolbox

If the input is variable-size and is [] at run
time, returns [] not NaN.

nanmax Statistics
Toolbox

—

nanmean Statistics
Toolbox

—

nanmedian Statistics
Toolbox

—

21-86

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

nanmin Statistics
Toolbox

—

nanstd Statistics
Toolbox

—

nansum Statistics
Toolbox

—

nanvar Statistics
Toolbox

—

nargchk MATLAB • Output structure does not include stack
information.

Note nargchk will be removed in a future
release.

nargin MATLAB —

narginchk MATLAB —

nargout MATLAB • For a function with no output arguments,
returns 1 if called without a terminating
semicolon.

Note This behavior also affects extrinsic calls
with no terminating semicolon. nargout is 1
for the called function in MATLAB.

nargoutchk MATLAB —

nbincdf Statistics
Toolbox

—

nbininv Statistics
Toolbox

—

nbinpdf Statistics
Toolbox

—

21-87

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

nbinrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

nbinstat Statistics
Toolbox

—

ncfcdf Statistics
Toolbox

—

ncfinv Statistics
Toolbox

—

ncfpdf Statistics
Toolbox

—

ncfrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

ncfstat Statistics
Toolbox

—

nchoosek MATLAB • When the first input, x, is a scalar, nchoosek
returns a binomial coefficient. In this case,
x must be a nonnegative integer. It cannot
have type int64 or uint64.

• When the first input, x, is a vector, nchoosek
treats it as a set. In this case, x can have
type int64 or uint64.

• The second input, k, cannot have type int64
or uint64.

21-88

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

nctcdf Statistics
Toolbox

—

nctinv Statistics
Toolbox

—

nctpdf Statistics
Toolbox

—

nctrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

nctstat Statistics
Toolbox

—

ncx2cdf Statistics
Toolbox

—

ncx2rnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

ncx2stat Statistics
Toolbox

—

ndgrid MATLAB —

ndims MATLAB —

ndims Fixed-Point
Designer

—

21-89

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

ne MATLAB —

ne Fixed-Point
Designer

• Not supported for fixed-point signals with
different biases.

nearest Fixed-Point
Designer

—

nextpow2 MATLAB —

nnz MATLAB —

noisepow Phased Array
System Toolbox

Does not support variable-size inputs.

nonzeros MATLAB —

norm MATLAB —

normcdf Statistics
Toolbox

—

normest MATLAB —

norminv Statistics
Toolbox

—

normpdf Statistics
Toolbox

—

normrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

normstat Statistics
Toolbox

—

not MATLAB —

npwgnthresh Phased Array
System Toolbox

Does not support variable-size inputs.

nthroot MATLAB —

21-90

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

null MATLAB • Might return a different basis than
MATLAB

• Does not support rational basis option
(second input)

num2hex MATLAB —

numberofelements Fixed-Point
Designer

numberofelements will be removed in a future
release. Use numel instead.

numel MATLAB —

numel Fixed-Point
Designer

—

numerictype Fixed-Point
Designer

• Fixed-point signals coming into a MATLAB
Function block from Simulink are assigned
a numerictype object that is populated
with the signal’s data type and scaling
information.

• Returns the data type when the input is a
nonfixed-point signal.

• Use to create numerictype objects in the
generated code.

• All numerictype object properties related to
the data type must be constant.

nuttallwin Signal
Processing
Toolbox

Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

21-91

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

ocr Computer
Vision System
Toolbox

Compile-time constant input: TextLayout,
Language, and CharacterSet.
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

ocrText Computer
Vision System
Toolbox

Compile-time constant input: No restrictions.
Supports MATLAB Function block: No

ones MATLAB • Dimensions must be real, nonnegative
integers.

• The input optimfun must be a function
supported for code generation.

optimget MATLAB Input parameter names must be constant.

optimset MATLAB • Does not support the syntax that has no
input or output arguments:

optimset

• Functions specified in the options must be
supported for code generation.

• The fields of the options structure oldopts
must be fixed-size fields.

• For code generation, optimization functions
ignore the Display option.

• Does not support the additional options
in an options structure created by the
Optimization Toolbox™ optimset function.
If an input options structure includes the
additional Optimization Toolbox options,
the output structure does not include them.

or MATLAB —

orth MATLAB • Can return a different basis than MATLAB

21-92

http://www.mathworks.com/support/sysreq/current_release/

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

padarray Image
Processing
Toolbox

• Support only up to 3-D inputs.

• Input arguments, padval and direction
are expected to be compile-time constants.

parfor MATLAB Treated as a for-loop when used with fiaccel.

parzenwin Signal
Processing
Toolbox

Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

pascal MATLAB —

pchip MATLAB • Input x must be strictly increasing.

• Does not remove y entries with NaN values.

• If you generate code for the pp =
pchip(x,y) syntax, you cannot input pp to
the ppval function in MATLAB. To create a
MATLAB pp structure from a pp structure
created by the code generation software:

- In code generation, use unmkpp to return
the piecewise polynomial details to
MATLAB.

- In MATLAB, use mkpp to create the pp
structure.

pdf Statistics
Toolbox

—

permute MATLAB “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

21-93

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

permute Fixed-Point
Designer

—

phased.ADPCACanceller Phased Array
System Toolbox

“Code Generation”

phased.AngleDoppler-
Response

Phased Array
System Toolbox

“Code Generation”

phased.ArrayGain Phased Array
System Toolbox • Does not support arrays containing

polarized antenna elements, that is, the
phased.ShortDipoleAntennaElement or
phased.CrossedDipoleAntennaElement
antennas.

• “Code Generation”.

phased.ArrayResponse Phased Array
System Toolbox

“Code Generation”

phased.BarrageJammer Phased Array
System Toolbox

“Code Generation”

phased.BeamscanEstimator Phased Array
System Toolbox

“Code Generation”

phased.Beamscan-
Estimator2D

Phased Array
System Toolbox

“Code Generation”

phased.Beamspace-
ESPRITEstimator

Phased Array
System Toolbox

“Code Generation”.

phased.CFARDetector Phased Array
System Toolbox

“Code Generation”

phased.Collector Phased Array
System Toolbox

“Code Generation”

phased.ConformalArray Phased Array
System Toolbox • plotResponse and viewArray methods are

not supported.

• “Code Generation”.

21-94

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

phased.Constant-
GammaClutter

Phased Array
System Toolbox

“Code Generation”

phased.Cosine-
AntennaElement

Phased Array
System Toolbox • plotResponse and viewArray methods are

not supported.

• “Code Generation”.

phased.Crossed-
DipoleAntennaElement

Phased Array
System Toolbox • plotResponse and viewArray methods are

not supported.

• “Code Generation”.

phased.Custom-
AntennaElement

Phased Array
System Toolbox • plotResponse and viewArray methods are

not supported.

• “Code Generation”.

phased.Custom-
MicrophoneElement

Phased Array
System Toolbox • plotResponse and viewArray methods are

not supported.

• “Code Generation”

phased.DPCACanceller Phased Array
System Toolbox

“Code Generation”

phased.ElementDelay Phased Array
System Toolbox

“Code Generation”

phased.ESPRITEstimator Phased Array
System Toolbox

“Code Generation”

phased.FMCWWaveform Phased Array
System Toolbox

“Code Generation”

phased.FreeSpace Phased Array
System Toolbox • Requires dynamic memory allocation.

See “Limitations for System Objects that
Require Dynamic Memory Allocation”.

• “Code Generation”.

21-95

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

phased.FrostBeamformer Phased Array
System Toolbox • Requires dynamic memory allocation.

See “Limitations for System Objects that
Require Dynamic Memory Allocation”.

• “Code Generation”.

phased.Isotropic-
AntennaElement

Phased Array
System Toolbox • plotResponse and viewArray methods are

not supported.

• “Code Generation”.

phased.LCMVBeamformer Phased Array
System Toolbox

“Code Generation”

phased.LinearFMWaveform Phased Array
System Toolbox

“Code Generation”

phased.MatchedFilter Phased Array
System Toolbox • The CustomSpectrumWindow property is not

supported.

• “Code Generation”.

phased.MVDRBeamformer Phased Array
System Toolbox

“Code Generation”

phased.MVDREstimator Phased Array
System Toolbox

“Code Generation”

phased.MVDREstimator2D Phased Array
System Toolbox

“Code Generation”

phased.Omnidirectional-
MicrophoneElement

Phased Array
System Toolbox • plotResponse and viewArray methods are

not supported.

• “Code Generation”.

phased.PartitionedArray Phased Array
System Toolbox • plotResponse and viewArray methods are

not supported.

• “Code Generation”.

21-96

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

phased.PhaseCodedWaveform Phased Array
System Toolbox

“Code Generation”

phased.PhaseShift-
Beamformer

Phased Array
System Toolbox

“Code Generation”

phased.Platform Phased Array
System Toolbox

“Code Generation”

phased.RadarTarget Phased Array
System Toolbox

“Code Generation”

phased.Radiator Phased Array
System Toolbox

“Code Generation”

phased.Range-
DopplerResponse

Phased Array
System Toolbox • The CustomRangeWindow and the

CustomDopplerWindow properties are not
supported.

• “Code Generation”.

phased.Rectangular-
Waveform

Phased Array
System Toolbox

“Code Generation”

phased.ReceiverPreamp Phased Array
System Toolbox

“Code Generation”

phased.Replicated-
Subarray

Phased Array
System Toolbox • plotResponse and viewArray methods are

not supported.

• “Code Generation”.

phased.RootMUSIC-
Estimator

Phased Array
System Toolbox

“Code Generation”

phased.RootWSFEstimator Phased Array
System Toolbox

“Code Generation”

21-97

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

phased.ShortDipole-
AntennaElement

Phased Array
System Toolbox • plotResponse and viewArray methods are

not supported.

• “Code Generation”.

phased.STAPSMIBeamformer Phased Array
System Toolbox

“Code Generation”

phased.StretchProcessor Phased Array
System Toolbox

“Code Generation”

phased.SubbandPhase-
ShiftBeamformer

Phased Array
System Toolbox

“Code Generation”

phased.SteeringVector Phased Array
System Toolbox

“Code Generation”

phased.SteppedFMWaveform Phased Array
System Toolbox

“Code Generation”

phased.SumDifference-
MonopulseTracker

Phased Array
System Toolbox

“Code Generation”.

phased.SumDifference-
MonopulseTracker2D

Phased Array
System Toolbox

“Code Generation”.

phased.TimeDelay-
Beamformer

Phased Array
System Toolbox • Requires dynamic memory allocation.

See “Limitations for System Objects that
Require Dynamic Memory Allocation”.

• “Code Generation”.

phased.TimeDelayLCMV-
Beamformer

Phased Array
System Toolbox • Requires dynamic memory allocation.

See “Limitations for System Objects that
Require Dynamic Memory Allocation”.

• “Code Generation”.

phased.TimeVaryingGain Phased Array
System Toolbox

“Code Generation”.

21-98

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

phased.Transmitter Phased Array
System Toolbox

“Code Generation”.

phased.ULA Phased Array
System Toolbox • plotResponse and viewArray methods are

not supported.

• “Code Generation”.

phased.URA Phased Array
System Toolbox • plotResponse and viewArray methods are

not supported.

• “Code Generation”.

phased.WidebandCollector Phased Array
System Toolbox • Requires dynamic memory allocation.

See “Limitations for System Objects that
Require Dynamic Memory Allocation”.

• “Code Generation”.

phitheta2azel Phased Array
System Toolbox

Does not support variable-size inputs.

phitheta2azelpat Phased Array
System Toolbox

Does not support variable-size inputs.

phitheta2uv Phased Array
System Toolbox

Does not support variable-size inputs.

phitheta2uvpat Phased Array
System Toolbox

Does not support variable-size inputs.

physconst Phased Array
System Toolbox

Does not support variable-size inputs.

pi MATLAB —

pinv MATLAB —

planerot MATLAB “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

plus MATLAB —

21-99

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

plus Fixed-Point
Designer

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

poisscdf Statistics
Toolbox

—

poissinv Statistics
Toolbox

—

poisspdf Statistics
Toolbox

—

poissrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

poisstat Statistics
Toolbox

—

pol2cart MATLAB —

pol2circpol Phased Array
System Toolbox

Does not support variable-size inputs.

polellip Phased Array
System Toolbox

Does not support variable-size inputs.

polloss Phased Array
System Toolbox

Does not support variable-size inputs.

polratio Phased Array
System Toolbox

Does not support variable-size inputs.

polsignature Phased Array
System Toolbox • Does not support variable-size inputs.

• Supported only when output arguments are
specified.

21-100

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

poly MATLAB • Does not discard nonfinite input values

• Complex input produces complex output

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

polyarea MATLAB —

poly2trellis Communications
System Toolbox

—

polyder MATLAB The output can contain fewer NaNs than
the MATLAB output. However, if the input
contains a NaN, the output contains at least
one NaN.

polyfit MATLAB “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

polyint MATLAB —

polyval MATLAB —

polyvalm MATLAB —

pow2 Fixed-Point
Designer

—

pow2db Signal
Processing
Toolbox

—

21-101

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

power MATLAB • Generates an error during simulation. When
both X and Y are real, but power(X,Y) is
complex, returns NaN in the generated code.
To get the complex result, make the input
value X complex by passing in complex(X).
For example, power(complex(X),Y).

• Generates an error during simulation.
When both X and Y are real, but X .^ Y
is complex, returns NaN in generated code.
To get the complex result, make the input
value X complex by using complex(X). For
example, complex(X).^Y.

power Fixed-Point
Designer

• The exponent input, k, must be constant. Its
value must be known at compile time.

ppval MATLAB The size of output v does not match MATLAB
when both of the following statements are true:

• The input x is a variable-size array that is
not a variable-length vector.

• x becomes a row vector at run time.

The code generation software does not remove
the singleton dimensions. However, MATLAB
might remove singleton dimensions.

For example, suppose that x is a :4-by-:5 array
and ppval(pp,0) returns a 2-by-3 fixed-size
array. v has size 2-by-3-by-:4-by-:5. At run
time, suppose that, size(x,1) =1 and size (x,2) =
5. In the generated code, the size(v) is [2,3,1,5].
In MATLAB, the size is [2,3,5].

21-102

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

prctile Statistics
Toolbox • “Automatic dimension restriction”

• If the output Y is a vector, the orientation
of Y differs from MATLAB when all of the
following are true:

- You do not supply the dim input.

- X is a variable-size array.

- X is not a variable-length vector.

- X is a vector at run time.

- The orientation of the vector X does not
match the orientation of the vector p.

In this case, the output Y matches the
orientation of X not the orientation of p.

primes MATLAB • The maximum double precision input is
2^32.

• The maximum single precision input is 2^24.

• The input n cannot have type int64 or
uint64.

prod MATLAB
• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

projective2d Image
Processing
Toolbox

When generating code, you can only specify
singular objects—arrays of objects are not
supported.

psi MATLAB —

pulsint Phased Array
System Toolbox

Does not support variable-size inputs.

qr MATLAB —

21-103

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

quad2d MATLAB
• Generates a warning if the size of the
internal storage arrays is not large enough.
If a warning occurs, a possible workaround
is to divide the region of integration into
pieces and sum the integrals over each piece.

quadgk MATLAB —

quantile Statistics
Toolbox

—

quantize Fixed-Point
Designer

—

quatconj Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset™ software.

quatdivide Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

quatinv Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

quatmod Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

quatmultiply Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

quatnorm Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

quatnormalize Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

radareqpow Phased Array
System Toolbox

Does not support variable-size inputs.

radareqrng Phased Array
System Toolbox

Does not support variable-size inputs.

radareqsnr Phased Array
System Toolbox

Does not support variable-size inputs.

21-104

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

radarvcd Phased Array
System Toolbox

Does not support variable-size inputs.

radialspeed Phased Array
System Toolbox

Does not support variable-size inputs.

rand MATLAB • classname must be a built-in MATLAB
numeric type. Does not invoke the static
rand method for other classes. For example,
rand(sz,'myclass') does not invoke
myclass.rand(sz).

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

randg Statistics
Toolbox

—

randi MATLAB • classname must be a built-in MATLAB
numeric type. Does not invoke the static
randi method for other classes. For
example, randi(imax,sz,'myclass') does
not invoke myclass.randi(imax,sz).

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

randn MATLAB • classname must be a built-in MATLAB
numeric type. Does not invoke the static
randn method for other classes. For
example, randn(sz,'myclass') does not
invoke myclass.randn(sz).

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

random Statistics
Toolbox

—

randperm MATLAB —

21-105

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

range Fixed-Point
Designer

—

range2beat Phased Array
System Toolbox

Does not support variable-size inputs.

range2bw Phased Array
System Toolbox

Does not support variable-size inputs.

range2time Phased Array
System Toolbox

Does not support variable-size inputs.

rangeangle Phased Array
System Toolbox

Does not support variable-size inputs.

rank MATLAB —

raylcdf Statistics
Toolbox

—

raylinv Statistics
Toolbox

—

raylpdf Statistics
Toolbox

—

raylrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

raylstat Statistics
Toolbox

—

rcond MATLAB —

21-106

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

rcosdesign Signal
Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

rdcoupling Phased Array
System Toolbox

Does not support variable-size inputs.

rdivide MATLAB —

rdivide Fixed-Point
Designer

—

real MATLAB —

real Fixed-Point
Designer

—

reallog MATLAB —

realmax MATLAB —

realmax Fixed-Point
Designer

—

realmin MATLAB —

realmin Fixed-Point
Designer

—

realpow MATLAB —

realsqrt MATLAB —

rectint MATLAB —

21-107

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

rectwin Signal
Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

reinterpretcast Fixed-Point
Designer

—

rem MATLAB • Performs the arithmetic using the output
class. Results might not match MATLAB
due to differences in rounding errors.

• If one of the inputs has type int64 or
uint64, then both inputs must have the
same type.

removefimath Fixed-Point
Designer

—

repmat MATLAB —

repmat Fixed-Point
Designer

—

resample Signal
Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

rescale Fixed-Point
Designer

—

21-108

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

reshape MATLAB “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

reshape Fixed-Point
Designer

—

return MATLAB —

rng MATLAB • For library code generation targets,
executable code generation targets, and
MEX targets with extrinsic calls disabled:

- Does not support the 'shuffle' input.

- For the generator input, supports
'twister', 'v4', and 'v5normal'.

For these targets, the output of s=rng in the
generated code differs from the MATLAB
output. You cannot return the output of
s=rng from the generated code and pass it
to rng in MATLAB.

• For MEX targets, if extrinsic calls are
enabled, you cannot access the data in the
structure returned by rng.

rocpfa Phased Array
System Toolbox • Does not support variable-size inputs.

• The NonfluctuatingNoncoherent signal
type is not supported.

rocsnr Phased Array
System Toolbox

• Does not support variable-size inputs.

• Does not support the
NonfluctuatingNoncoherent signal type.

rootmusicdoa Phased Array
System Toolbox

Does not support variable-size inputs.

21-109

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

roots MATLAB • Output is variable size.

• Output is complex.

• Roots are not always in the same order as
MATLAB.

• Roots of poorly conditioned polynomials do
not always match MATLAB.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

rosser MATLAB —

rot90 MATLAB —

rotx Phased Array
System Toolbox

Does not support variable-size inputs.

roty Phased Array
System Toolbox

Does not support variable-size inputs.

rotz Phased Array
System Toolbox

Does not support variable-size inputs.

round MATLAB —

round Fixed-Point
Designer

—

rsf2csf MATLAB —

schur MATLAB Can return a different Schur decomposition in
generated code than in MATLAB.

sec MATLAB —

secd MATLAB —

sech MATLAB —

sensorcov Phased Array
System Toolbox

Does not support variable-size inputs.

21-110

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

sensorsig Phased Array
System Toolbox

Does not support variable-size inputs.

setdiff MATLAB • When you do not specify the 'rows' option:

- Inputs A and B must be vectors. If you
specify the 'legacy' option, inputs A and
B must be row vectors.

- The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

- Do not use [] to represent the empty set.
Use a 1-by-0 or 0-by-1 input, for example,
zeros(1,0), to represent the empty set.

- If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never
0-by-0.

• When you specify both the 'legacy' and
'rows' options, the output ia is a column
vector. If ia is empty, it is 0-by-1, never
0-by-0, even if the output C is 0-by-0.

• When the setOrder is 'sorted' or when
you specify the 'legacy' option, the inputs
must already be sorted in ascending order.
The first output, C, is sorted in ascending
order.

• Complex inputs must be single or double.

• When one input is complex and the other
input is real, do one of the following:

- Set setOrder to 'stable'.

- Sort the real input in complex ascending
order (by absolute value). Suppose the

21-111

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

real input is x. Use sort(complex(x))or
sortrows(complex(x)).

setfimath Fixed-Point
Designer

—

setxor MATLAB • When you do not specify the 'rows' option:

- Inputs A and B must be vectors with
the same orientation. If you specify the
'legacy' option, inputs A and B must be
row vectors.

- The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

- The input [] is not supported. Use a
1-by-0 or 0-by-1 input, for example ,
zeros(1,0), to represent the empty set.

- If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never
0-by-0.

• When you specify both the 'legacy' option
and the 'rows' option, the outputs ia and
ib are column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output C is 0-by-0.

• When the setOrder is 'sorted' or when
you specify the 'legacy' flag, the inputs
must already be sorted in ascending order.
The first output, C, is sorted in ascending
order.

• Complex inputs must be single or double.

• When one input is complex and the other
input is real, do one of the following:

- Set setOrder to 'stable'.

21-112

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

- Sort the real input in complex ascending
order (by absolute value). Suppose the
real input is x. Use sort(complex(x))or
sortrows(complex(x)).

sfi Fixed-Point
Designer

• All properties related to data type must be
constant for code generation.

sgolay Signal
Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

shiftdim MATLAB • Second argument must be a constant.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

shnidman Phased Array
System Toolbox

Does not support variable-size inputs.

sign MATLAB —

sign Fixed-Point
Designer

—

sin MATLAB —

sin Fixed-Point
Designer

—

sind MATLAB —

single MATLAB —

single Fixed-Point
Designer

—

21-113

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

sinh MATLAB —

size MATLAB —

size Fixed-Point
Designer

—

skewness Statistics
Toolbox

—

sort MATLAB If the input is a complex type, sort orders the
output according to absolute value. When x
is a complex type that has all zero imaginary
parts, use sort(real(x)) to compute the sort
order for real types. See “Code Generation for
Complex Data” on page 13-4.

sort Fixed-Point
Designer

—

sortrows MATLAB If the input is a complex type, sortrows orders
the output according to absolute value. When
x is a complex type that has all zero imaginary
parts, use sortrows(real(x)) to compute the
sort order for real types. See “Code Generation
for Complex Data” on page 13-4.

sosfilt Signal
Processing
Toolbox

—

speed2dop Phased Array
System Toolbox

Does not support variable-size inputs.

sph2cart MATLAB —

sph2cartvec Phased Array
System Toolbox

Does not support variable-size inputs.

21-114

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

spline MATLAB • Input x must be strictly increasing.

• Does not remove Y entries with NaN values.

• Does not report an error for infinite
endslopes in Y.

• If you generate code for the pp =
spline(x,Y) syntax, you cannot input pp to
the ppval function in MATLAB. To create a
MATLAB pp structure from a pp structure
created by the code generation software:

- In code generation, use unmkpp to return
the piecewise polynomial details to
MATLAB.

- In MATLAB, use mkpp to create the pp
structure.

spsmooth Phased Array
System Toolbox

Does not support variable-size inputs.

squeeze MATLAB —

sqrt MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing
in complex(x).

sqrt Fixed-Point
Designer

• Complex and [Slope Bias] inputs error out.

• Negative inputs yield a 0 result.

sqrtm MATLAB —

std MATLAB “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

21-115

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

steervec Phased Array
System Toolbox

Does not support variable-size inputs.

stokes Phased Array
System Toolbox • Does not support variable-size inputs.

• Supported only when output arguments are
specified.

storedInteger Fixed-Point
Designer

—

storedIntegerToDouble Fixed-Point
Designer

—

str2func MATLAB • String must be constant/known at compile
time

strcmp MATLAB —

strcmpi MATLAB • Input values from the char class must be in
the range 0-127.

strel Image
Processing
Toolbox

All input arguments must be compile-time
constants. The following methods are not
supported for code generation: getsequence,
reflect, translate, disp, display, loadobj.
When generating code, you can only specify
singular objects—arrays of objects are not
supported.

stretchfreq2rng Phased Array
System Toolbox

Does not support variable-size inputs.

strfind MATLAB • Does not support cell arrays.

• If pattern does not exist in str, returns
zeros(1,0) not []. To check for an empty
return, use isempty.

• Inputs must be character row vectors.

strjust MATLAB —

strncmp MATLAB —

21-116

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

strncmpi MATLAB • Input values from the char class must be in
the range 0-127.

strrep MATLAB • Does not support cell arrays.

• If oldSubstr does not exist in origStr,
returns blanks(0). To check for an empty
return, use isempty.

• Inputs must be character row vectors.

strtok MATLAB —

strtrim MATLAB • Supports only inputs from the char class.

• Input values must be in the range 0-127.

struct MATLAB —

structfun MATLAB • Does not support the ErrorHandler option.

• The number of outputs must be less than
or equal to three.

sub Fixed-Point
Designer

Code generation in MATLAB does not support
the syntax F.sub(a,b). You must use the
syntax sub(F,a,b).

sub2ind MATLAB • The first argument should be a valid size
vector. Size vectors for arrays with more
than intmax elements are not supported.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

subsasgn Fixed-Point
Designer

—

subspace MATLAB —

subsref Fixed-Point
Designer

—

21-117

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

sum MATLAB
• Specify dim as a constant.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

sum Fixed-Point
Designer

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

surfacegamma Phased Array
System Toolbox

Does not support variable-size inputs.

surfclutterrcs Phased Array
System Toolbox

Does not support variable-size inputs.

SURFPoints Computer
Vision System
Toolbox

Compile-time constant input: No restrictions.
Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

svd MATLAB Uses a different SVD implementation than
MATLAB. Because the singular value
decomposition is not unique, left and right
singular vectors might differ from those
computed by MATLAB.

swapbytes MATLAB Inheritance of the class of the input to
swapbytes in a MATLAB Function block is
supported only when the class of the input is
double. For non-double inputs, the input port
data types must be specified, not inherited.

21-118

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

switch, case, otherwise MATLAB • If all case expressions are scalar integer
values, generates a C switch statement.
At run time, if the switch value is not an
integer, generates an error.

• When the case expressions contain
noninteger or nonscalar values, the
code generation software generates C if
statements in place of a C switch statement.

systemp Phased Array
System Toolbox

Does not support variable-size inputs.

tan MATLAB —

tand MATLAB —

tanh MATLAB —

taylorwin Signal
Processing
Toolbox

Inputs must be constant

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

tcdf Statistics
Toolbox

—

tf2ca DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

tf2cl DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

time2range Phased Array
System Toolbox

Does not support variable-size inputs.

21-119

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

times MATLAB —

times Fixed-Point
Designer

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

• When you provide complex inputs to the
times function inside a MATLAB Function
block, you must declare the input as complex
before running the simulation. To do so, go
to the Ports and data manager and set
the Complexity parameter for all known
complex inputs to On.

tinv Statistics
Toolbox

—

toeplitz MATLAB —

tpdf Statistics
Toolbox

—

trace MATLAB —

trapz MATLAB
• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

transpose MATLAB —

transpose Fixed-Point
Designer

—

triang Signal
Processing
Toolbox

Inputs must be constant

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

21-120

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

tril MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

tril Fixed-Point
Designer

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

triu MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

triu Fixed-Point
Designer

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

trnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

true MATLAB • Dimensions must be real, nonnegative,
integers.

tstat Statistics
Toolbox

—

tukeywin Signal
Processing
Toolbox

Inputs must be constant

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

21-121

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

typecast MATLAB • Value of string input argument type must
be lower case

• You might receive a size error when you
use typecast with inheritance of input port
data types in MATLAB Function blocks. To
avoid this error, specify the block’s input
port data types explicitly.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36

ufi Fixed-Point
Designer

• All properties related to data type must be
constant for code generation.

uint8, uint16, uint32,
uint64

MATLAB No integer overflow detection for int64 in
MEX or MATLAB Function block simulation
on Windows 32-bit platforms.

uint8, uint16, uint32,
uint64

Fixed-Point
Designer

—

uminus MATLAB —

uminus Fixed-Point
Designer

—

unidcdf Statistics
Toolbox

—

unidinv Statistics
Toolbox

—

unidpdf Statistics
Toolbox

—

unidrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

21-122

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

unidstat Statistics
Toolbox

—

unifcdf Statistics
Toolbox

—

unifinv Statistics
Toolbox

—

unifpdf Statistics
Toolbox

—

unifrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

unifstat Statistics
Toolbox

—

unigrid Phased Array
System Toolbox

Does not support variable-size inputs.

union MATLAB • When you do not specify the 'rows' option:

- Inputs A and B must be vectors with
the same orientation. If you specify the
'legacy' option, inputs A and B must be
row vectors.

- The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

- The input [] is not supported. Use a
1-by-0 or 0-by-1 input, for example ,
zeros(1,0), to represent the empty set.

21-123

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

- If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never
0-by-0.

• When you specify both the 'legacy' option
and the 'rows' option, the outputs ia and
ib are column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output C is 0-by-0.

• When the setOrder is 'sorted' or when
you specify the 'legacy' option, the inputs
must already be sorted in ascending order.
The first output, C, is sorted in ascending
order.

• Complex inputs must be single or double.

• When one input is complex and the other
input is real, do one of the following:

- Set setOrder to 'stable'.

- Sort the real input in complex ascending
order (by absolute value). Suppose the
real input is x. Use sort(complex(x))or
sortrows(complex(x)).

unique MATLAB • When you do not specify the'rows' option:

- The input A must be a vector. If you
specify the 'legacy' option, the input A
must be a row vector.

- The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

- The input [] is not supported. Use
a 1-by-0 or 0-by-1 input, for example,
zeros(1,0), to represent the empty set.

21-124

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

- If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never
0-by-0.

• When you specify both the 'rows' option
and the 'legacy'option, outputs ia and
ic are column vectors. If these outputs are
empty, they are 0-by-1, even if the output C
is 0-by-0.

• When the setOrder is 'sorted' or when
you specify the 'legacy' option, the input A
must already be sorted in ascending order.
The first output, C, is sorted in ascending
order.

• Complex inputs must be single or double.

unmkpp MATLAB • pp must be a valid piecewise polynomial
structure created by mkpp, spline, or pchip
in MATLAB or by the code generation
software.

• Does not support pp structures created by
interp1 in MATLAB.

unwrap MATLAB • Row vector input is only supported when the
first two inputs are vectors and nonscalar

• Performs arithmetic in the output class.
Hence, results might not match MATLAB
due to different rounding errors

21-125

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

upfirdn Signal
Processing
Toolbox

• Code generation for this function requires
the DSP System Toolbox software.

• Filter coefficients, upsampling factor, and
downsampling factor must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

uplus MATLAB —

uplus Fixed-Point
Designer

—

upper MATLAB • Supports only char inputs.

• Input values must be in the range 0-127.

upperbound Fixed-Point
Designer

—

upsample Signal
Processing
Toolbox

Either declare input n as constant, or use the
assert function in the calling function to set
upper bounds for n. For example,

assert(n<10)

uv2azel Phased Array
System Toolbox

Does not support variable-size inputs.

uv2azelpat Phased Array
System Toolbox

Does not support variable-size inputs.

21-126

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

uv2phitheta Phased Array
System Toolbox

Does not support variable-size inputs.

uv2phithetapat Phased Array
System Toolbox

Does not support variable-size inputs.

val2ind Phased Array
System Toolbox

Does not support variable-size inputs.

vander MATLAB —

var MATLAB
• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page
22-36vertcat Fixed-Point

Designer
—

vision.AlphaBlender Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Autocorrelator Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Autothresholder Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.BlobAnalysis Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.BoundaryTracer Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.CascadeObject-
Detector

Computer
Vision System
Toolbox

Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

21-127

http://www.mathworks.com/support/sysreq/current_release/

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

vision.ChromaResampler Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Color-
SpaceConverter

Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Connected-
ComponentLabeler

Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Convolver Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ContrastAdjuster Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Crosscorrelator Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Demosaic-
Interpolator

Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.DCT Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Deinterlacer Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Deployable Computer
Vision System
Toolbox

Generates code on Windows host only.
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

21-128

http://www.mathworks.com/support/sysreq/current_release/

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

vision.EdgeDetector Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.FFT Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Foreground-
Detector

Computer
Vision System
Toolbox

Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.GammaCorrector Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.GeometricRotator Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.GeometricScaler Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.GeometricShearer Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Geometric-
Transformer

Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Geometric-
Translator

Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Histogram Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

21-129

http://www.mathworks.com/support/sysreq/current_release/

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

vision.Histogram-
BasedTracker

Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Histogram-
Equalizer

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.HoughLines Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.HoughTransform Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.IDCT Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.IFFT Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Image-
Complementer

Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImageFilter Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImageDataType-
Converter

Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImagePadder Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.KalmanFilter Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

21-130

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

vision.LocalMaximaFinder Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MarkerInserter Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Maximum Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Median Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MedianFilter Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Mean Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Minimum Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Morphological-
Close

Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Morphological-
Dilate

Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Morphological-
Erode

Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MorphologicalOpen Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

21-131

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

vision.PeopleDetector Computer
Vision System
Toolbox

Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.PointTracker Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.PSNR Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Pyramid Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ShapeInserter Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.StandardDeviation Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.TemplateMatcher Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.TextInserter Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Variance Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.VideoFileReader Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

21-132

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

vision.VideoFileWriter Computer
Vision System
Toolbox

Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

wblcdf Statistics
Toolbox

—

wblinv Statistics
Toolbox

—

wblpdf Statistics
Toolbox

—

wblrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

wblstat Statistics
Toolbox

—

while MATLAB —

wilkinson MATLAB —

xcorr Signal
Processing
Toolbox

—

xor MATLAB —

21-133

http://www.mathworks.com/support/sysreq/current_release/

21 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

yulewalk Signal
Processing
Toolbox

If specified, the order of recursion must be a
constant. Expressions or variables are allowed
if their values do not change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 23-8.

zeros MATLAB • Dimensions must be real, nonnegative,
integers.

zp2tf MATLAB —

zscore Statistics
Toolbox

—

21-134

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Functions and Objects Supported for C and C++ Code
Generation — Categorical List

In this section...

“Aerospace Toolbox” on page 21-136

“Arithmetic Operations in MATLAB” on page 21-137

“Bit-Wise Operations MATLAB” on page 21-138

“Casting in MATLAB” on page 21-138

“Communications System Toolbox” on page 21-139

“Complex Numbers in MATLAB” on page 21-148

“Computer Vision System Toolbox” on page 21-149

“Control Flow in MATLAB” on page 21-157

“Data and File Management in MATLAB” on page 21-158

“Data Types in MATLAB” on page 21-161

“Desktop Environment in MATLAB” on page 21-162

“Discrete Math in MATLAB” on page 21-162

“DSP System Toolbox” on page 21-163

“Error Handling in MATLAB” on page 21-171

“Exponents in MATLAB” on page 21-171

“Filtering and Convolution in MATLAB” on page 21-172

“Fixed-Point Designer” on page 21-173

“Histograms in MATLAB” on page 21-183

“Image Acquisition Toolbox” on page 21-183

“Image Processing Toolbox” on page 21-183

“Input and Output Arguments in MATLAB” on page 21-189

“Interpolation and Computational Geometry in MATLAB” on page 21-189

“Linear Algebra in MATLAB” on page 21-193

“Logical and Bit-Wise Operations in MATLAB” on page 21-193

21-135

21 Functions, Classes, and System Objects Supported for Code Generation

In this section...

“MATLAB® Compiler™” on page 21-194

“Matrices and Arrays in MATLAB” on page 21-194

“Nonlinear Numerical Methods in MATLAB” on page 21-202

“Numerical Integration and Differentiation in MATLAB” on page 21-202

“Optimization Functions in MATLAB” on page 21-203

“Phased Array System Toolbox” on page 21-204

“Polynomials in MATLAB” on page 21-212

“Programming Utilities in MATLAB” on page 21-212

“Relational Operators in MATLAB” on page 21-213

“Rounding and Remainder Functions in MATLAB” on page 21-213

“Set Operations in MATLAB” on page 21-214

“Signal Processing in MATLAB” on page 21-218

“Signal Processing Toolbox” on page 21-219

“Special Values in MATLAB” on page 21-224

“Specialized Math in MATLAB” on page 21-224

“Statistics in MATLAB” on page 21-225

“Statistics Toolbox” on page 21-226

“String Functions in MATLAB” on page 21-235

“Structures in MATLAB” on page 21-237

“Trigonometry in MATLAB” on page 21-237

Aerospace Toolbox
C and C++ code generation for the following Aerospace Toolbox quaternion
functions requires the Aerospace Blockset software.

21-136

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

quatconj —

quatdivide —

quatinv —

quatmod —

quatmultiply —

quatnorm —

quatnormalize —

Arithmetic Operations in MATLAB
See “Array vs. Matrix Operations” for detailed descriptions of the following
operator equivalent functions.

Function Remarks and Limitations

ctranspose —

idivide
• For efficient generated code, MATLAB rules for divide by zero are
supported only for the 'round' option.

isa —

ldivide —

minus —

mldivide —

mpower —

mrdivide —

mtimes “Variable Sizing Restrictions for Code Generation of Toolbox Functions”
on page 22-36

plus —

21-137

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

power
• Generates an error during simulation. When both X and Y are real,
but power(X,Y) is complex, returns NaN in the generated code. To
get the complex result, make the input value X complex by passing in
complex(X). For example, power(complex(X),Y).

• Generates an error during simulation. When both X and Y are real, but
X .^ Y is complex, returns NaN in generated code. To get the complex
result, make the input value X complex by using complex(X). For
example, complex(X).^Y.

rdivide —

times —

transpose —

uminus —

uplus —

Bit-Wise Operations MATLAB

Function Remarks and Limitations

flintmax —

swapbytes Inheritance of the class of the input to swapbytes in a MATLAB
Function block is supported only when the class of the input is double.
For non-double inputs, the input port data types must be specified, not
inherited.

Casting in MATLAB

Function Remarks and Limitations

cast —

char —

class —

21-138

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

double —

int8, int16, int32,
int64

No integer overflow detection for int64 in MEX or MATLAB Function
block simulation on Windows 32-bit platforms.

logical —

single —

typecast
• Value of string input argument type must be lower case

• You might receive a size error when you use typecast with inheritance
of input port data types in MATLAB Function blocks. To avoid this
error, specify the block’s input port data types explicitly.

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

uint8, uint16,
uint32, uint64

No integer overflow detection for int64 in MEX or MATLAB Function
block simulation on Windows 32-bit platforms.

Communications System Toolbox
C and C++ code generation for the following functions and System objects
requires the Communications System Toolbox software.

Name Remarks and Limitations

Input and Output

comm.BarkerCode “Code Generation with System Objects and
Functions”

comm.GoldSequence “Code Generation with System Objects and
Functions”

comm.HadamardCode “Code Generation with System Objects and
Functions”

comm.KasamiSequence “Code Generation with System Objects and
Functions”

21-139

21 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

comm.WalshCode “Code Generation with System Objects and
Functions”

comm.PNSequence “Code Generation with System Objects and
Functions”

lteZadoffChuSeq —

Signal and Delay Management

bi2de —

de2bi —

Display and Visual Analysis

comm.ConstellationDiagram “Code Generation with System Objects and
Functions”

dsp.ArrayPlot “Code Generation with System Objects and
Functions”

dsp.SpectrumAnalyzer “Code Generation with System Objects and
Functions”

dsp.TimeScope “Code Generation with System Objects and
Functions”

Source Coding

comm.DifferentialDecoder “Code Generation with System Objects and
Functions”

comm.DifferentialEncoder “Code Generation with System Objects and
Functions”

Cyclic Redundancy Check Coding

comm.CRCDetector “Code Generation with System Objects and
Functions”

comm.CRCGenerator “Code Generation with System Objects and
Functions”

comm.HDLCRCDetector “Code Generation with System Objects and
Functions”

21-140

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Name Remarks and Limitations

comm.HDLCRCGenerator “Code Generation with System Objects and
Functions”

BCH Codes

comm.BCHDecoder “Code Generation with System Objects and
Functions”

comm.BCHEncoder “Code Generation with System Objects and
Functions”

Reed-Solomon Codes

comm.RSDecoder “Code Generation with System Objects and
Functions”

comm.RSEncoder “Code Generation with System Objects and
Functions”

comm.HDLRSDecoder “Code Generation with System Objects and
Functions”

comm.HDLRSEncoder “Code Generation with System Objects and
Functions”

LDPC Codes

comm.LDPCDecoder “Code Generation with System Objects and
Functions”

comm.LDPCEncoder “Code Generation with System Objects and
Functions”

Convolutional Coding

comm.APPDecoder “Code Generation with System Objects and
Functions”

comm.ConvolutionalEncoder “Code Generation with System Objects and
Functions”

comm.TurboDecoder “Code Generation with System Objects and
Functions”

comm.TurboEncoder “Code Generation with System Objects and
Functions”

comm.ViterbiDecoder “Code Generation with System Objects and
Functions”

21-141

21 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

istrellis —

poly2trellis —

Signal Operations

comm.Descrambler “Code Generation with System Objects and
Functions”

comm.Scrambler “Code Generation with System Objects and
Functions”

Interleaving

comm.AlgebraicDeinterleaver “Code Generation with System Objects and
Functions”

comm.AlgebraicInterleaver “Code Generation with System Objects and
Functions”

comm.BlockDeinterleaver “Code Generation with System Objects and
Functions”

comm.BlockInterleaver “Code Generation with System Objects and
Functions”

comm.ConvolutionalDeinterleaver “Code Generation with System Objects and
Functions”

comm.ConvolutionalInterleaver “Code Generation with System Objects and
Functions”

comm.HelicalDeinterleaver “Code Generation with System Objects and
Functions”

comm.HelicalInterleaver “Code Generation with System Objects and
Functions”

comm.MatrixDeinterleaver “Code Generation with System Objects and
Functions”

comm.MatrixInterleaver “Code Generation with System Objects and
Functions”

comm.MatrixHelicalScanDeinterleaver “Code Generation with System Objects and
Functions”

21-142

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Name Remarks and Limitations

comm.MatrixHelicalScanInterleaver “Code Generation with System Objects and
Functions”

comm.MultiplexedDeinterleaver “Code Generation with System Objects and
Functions”

comm.MultiplexedInterleaver “Code Generation with System Objects and
Functions”

Frequency Modulation

comm.FSKDemodulator “Code Generation with System Objects and
Functions”

comm.FSKModulator “Code Generation with System Objects and
Functions”

Phase Modulation

comm.BPSKDemodulator “Code Generation with System Objects and
Functions”

comm.BPSKModulator “Code Generation with System Objects and
Functions”

comm.DBPSKDemodulator “Code Generation with System Objects and
Functions”

comm.DBPSKModulator “Code Generation with System Objects and
Functions”

comm.DPSKDemodulator “Code Generation with System Objects and
Functions”

comm.DPSKModulator “Code Generation with System Objects and
Functions”

comm.DQPSKDemodulator “Code Generation with System Objects and
Functions”

comm.DQPSKModulator “Code Generation with System Objects and
Functions”

comm.OQPSKDemodulator “Code Generation with System Objects and
Functions”

21-143

21 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

comm.OQPSKModulator “Code Generation with System Objects and
Functions”

comm.PSKDemodulator “Code Generation with System Objects and
Functions”

comm.PSKModulator “Code Generation with System Objects and
Functions”

comm.QPSKDemodulator “Code Generation with System Objects and
Functions”

comm.QPSKModulator “Code Generation with System Objects and
Functions”

Amplitude Modulation

comm.GeneralQAMDemodulator “Code Generation with System Objects and
Functions”

comm.GeneralQAMModulator “Code Generation with System Objects and
Functions”

comm.PAMDemodulator “Code Generation with System Objects and
Functions”

comm.PAMModulator “Code Generation with System Objects and
Functions”

comm.RectangularQAMDemodulator “Code Generation with System Objects and
Functions”

comm.RectangularQAMModulator “Code Generation with System Objects and
Functions”

Continuous Phase Modulation

comm.CPFSKDemodulator “Code Generation with System Objects and
Functions”

comm.CPFSKModulator “Code Generation with System Objects and
Functions”

comm.CPMDemodulator “Code Generation with System Objects and
Functions”

21-144

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Name Remarks and Limitations

comm.CPMModulator “Code Generation with System Objects and
Functions”

comm.GMSKDemodulator “Code Generation with System Objects and
Functions”

comm.GMSKModulator “Code Generation with System Objects and
Functions”

comm.MSKDemodulator “Code Generation with System Objects and
Functions”

comm.MSKModulator “Code Generation with System Objects and
Functions”

Trellis Coded Modulation

comm.GeneralQAMTCMDemodulator “Code Generation with System Objects and
Functions”

comm.GeneralQAMTCMModulator “Code Generation with System Objects and
Functions”

comm.PSKTCMDemodulator “Code Generation with System Objects and
Functions”

comm.PSKTCMModulator “Code Generation with System Objects and
Functions”

comm.RectangularQAMTCMDemodulator “Code Generation with System Objects and
Functions”

comm.RectangularQAMTCMModulator “Code Generation with System Objects and
Functions”

Orthogonal Frequency-Division Modulation

comm.OFDMDemodulator “Code Generation with System Objects and
Functions”

comm.OFDMModulator “Code Generation with System Objects and
Functions”

Filtering

comm.IntegrateAndDumpFilter “Code Generation with System Objects and
Functions”

21-145

21 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

comm.RaisedCosineReceiveFilter “Code Generation with System Objects and
Functions”

comm.RaisedCosineTransmitFilter “Code Generation with System Objects and
Functions”

Carrier Phase Synchronization

comm.CPMCarrierPhaseSynchronizer “Code Generation with System Objects and
Functions”

comm.PSKCarrierPhaseSynchronizer “Code Generation with System Objects and
Functions”

Timing Phase Synchronization

comm.EarlyLateGateTimingSynchronizer “Code Generation with System Objects and
Functions”

comm.GardnerTimingSynchronizer “Code Generation with System Objects and
Functions”

comm.GMSKTimingSynchronizer “Code Generation with System Objects and
Functions”

comm.MSKTimingSynchronizer “Code Generation with System Objects and
Functions”

comm.MuellerMullerTimingSynchronizer “Code Generation with System Objects and
Functions”

Synchronization Utilities

comm.DiscreteTimeVCO “Code Generation with System Objects and
Functions”

Equalization

comm.MLSEEqualizer “Code Generation with System Objects and
Functions”

MIMO

comm.LTEMIMOChannel “Code Generation with System Objects and
Functions”

21-146

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Name Remarks and Limitations

comm.MIMOChannel “Code Generation with System Objects and
Functions”

comm.OSTBCCombiner “Code Generation with System Objects and
Functions”

comm.OSTBCEncoder “Code Generation with System Objects and
Functions”

comm.SphereDecoder “Code Generation with System Objects and
Functions”

Channel Modeling and RF Impairments

comm.AGC “Code Generation with System Objects and
Functions”

comm.AWGNChannel “Code Generation with System Objects and
Functions”

comm.BinarySymmetricChannel “Code Generation with System Objects and
Functions”

comm.LTEMIMOChannel “Code Generation with System Objects and
Functions”

comm.MemorylessNonlinearity “Code Generation with System Objects and
Functions”

comm.MIMOChannel “Code Generation with System Objects and
Functions”

comm.PhaseFrequencyOffset “Code Generation with System Objects and
Functions”

comm.PhaseNoise “Code Generation with System Objects and
Functions”

comm.RayleighChannel “Code Generation with System Objects and
Functions”

comm.RicianChannel “Code Generation with System Objects and
Functions”

comm.ThermalNoise “Code Generation with System Objects and
Functions”

21-147

21 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

comm.PSKCoarseFrequencyEstimator “Code Generation with System Objects and
Functions”

comm.QAMCoarseFrequencyEstimator “Code Generation with System Objects and
Functions”

Measurements and Analysis

comm.ACPR “Code Generation with System Objects and
Functions”

comm.CCDF “Code Generation with System Objects and
Functions”

comm.ErrorRate “Code Generation with System Objects and
Functions”

comm.EVM “Code Generation with System Objects and
Functions”

comm.MER “Code Generation with System Objects and
Functions”

Complex Numbers in MATLAB

Function Remarks and Limitations

complex —

conj —

imag —

isnumeric —

isreal —

isscalar —

real —

unwrap • Row vector input is only supported when the first two inputs are
vectors and nonscalar

• Performs arithmetic in the output class. Hence, results might not
match MATLAB due to different rounding errors

21-148

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Computer Vision System Toolbox
C and C++ code generation for the following functions and System objects
requires the Computer Vision System Toolbox software.

Name Remarks and Limitations

Feature Detection, Extraction, and Matching

BRISKPoints Compile-time constant inputs: No restriction
Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

cornerPoints Compile-time constant input: No restriction
Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

detectBRISKFeatures Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectFASTFeatures Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectHarrisFeatures Compile-time constant input: FilterSize
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

21-149

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

21 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

detectMinEigenFeatures Compile-time constant input: FilterSize
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectMSERFeatures Compile-time constant input: No restriction
Supports MATLAB Function block: No
For code generation, the function outputs
regions.PixelList as an array. The region
sizes are defined in regions.Lengths.

detectSURFFeatures Compile-time constant input: No restrictions
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

extractFeatures Generates platform-dependent library: Yes for
BRISK, FREAK, and SURF methods only.
Compile-time constant input: Method
Supports MATLAB Function block: Yes for
Block method only.
Generated code for this function uses a
precompiled platform-specific shared library.

extractHOGFeatures Compile-time constant input: No
Supports MATLAB Function block: No

matchFeatures Generates platform-dependent library: Yes
for MATLAB host. The function generates
portable C code for non-host target.
Compile-time constant input: Method and
Metric.
Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.

21-150

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Name Remarks and Limitations

MSERRegions Compile-time constant input: No restrictions.
Supports MATLAB Function block: Yes
For code generation, you must specify both the
pixellist cell array and the length of each
array, as the second input. The object outputs,
regions.PixelList as an array. The region
sizes are defined in regions.Lengths.
Generated code for this function uses a
precompiled platform-specific shared library.

SURFPoints Compile-time constant input: No restrictions.
Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

vision.BoundaryTracer Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.EdgeDetector Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

Image Registration and Geometric Transformations

estimateGeometricTransform Compile-time constant input: transformType
Supports MATLAB Function block: No

vision.GeometricRotator Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.GeometricScaler Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.GeometricShearer Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.GeometricTransformer Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

21-151

http://www.mathworks.com/support/sysreq/current_release/

21 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

vision.GeometricTranslator Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

Object Detection and Recognition

ocr Compile-time constant input: TextLayout,
Language, and CharacterSet.
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

ocrText Compile-time constant input: No restrictions.
Supports MATLAB Function block: No

vision.PeopleDetector Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.CascadeObjectDetector Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

Tracking and Motion Estimation

assignDetectionsToTracks Compile-time constant input: No restriction.
Supports MATLAB Function block: Yes

vision.ForegroundDetector Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.HistogramBasedTracker Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.KalmanFilter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.PointTracker Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

21-152

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Name Remarks and Limitations

vision.TemplateMatcher Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

Camera Calibration and Stereo Vision

disparity Compile-time constant input: Method.
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

epipolarline Compile-time constant input: No restrictions.
Supports MATLAB Function block: Yes

estimateFundamentalMatrix Compile-time constant input: Method,
OutputClass, DistanceType, and
ReportRuntimeError.
Supports MATLAB Function block: Yes

estimateUncalibratedRectification Compile-time constant input: transformType
Supports MATLAB Function block: No

isEpipoleInImage Compile-time constant input: No restrictions.
Supports MATLAB Function block: Yes

lineToBorderPoints Compile-time constant input: No restrictions.
Supports MATLAB Function block: Yes

Statistics

vision.Autocorrelator Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.BlobAnalysis Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Crosscorrelator Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Histogram Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.LocalMaximaFinder Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

21-153

http://www.mathworks.com/support/sysreq/current_release/

21 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

vision.Maximum Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Mean Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Median Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Minimum Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.PSNR Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.StandardDeviation Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Variance Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

Morphological Operations

vision.ConnectedComponentLabeler Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MorphologicalClose Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MorphologicalDilate Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MorphologicalErode Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MorphologicalOpen Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

Filters, Transforms, and Enhancements

integralImage Supports MATLAB Function block: Yes

vision.Convolver Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ContrastAdjuster Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

21-154

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Name Remarks and Limitations

vision.DCT Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Deinterlacer Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.EdgeDetector Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.FFT Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.HistogramEqualizer Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.HoughLines Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.HoughTransform Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.IDCT Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.IFFT Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImageFilter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MedianFilter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Pyramid Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

Video Loading, Saving, and Streaming

vision.DeployableVideoPlayer Generates code on Windows host only.
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

21-155

http://www.mathworks.com/support/sysreq/current_release/

21 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

vision.VideoFileReader Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.VideoFileWriter Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

Color Space Formatting and Conversions

vision.Autothresholder Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ChromaResampler Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ColorSpaceConverter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.DemosaicInterpolator Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.GammaCorrector Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImageComplementer Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImageDataTypeConverter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImagePadder Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

Graphics

insertMarker Compile-time constant input: marker
Supports MATLAB Function block: Yes

21-156

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Name Remarks and Limitations

insertShape Compile-time constant input: shape and
SmoothEdges
Supports MATLAB Function block: Yes

vision.AlphaBlender Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MarkerInserter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ShapeInserter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.TextInserter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

Control Flow in MATLAB

Function Remarks and Limitations

break —

continue —

end —

for —

if, elseif, else —

parfor Treated as a for-loop when used with fiaccel.

return —

switch, case,
otherwise

• If all case expressions are scalar integer values, generates a C switch
statement. At run time, if the switch value is not an integer, generates
an error.

• When the case expressions contain noninteger or nonscalar values, the
code generation software generates C if statements in place of a C
switch statement.

while —

21-157

21 Functions, Classes, and System Objects Supported for Code Generation

Data and File Management in MATLAB

Function Remarks and Limitations

computer • Information about the computer on which the code generation software
is running.

• Use only when the code generation target is S-function (Simulation) or
MEX-function.

fclose —

fopen • Does not support:

- machineformat, encoding, or fileID inputs

- message output

- fopen(`all')

• If you disable extrinsic calls, you cannot return fileIDs created with
fopen to MATLAB or extrinsic functions. You can only use such
fileIDs internally.

• You can open up to 20 files when generating C/C++ executables, static
libraries, or dynamic libraries.

• The generated code does not report errors from invalid file identifiers.
Write your own file open error handling in your MATLAB code. Test
whether fopen returns -1 which indicates that the file open failed.
For example:

...
fid = fopen(filename, 'r');
if fid == -1

% fopen failed

else
%fopen successful, okay to call fread
A = fread(fid);
...

21-158

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

fprintf
• Does not support:

- b and t subtypes on %u, %o %x, and %X formats

- $ flag for reusing input arguments

- printing arrays

• There is no automatic casting. Input arguments must match their
format types for predictable results.

• Escaped characters are limited to the decimal range of 0–127.

• A call to fprintf with fileID equal to 1 or 2 becomes printf in the
generated C/C++ code in the following cases:

- The fprintf call is inside a parfor loop.

- Extrinsic calls are disabled.

• When the MATLAB behavior differs from the C compiler behavior,
fprintf matches the C compiler behavior in the following cases:

- The format specifier has a corresponding C format specifier, for
example, %e or %E.

- The fprintf call is inside a parfor loop.

- Extrinsic calls are disabled.

• When you call fprintf with the format specifier %s, do not put a null
character in the middle of the input string. Use fprintf(fid, '%c',
char(0)) to write a null character.

• When you call fprintf with an integer format specifier, the type of
the integer argument must be a type that the target hardware can
represent as a native C type. For example, if you call fprintf('%d',
int64(n)), the target hardware must have a native C type that
supports a 64-bit integer.

21-159

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

fread • precision must be a constant.

• The source and output that precision specifies cannot have values
long, ulong, unsigned long, bitN, or ubitN.

• You cannot use the machineformat input.

• If the source or output that precision specifies is a C type, for
example, int, the target and production sizes for that type must:

- Match.

- Map directly to a MATLAB type.

• If the fread call reads the entire file, all of the data must fit in the
largest array available for code generation.

• If sizeA is not constant or contains a nonfinite element, then dynamic
memory allocation is required.

• Treats a char value for source or output as a signed 8-bit integer. Use
values only between 0 and 127.

• The generated code does not report file read errors. Write your own
file read error handling in your MATLAB code. Test that the number
of bytes read matches the number of bytes that you requested. For
example:

...
N = 100;
[vals, numRead] = fread(fid, N, '*double');
if numRead ~= N

%fewer elements read than expected
end
...

load
• Use only when generating MEX or code for Simulink simulation. To
load compile-time constants, use coder.load.

• Does not support use of the function without assignment to a structure
or array. For example, use S = load(filename), not load(filename).

21-160

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

• The output S must be the name of a structure or array without
any subscripting. For example, S[i] = load('myFile.mat') is not
allowed.

• Arguments to load must be compile-time constant strings.

• Does not support loading objects.

• If the MAT-file contains unsupported constructs, use
load(filename,variables) to load only the supported constructs.

• You cannot use save in a function intended for code generation.
The code generation software does not support the save function.
Furthermore, you cannot use coder.extrinsic with save. Prior to
generating code, you can use save to save the workspace data to a
MAT-file.

You must use coder.varsize to explicitly declare variable-size data
loaded using the load function.

Data Types in MATLAB

Function Remarks and Limitations

deal —

iscell —

isobject —

nargchk
• Output structure does not include stack information.

Note nargchk will be removed in a future release.

narginchk —

nargoutchk —

21-161

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

str2func • String must be constant/known at compile time

structfun • Does not support the ErrorHandler option.

• The number of outputs must be less than or equal to three.

Desktop Environment in MATLAB

Function Remarks and Limitations

ismac • Returns true or false based on the MATLAB version used for code
generation.

• Use only when the code generation target is S-function (Simulation)
or MEX-function.

ispc • Returns true or false based on the MATLAB version you use for
code generation.

• Use only when the code generation target is S-function (Simulation)
or MEX-function.

isunix • Returns true or false based on the MATLAB version used for code
generation.

• Use only when the code generation target is S-function (Simulation)
or MEX-function.

Discrete Math in MATLAB

Function Remarks and Limitations

factor • The maximum double precision input is 2^33.

• The maximum single precision input is 2^25.

• The input n cannot have type int64 or uint64.

gcd —

21-162

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

isprime • The maximum double precision input is 2^33.

• The maximum single precision input is 2^25.

• The input X cannot have type int64 or uint64.

lcm —

nchoosek • When the first input, x, is a scalar, nchoosek returns a binomial
coefficient. In this case, x must be a nonnegative integer. It cannot
have type int64 or uint64.

• When the first input, x, is a vector, nchoosek treats it as a set. In this
case, x can have type int64 or uint64.

• The second input, k, cannot have type int64 or uint64.

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

primes • The maximum double precision input is 2^32.

• The maximum single precision input is 2^24.

• The input n cannot have type int64 or uint64.

DSP System Toolbox
C code generation for the following functions and System objects requires the
DSP System Toolbox license. Many DSP System Toolbox functions require
constant inputs for code generation. To specify a constant input for fiaccel,
use coder.Constant. For more information, see “Specify Constant Inputs at
the Command Line” on page 23-8.

Name Remarks and Limitations

Estimation

dsp.BurgAREstimator “System Objects in MATLAB Code Generation”

dsp.BurgSpectrumEstimator “System Objects in MATLAB Code Generation”

dsp.CepstralToLPC “System Objects in MATLAB Code Generation”

dsp.CrossSpectrumEstimator “System Objects in MATLAB Code Generation”

21-163

21 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

dsp.LevinsonSolver “System Objects in MATLAB Code Generation”

dsp.LPCToAutocorrelation “System Objects in MATLAB Code Generation”

dsp.LPCToCepstral “System Objects in MATLAB Code Generation”

dsp.LPCToLSF “System Objects in MATLAB Code Generation”

dsp.LPCToLSP “System Objects in MATLAB Code Generation”

dsp.LPCToRC “System Objects in MATLAB Code Generation”

dsp.LSFToLPC “System Objects in MATLAB Code Generation”

dsp.LSPToLPC “System Objects in MATLAB Code Generation”

dsp.RCToAutocorrelation “System Objects in MATLAB Code Generation”

dsp.RCToLPC “System Objects in MATLAB Code Generation”

dsp.SpectrumEstimator “System Objects in MATLAB Code Generation”

dsp.TransferFunctionEstimator “System Objects in MATLAB Code Generation”

Filters

ca2tf All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

cl2tf All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

dsp.AdaptiveLatticeFilter “System Objects in MATLAB Code Generation”

dsp.AffineProjectionFilter “System Objects in MATLAB Code Generation”

dsp.AllpoleFilter
• “System Objects in MATLAB Code
Generation”

• Only the Denominator property is tunable
for code generation.

dsp.BiquadFilter “System Objects in MATLAB Code Generation”

dsp.CICDecimator “System Objects in MATLAB Code Generation”

21-164

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Name Remarks and Limitations

dsp.CICInterpolator “System Objects in MATLAB Code Generation”

dsp.DigitalFilter
• “System Objects in MATLAB Code
Generation”

• The SOSMatrix and Scalevalues properties
are not supported for code generation.dsp.FastTransversalFilter “System Objects in MATLAB Code Generation”

dsp.FilteredXLMSFilter “System Objects in MATLAB Code Generation”

dsp.FIRDecimator “System Objects in MATLAB Code Generation”

dsp.FIRFilter
• “System Objects in MATLAB Code
Generation”

• Only the Numerator property is tunable for
code generation.

dsp.FIRInterpolator “System Objects in MATLAB Code Generation”

dsp.FIRRateConverter “System Objects in MATLAB Code Generation”

dsp.FrequencyDomainAdaptiveFilter “System Objects in MATLAB Code Generation”

dsp.IIRFilter
• Only the Numerator and Denominator
properties are tunable for code generation.

• “System Objects in MATLAB Code
Generation”

dsp.KalmanFilter “System Objects in MATLAB Code Generation”

dsp.LMSFilter “System Objects in MATLAB Code Generation”

dsp.RLSFilter “System Objects in MATLAB Code Generation”

firceqrip All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

21-165

21 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

fireqint All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firgr
• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

firhalfband All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firlpnorm
• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

firminphase All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firnyquist All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firpr2chfb All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

ifir All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

21-166

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Name Remarks and Limitations

iircomb All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iirgrpdelay
• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

iirlpnorm
• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

iirlpnormc
• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

iirnotch All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iirpeak All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

tf2ca All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

21-167

21 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

tf2cl All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Math Operations

dsp.ArrayVectorAdder “System Objects in MATLAB Code Generation”

dsp.ArrayVectorDivider “System Objects in MATLAB Code Generation”

dsp.ArrayVectorMultiplier “System Objects in MATLAB Code Generation”

dsp.ArrayVectorSubtractor “System Objects in MATLAB Code Generation”

dsp.CumulativeProduct “System Objects in MATLAB Code Generation”

dsp.CumulativeSum “System Objects in MATLAB Code Generation”

dsp.LDLFactor “System Objects in MATLAB Code Generation”

dsp.LevinsonSolver “System Objects in MATLAB Code Generation”

dsp.LowerTriangularSolver “System Objects in MATLAB Code Generation”

dsp.LUFactor “System Objects in MATLAB Code Generation”

dsp.Normalizer “System Objects in MATLAB Code Generation”

dsp.UpperTriangularSolver “System Objects in MATLAB Code Generation”

Quantizers

dsp.ScalarQuantizerDecoder “System Objects in MATLAB Code Generation”

dsp.ScalarQuantizerEncoder “System Objects in MATLAB Code Generation”

dsp.VectorQuantizerDecoder “System Objects in MATLAB Code Generation”

dsp.VectorQuantizerEncoder “System Objects in MATLAB Code Generation”

Scopes

dsp.SpectrumAnalyzer This System object does not generate code. It is
automatically declared as an extrinsic variable
using the coder.extrinsic function.

21-168

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Name Remarks and Limitations

dsp.TimeScope This System object does not generate code. It is
automatically declared as an extrinsic variable
using the coder.extrinsic function.

Signal Management

dsp.Counter “System Objects in MATLAB Code Generation”

dsp.DelayLine “System Objects in MATLAB Code Generation”

Signal Operations

dsp.Convolver “System Objects in MATLAB Code Generation”

dsp.DCBlocker “System Objects in MATLAB Code Generation”

dsp.Delay “System Objects in MATLAB Code Generation”

dsp.DigitalDownConverter “System Objects in MATLAB Code Generation”

dsp.DigitalUpConverter “System Objects in MATLAB Code Generation”

dsp.Interpolator “System Objects in MATLAB Code Generation”

dsp.NCO “System Objects in MATLAB Code Generation”

dsp.PeakFinder “System Objects in MATLAB Code Generation”

dsp.PhaseUnwrapper “System Objects in MATLAB Code Generation”

dsp.VariableFractionalDelay “System Objects in MATLAB Code Generation”

dsp.VariableIntegerDelay “System Objects in MATLAB Code Generation”

dsp.Window
• This object has no tunable properties for
code generation.

• “System Objects in MATLAB Code
Generation”

dsp.ZeroCrossingDetector “System Objects in MATLAB Code Generation”

Sinks

dsp.AudioPlayer “System Objects in MATLAB Code Generation”

dsp.AudioFileWriter “System Objects in MATLAB Code Generation”

21-169

21 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

dsp.UDPSender “System Objects in MATLAB Code Generation”

Sources

dsp.AudioFileReader “System Objects in MATLAB Code Generation”

dsp.AudioRecorder “System Objects in MATLAB Code Generation”

dsp.SignalSource “System Objects in MATLAB Code Generation”

dsp.SineWave
• This object has no tunable properties for
code generation.

• “System Objects in MATLAB Code
Generation”

dsp.UDPReceiver “System Objects in MATLAB Code Generation”

Statistics

dsp.Autocorrelator “System Objects in MATLAB Code Generation”

dsp.Crosscorrelator “System Objects in MATLAB Code Generation”

dsp.Histogram
• This object has no tunable properties for
code generation.

• “System Objects in MATLAB Code
Generation”

dsp.Maximum “System Objects in MATLAB Code Generation”

dsp.Mean “System Objects in MATLAB Code Generation”

dsp.Median “System Objects in MATLAB Code Generation”

dsp.Minimum “System Objects in MATLAB Code Generation”

dsp.RMS “System Objects in MATLAB Code Generation”

dsp.StandardDeviation “System Objects in MATLAB Code Generation”

dsp.Variance “System Objects in MATLAB Code Generation”

Transforms

21-170

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Name Remarks and Limitations

dsp.AnalyticSignal “System Objects in MATLAB Code Generation”

dsp.DCT “System Objects in MATLAB Code Generation”

dsp.FFT “System Objects in MATLAB Code Generation”

dsp.IDCT “System Objects in MATLAB Code Generation”

dsp.IFFT “System Objects in MATLAB Code Generation”

Error Handling in MATLAB

Function Remarks and Limitations

assert • Generates specified error messages at compile time only if all input
arguments are constants or depend on constants. Otherwise, generates
specified error messages at run time.

• For standalone code generation, excluded from the generated code.

• See “Rules for Using assert Function” on page 23-19.

error For standalone code generation, excluded from the generated code.

Exponents in MATLAB

Function Remarks and Limitations

exp —

expm —

expm1 —

factorial —

log
• Generates an error during simulation and returns NaN in generated
code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing
in complex(x).

21-171

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

log2 —

log10 —

log1p —

nextpow2 —

nthroot —

reallog —

realpow —

realsqrt —

sqrt • Generates an error during simulation and returns NaN in generated
code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing
in complex(x).

Filtering and Convolution in MATLAB

Function Remarks and Limitations

conv —

conv2 —

convn —

deconv —

detrend • If supplied and not empty, the input argument bp must satisfy the
following requirements:

- Be real.

- Be sorted in ascending order.

- Restrict elements to integers in the interval [1, n-2]. n is the
number of elements in a column of input argument X , or the number
of elements in X when X is a row vector.

- Contain all unique values.

21-172

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

- “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

filter —

filter2 —

Fixed-Point Designer
In addition to function-specific limitations listed in the table, the following
general limitations apply to the use of Fixed-Point Designer functions in
generated code or with fiaccel:

• fipref and quantizer objects are not supported.

• Word lengths greater than 128 bits are not supported.

• You cannot change the fimath or numerictype of a given fi variable after
that variable has been created.

• The boolean value of the DataTypeMode and DataType properties are not
supported.

• For all SumMode property settings other than FullPrecision, the
CastBeforeSum property must be set to true.

• You can use parallel for (parfor) loops in code compiled with fiaccel, but
those loops are treated like regular for loops.

• When you compile code containing fi objects with nontrivial slope and bias
scaling, you may see different results in generated code than you achieve
by running the same code in MATLAB.

• The general limitations of C/C++ code generated from MATLAB apply. For
more information, see “MATLAB Language Features Supported for C/C++
Code Generation”.

Function Remarks/Limitations

abs N/A

accumneg N/A

21-173

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

accumpos N/A

add • Code generation in MATLAB does not support the syntax
F.add(a,b). You must use the syntax add(F,a,b).

all N/A

any N/A

atan2 N/A

bitand Not supported for slope-bias scaled fi objects.

bitandreduce N/A

bitcmp N/A

bitconcat N/A

bitget N/A

bitor Not supported for slope-bias scaled fi objects.

bitorreduce N/A

bitreplicate N/A

bitrol N/A

bitror N/A

bitset N/A

bitshift N/A

bitsliceget N/A

bitsll Generated code may not handle out of range shifting.

bitsra Generated code may not handle out of range shifting.

bitsrl Generated code may not handle out of range shifting.

bitxor Not supported for slope-bias scaled fi objects.

bitxorreduce N/A

ceil N/A

complex N/A

21-174

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks/Limitations

conj N/A

conv • Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see different results between
generated code and MATLAB.

- In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

- In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when both
inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

convergent N/A

cordicabs Variable-size signals are not supported.

cordicangle Variable-size signals are not supported.

cordicatan2 Variable-size signals are not supported.

cordiccart2pol Variable-size signals are not supported.

cordiccexp Variable-size signals are not supported.

cordiccos Variable-size signals are not supported.

cordicpol2cart Variable-size signals are not supported.

cordicrotate Variable-size signals are not supported.

cordicsin Variable-size signals are not supported.

cordicsincos Variable-size signals are not supported.

cos N/A

ctranspose N/A

diag If supplied, the index, k, must be a real and scalar integer value that
is not a fi object.

21-175

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

divide • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• Complex and imaginary divisors are not supported.

• Code generation in MATLAB does not support the syntax
T.divide(a,b).

double N/A

end N/A

eps • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and fi double
signals.

eq Not supported for fixed-point signals with different biases.

fi • The default constructor syntax without any input arguments is
not supported.

• If the numerictype is not fully specified, the input to fi must be
a constant, a fi, a single, or a built-in integer value. If the input
is a built-in double value, it must be a constant. This limitation
allows fi to autoscale its fraction length based on the known data
type of the input.

• All properties related to data type must be constant for code
generation.

• numerictype object information must be available for
nonfixed-point Simulink inputs.

filter • Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

21-176

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks/Limitations

fimath • Fixed-point signals coming in to a MATLAB Function block from
Simulink are assigned a fimath object. You define this object in
the MATLAB Function block dialog in the Model Explorer.

• Use to create fimath objects in the generated code.

• If the ProductMode property of the fimath object is set to
anything other than FullPrecision, the ProductWordLength and
ProductFractionLength properties must be constant.

• If the SumMode property of the fimath object is set to
anything other than FullPrecision, the SumWordLength and
SumFractionLength properties must be constant.

fix N/A

fixed.Quantizer N/A

floor N/A

ge Not supported for fixed-point signals with different biases.

get The syntax structure = get(o) is not supported.

getlsb N/A

getmsb N/A

gt Not supported for fixed-point signals with different biases.

hdlram N/A

horzcat N/A

imag N/A

int8, int16, int32,
int64

N/A

iscolumn N/A

isempty N/A

isequal N/A

isfi N/A

isfimath N/A

21-177

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

isfimathlocal N/A

isfinite N/A

isinf N/A

isnan N/A

isnumeric N/A

isnumerictype N/A

isreal N/A

isrow N/A

isscalar N/A

issigned N/A

isvector N/A

le Not supported for fixed-point signals with different biases.

length N/A

logical N/A

lowerbound N/A

lsb • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and double
signals.

lt Not supported for fixed-point signals with different biases.

max N/A

mean N/A

median N/A

min N/A

minus Any non-fi input must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object.

21-178

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks/Limitations

mpower • When the exponent k is a variable and the input is a scalar,
the ProductMode property of the governing fimath must be
SpecifyPrecision.

• When the exponent k is a variable and the input is not
scalar, the SumMode property of the governing fimath must be
SpecifyPrecision.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to SpecifyPrecision or
Keep LSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

- In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

- In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when
the first input, a, is nonscalar. However, when a is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

mpy • Code generation in MATLAB does not support the syntax
F.mpy(a,b). You must use the syntax mpy(F,a,b).

• When you provide complex inputs to the mpy function inside of a
MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and
data manager and set the Complexity parameter for all known
complex inputs to On.

mrdivide N/A

21-179

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

mtimes • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to SpecifyPrecision or
KeepLSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

- In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

- In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when both
inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

ndims N/A

ne Not supported for fixed-point signals with different biases.

nearest N/A

numberofelements numberofelements will be removed in a future release. Use numel
instead.

numel N/A

numerictype • Fixed-point signals coming in to a MATLAB Function block from
Simulink are assigned a numerictype object that is populated
with the signal’s data type and scaling information.

• Returns the data type when the input is a nonfixed-point signal.

• Use to create numerictype objects in generated code.

• All numerictype object properties related to the data type must
be constant.

permute N/A

plus Any non-fi inputs must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object.

21-180

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks/Limitations

pow2 N/A

power When the exponent k is a variable, the ProductMode property of the
governing fimath must be SpecifyPrecision.

qr N/A

quantize N/A

range N/A

rdivide N/A

real N/A

realmax N/A

realmin N/A

reinterpretcast N/A

removefimath N/A

repmat N/A

rescale N/A

reshape N/A

round N/A

setfimath N/A

sfi • All properties related to data type must be constant for code
generation.

sign N/A

sin N/A

single N/A

size N/A

sort N/A

sqrt • Complex and [Slope Bias] inputs error out.

• Negative inputs yield a 0 result.

storedInteger N/A

21-181

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

storedIntegerToDouble N/A

sub • Code generation in MATLAB does not support the syntax
F.sub(a,b). You must use the syntax sub(F,a,b).

subsasgn N/A

subsref N/A

sum Variable-sized inputs are only supported when the SumMode property
of the governing fimath is set to Specify precision or Keep LSB.

times • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• When you provide complex inputs to the times function inside of a
MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and
data manager and set the Complexity parameter for all known
complex inputs to On.

transpose N/A

tril If supplied, the index, k, must be a real and scalar integer value that
is not a fi object.

triu If supplied, the index, k, must be a real and scalar integer value that
is not a fi object.

ufi • All properties related to data type must be constant for code
generation.

uint8, uint16, uint32,
uint64

N/A

uminus N/A

uplus N/A

upperbound N/A

vertcat N/A

21-182

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Histograms in MATLAB

Function Remarks and Limitations

hist • Histogram bar plotting not supported; call with at least one output
argument.

• If supplied, the second argument x must be a scalar constant.

• Inputs must be real.

histc • The output of a variable-size array that becomes a column vector at
run time is a column-vector, not a row-vector.

• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

Image Acquisition Toolbox
If you install Image Acquisition Toolbox™ software, you can generate C and
C++ code for the VideoDevice System object. See imaq.VideoDevice and
“Code Generation with VideoDevice System Object”.

Image Processing Toolbox
You must have the MATLAB Coder software installed to generate C/C++ code
from MATLAB for these functions.

Function Remarks/Limitations

affine2d When generating code, you can only specify singular objects—arrays
of objects are not supported.

bwlookup For best results, specify an input image of class logical.

bwmorph The text string specifying the operation must be a constant and, for
best results, specify an input image of class logical.

bwpack Generated code for this function uses a precompiled platform-specific
shared library.

21-183

http://www.mathworks.com/support/sysreq/current_release/

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

bwselect Supports only the 3 and 4 input argument syntaxes: BW2 =
bwselect(BW,c,r) and BW2 = bwselect(BW,c,r,n). The optional
fourth input argument, n, must be a compile-time constant. In
addition, with code generation, bwselect only supports only the 1
and 2 output argument syntaxes: BW2 = bwselect(___) or [BW2,
idx] = bwselect(___).

Generated code for this function uses a precompiled platform-specific
shared library.

bwunpack Generated code for this function uses a precompiled platform-specific
shared library.

conndef All input arguments must be compile-time constants.

edge The method, direction, and sigma arguments must be a compile-time
constants. In addition, nonprogrammatic syntaxes are not supported.
For example, the syntax edge(im), where edge does not return a
value but displays an image instead, is not supported.

Generated code for this function uses a precompiled platform-specific
shared library.

fspecial Allinputs must be compile-time constants. Expressions or variables
are allowed if their values do not change.

getrangefromclass —

im2uint8 Generated code for this function uses a precompiled platform-specific
shared library.

im2uint16 Generated code for this function uses a precompiled platform-specific
shared library.

im2int16 Generated code for this function uses a precompiled platform-specific
shared library.

im2single —

im2double —

21-184

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks/Limitations

imbothat The input image IM must be either 2-D or 3-D image. The structuring
element input argument SE must be a compile-time constant.

Generated code for this function uses a precompiled platform-specific
shared library.

imclose The input image IM must be either 2-D or 3-D image. The structuring
element input argument SE must be a compile-time constant.

Generated code for this function uses a precompiled platform-specific
shared library.

imcomplement Does not support int64 and uint64 data types.

imdilate The input image IMmust be either 2-D or 3-D image. The SE, PACKOPT,
and SHAPE input arguments must be a compile-time constant. The
structuring element argument SE must be a single element—arrays of
structuring elements are not supported. To obtain the same result
as that obtained using an array of structuring elements, call the
function sequentially.

Generated code for this function uses a precompiled platform-specific
shared library.

imerode The input image IMmust be either 2-D or 3-D image. The SE, PACKOPT,
and SHAPE input arguments must be a compile-time constant. The
structuring element argument SE must be a single element—arrays of
structuring elements are not supported. To obtain the same result
as that obtained using an array of structuring elements, call the
function sequentially.

Generated code for this function uses a precompiled platform-specific
shared library.

imextendedmax The optional third input argument, conn, must be a compile-time
constant.

Generated code for this function uses a precompiled platform-specific
shared library.

21-185

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

imextendedmin The optional third input argument, conn, must be a compile-time
constant.

Generated code for this function uses a precompiled platform-specific
shared library.

imfill The optional input connectivity, conn and the string 'holes' must
be compile time constants.

Supports only up to 3-D inputs. (No N-D support.)

The interactive mode to select points, imfill(BW,0,CONN) is not
supported in code generation.

locations can be a P-by-1 vector, in which case it contains the
linear indices of the starting locations. locations can also be a
P-by-ndims(I) matrix, in which case each row contains the array
indices of one of the starting locations. Once you select a format at
compile-time, you cannot change it at run-time. However, the number
of points in locations can be varied at run-time.

Generated code for this function uses a precompiled platform-specific
shared library.

imfilter The input image can be either 2-D or 3-D. The value of the input
argument, options, must be a compile-time constant.

Generated code for this function uses a precompiled platform-specific
shared library.

imhist The optional second input argument, n, must be a compile-time
constant. In addition, nonprogrammatic syntaxes are not supported.
For example, the syntaxes where imhist displays the histogram are
not supported.

Generated code for this function uses a precompiled platform-specific
shared library.

imhmax The optional third input argument, conn, must be a compile-time
constant

Generated code for this function uses a precompiled platform-specific
shared library.

21-186

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks/Limitations

imhmin The optional third input argument, conn, must be a compile-time
constant

Generated code for this function uses a precompiled platform-specific
shared library.

imopen The input image IM must be either 2-D or 3-D image. The structuring
element input argument SE must be a compile-time constant.

Generated code for this function uses a precompiled platform-specific
shared library.

imreconstruct The optional third input argument, conn, must be a compile-time
constant.

Generated code for this function uses a precompiled platform-specific
shared library.

imregionalmax The optional second input argument, conn, must be a compile-time
constant.

Generated code for this function uses a precompiled platform-specific
shared library.

imregionalmin The optional second input argument, conn, must be a compile-time
constant.

Generated code for this function uses a precompiled platform-specific
shared library.

imtophat The input image IM must be either 2-D or 3-D image. The structuring
element input argument SE must be a compile-time constant.

Generated code for this function uses a precompiled platform-specific
shared library.

imwarp Geometric transformation object input, tform, must be either
affine2d or projective2d. Additionally, the interpolation method
and optional parameter names must be string constants.

Generated code for this function uses a precompiled platform-specific
shared library.

21-187

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

imref2d The XWorldLimits, YWorldLimits and ImageSize properties can be
set only during object construction. When generating code, you can
only specify singular objects—arrays of objects are not supported.

imref3d The XWorldLimits, YWorldLimits, ZWorldLimits and ImageSize
properties can be set only during object construction. When
generating code, you can only specify singular objects—arrays of
objects are not supported.

iptcheckconn All input arguments must be compile-time constants.

label2rgb Referring to the standard syntax:

RGB = label2rgb(L, map, zerocolor, order)

• Submit at least two input arguments: the label matrix, L, and the
colormap matrix, map.

• map must be an n-by-3, double, colormap matrix. You cannot use
a string containing the name of a MATLAB colormap function or a
function handle of a colormap function.

• If you set the boundary color zerocolor to the same color as one of
the regions, label2rgb will not issue a warning.

• If you supply a value for order, it must be 'noshuffle'.

mean2 —

padarray Support only up to 3-D inputs.

Input arguments, padval and direction are expected to be
compile-time constants.

projective2d When generating code, you can only specify singular objects—arrays
of objects are not supported.

strel All input arguments must be compile-time constants. The following
methods are not supported for code generation: getsequence,
reflect, translate, disp, display, loadobj. When generating
code, you can only specify singular objects—arrays of objects are not
supported.

21-188

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Input and Output Arguments in MATLAB

Function Remarks and Limitations

nargin —

nargout
• For a function with no output arguments,
returns 1 if called without a terminating
semicolon.

Note This behavior also affects extrinsic calls
with no terminating semicolon. nargout is 1
for the called function in MATLAB.

Interpolation and Computational Geometry in
MATLAB

Function Remarks and Limitations

cart2pol —

cart2sph —

interp1 “Variable Sizing Restrictions for Code Generation of Toolbox Functions”
on page 22-36

interp2 • Xq and Yq must be the same size. Use meshgrid to evaluate on a grid.

• For best results, provide X and Y as vectors.

• For the 'cubic' method, reports an error if the grid does not have
uniform spacing. In this case, use the 'spline' method.

• For best results when you use the 'spline' method:

- Use meshgrid to create the inputs Xq and Yq.

- Use a small number of interpolation points relative to the
dimensions of V. Interpolating over a large set of scattered points
can be inefficient.

21-189

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

interp3 • Xq, Yq, and Zq must be the same size. Use meshgrid to evaluate on
a grid.

• For best results, provide X, Y, and Z as vectors.

• For the 'cubic' method, reports an error if the grid does not have
uniform spacing. In this case, use the 'spline' method.

• For best results when you use the 'spline' method:

- Use meshgrid to create the inputs Xq, Yq, and Zq.

- Use a small number of interpolation points relative to the
dimensions of V. Interpolating over a large set of scattered points
can be inefficient.

meshgrid —

mkpp • The output structure pp differs from the pp structure in MATLAB. In
MATLAB, ppval cannot use the pp structure from the code generation
software. For code generation, ppval cannot use a pp structure
created by MATLAB. unmkpp can use a MATLAB pp structure for code
generation.

To create a MATLAB pp structure from a pp structure created by the
code generation software:

- In code generation, use unmkpp to return the piecewise polynomial
details to MATLAB.

- In MATLAB, use mkpp to create the pp structure.

• If you do not provide d, then coefs must be two-dimensional and
have a fixed number of columns. In this case, the number of columns
is the order.

• To define a piecewise constant polynomial, coefs must be a column
vector or d must have at least two elements.

• If you provide d and d is 1, d must be a constant. Otherwise, if the
input to ppval is nonscalar, the shape of the output of ppval can differ
from ppval in MATLAB.

• If you provide d, it must have a fixed length. One of the following sets
of statements must be true:

21-190

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

1 Suppose that m = length(d) and npieces = length(breaks) - 1.

size(coefs,j) = d(j)
size(coefs,m+1) = npieces
size(coefs,m+2) = order

j = 1,2,...,m. The dimension m+2 must be fixed length.

2 Suppose that m = length(d) and npieces = length(breaks) - 1.

size(coefs,1) = prod(d)*npieces
size(coefs,2) = order

The second dimension must be fixed length.

• If you do not provide d, the following statements must be true:

Suppose that m = length(d) and npieces = length(breaks) - 1.

size(coefs,1) = prod(d)*npieces
size(coefs,2) = order

The second dimension must be fixed length.

pchip • Input x must be strictly increasing.

• Does not remove y entries with NaN values.

• If you generate code for the pp = pchip(x,y) syntax, you cannot
input pp to the ppval function in MATLAB. To create a MATLAB pp
structure from a pp structure created by the code generation software:

- In code generation, use unmkpp to return the piecewise polynomial
details to MATLAB.

- In MATLAB, use mkpp to create the pp structure.

pol2cart —

polyarea —

21-191

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

ppval The size of output v does not match MATLAB when both of the following
statements are true:

• The input x is a variable-size array that is not a variable-length vector.

• x becomes a row vector at run time.

The code generation software does not remove the singleton dimensions.
However, MATLAB might remove singleton dimensions.

For example, suppose that x is a :4-by-:5 array and ppval(pp,0) returns
a 2-by-3 fixed-size array. v has size 2-by-3-by-:4-by-:5. At run time,
suppose that, size(x,1) =1 and size (x,2) = 5. In the generated code, the
size(v) is [2,3,1,5]. In MATLAB, the size is [2,3,5].

rectint —

sph2cart —

spline • Input x must be strictly increasing.

• Does not remove Y entries with NaN values.

• Does not report an error for infinite endslopes in Y.

• If you generate code for the pp = spline(x,Y) syntax, you cannot
input pp to the ppval function in MATLAB. To create a MATLAB pp
structure from a pp structure created by the code generation software:

- In code generation, use unmkpp to return the piecewise polynomial
details to MATLAB.

- In MATLAB, use mkpp to create the pp structure.

unmkpp • pp must be a valid piecewise polynomial structure created by mkpp,
spline, or pchip in MATLAB or by the code generation software.

• Does not support pp structures created by interp1 in MATLAB.

21-192

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Linear Algebra in MATLAB

Function Remarks and Limitations

linsolve • The option structure must be a constant.

• Supports only a scalar option structure input. It does not support
arrays of option structures.

• Only optimizes these cases:

- UT

- LT

- UHESS = true (the TRANSA can be either true or false)

- SYM = true and POSDEF = true

Other options are equivalent to using mldivide.

null • Might return a different basis than MATLAB

• Does not support rational basis option (second input)

orth • Can return a different basis than MATLAB

rsf2csf —

schur Can return a different Schur decomposition in generated code than in
MATLAB.

sqrtm —

Logical and Bit-Wise Operations in MATLAB

Function Remarks and Limitations

and —

bitand —

bitcmp —

bitget —

bitor —

bitset —

21-193

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

bitshift —

bitxor —

not —

or —

xor —

MATLAB Compiler
C and C++ code generation for the following functions requires the MATLAB
Compiler software.

Function Remarks and Limitations

isdeployed • Returns true and false as appropriate for MEX and SIM targets

• Returns false for other targets

ismcc • Returns true and false as appropriate for MEX and SIM targets.

• Returns false for other targets.

Matrices and Arrays in MATLAB

Function Remarks and Limitations

abs —

all “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

angle —

any “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

blkdiag —

bsxfun “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

21-194

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

cat
• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

circshift —

colon • Does not accept complex inputs.

• Does not accept a logical interval,i.

• Does not accept vector inputs.

• Inputs must be constants.

• Uses single-precision arithmetic to produce single-precision results.

compan —

cond “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

cov “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

cross • If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

cumprod • Logical inputs are not supported. Cast input to double first.

cumsum • Logical inputs are not supported. Cast input to double first.

det —

21-195

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

diag • If supplied, the argument representing the order of the diagonal
matrix must be a real and scalar integer value.

• For variable-size inputs that are variable-length vectors (1-by-:
or :-by-1), diag:

- Treats the input as a vector input.

- Returns a matrix with the given vector along the specified
diagonal.

• For variable-size inputs that are not variable-length vectors, diag:

- Treats the input as a matrix.

- Does not support inputs that are vectors at run time.

- Returns a variable-length vector.

If the input is variable-size (:m-by-:n) and has shape 0-by-0 at run
time, the output is 0-by-1 not 0-by-0. However, if the input is a
constant size 0-by-0, the output is [].

• For variable-size inputs that are not variable-length vectors (1-by-:
or :-by-1), diag treats the input as a matrix from which to extract
a diagonal vector. This behavior occurs even if the input array
is a vector at run time. To force diag to build a matrix from
variable-size inputs that are not 1-by-: or :-by-1, use:

- diag(x(:)) instead of diag(x)

- diag(x(:),k) instead of diag(x,k)

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

diff • If supplied, the arguments representing the number of times
to apply diff and the dimension along which to calculate the
difference must be constants.

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

dot —

21-196

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

eig • QZ algorithm used in all cases, whereas MATLAB might use
different algorithms for different inputs. Consequently, V might
represent a different basis of eigenvectors, and the eigenvalues in D
might not be in the same order as in MATLAB.

• With one input, [V,D] = eig(A), the results will be similar to
those obtained using [V,D] = eig(A,eye(size(A)),'qz') in
MATLAB, except that for code generation, the columns of V are
normalized.

• Options 'balance', 'nobalance' are not supported for the
standard eigenvalue problem, and 'chol' is not supported for the
symmetric generalized eigenvalue problem.

• Outputs are of complex type.

eye classname must be a built-in MATLAB numeric type. Does not
invoke the static eye method for other classes. For example, eye(m,
n, 'myclass') does not invoke myclass.eye(m,n).

false • Dimensions must be real, nonnegative, integers.

find • Issues an error if a variable-sized input becomes a row vector at
run time.

Note This limitation does not apply when the input is scalar or a
variable-length row vector.

• For variable-sized inputs, the shape of empty outputs, 0-by-0,
0-by-1, or 1-by-0, depends on the upper bounds of the size of the
input. The output might not match MATLAB when the input array
is a scalar or [] at run time. If the input is a variable-length row
vector, the size of an empty output is 1-by-0, otherwise it is 0-by-1.

flip —

flipdim

Note flipdim will be removed in a future release. Use flip instead.

21-197

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

fliplr —

flipud —

full —

hadamard —

hankel —

hilb —

ind2sub • The first argument should be a valid size vector. Size vectors for
arrays with more than intmax elements are not supported.

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

inv Singular matrix inputs can produce nonfinite values that differ from
MATLAB results.

invhilb —

ipermute “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

iscolumn —

isempty —

isequal —

isequaln —

isfinite —

isfloat —

isinf —

isinteger —

islogical —

ismatrix —

isnan —

isrow —

issparse —

21-198

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

isvector —

kron —

length —

linspace —

logspace —

lu —

magic “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

max
• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

min
• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

ndgrid —

ndims —

nnz —

nonzeros —

norm —

normest —

numel —

ones • Dimensions must be real, nonnegative integers.

• The input optimfun must be a function supported for code
generation.

pascal —

permute “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

21-199

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

pinv —

planerot “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

prod
• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

qr —

rand • classname must be a built-in MATLAB numeric type. Does not
invoke the static rand method for other classes. For example,
rand(sz,'myclass') does not invoke myclass.rand(sz).

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

randi • classname must be a built-in MATLAB numeric type.
Does not invoke the static randi method for other classes.
For example, randi(imax,sz,'myclass') does not invoke
myclass.randi(imax,sz).

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

randn • classname must be a built-in MATLAB numeric type. Does not
invoke the static randn method for other classes. For example,
randn(sz,'myclass') does not invoke myclass.randn(sz).

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

randperm —

rank —

rcond —

repmat —

reshape v

21-200

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

rng • For library code generation targets, executable code generation
targets, and MEX targets with extrinsic calls disabled:

- Does not support the 'shuffle' input.

- For the generator input, supports 'twister', 'v4', and
'v5normal'.

For these targets, the output of s=rng in the generated code differs
from the MATLAB output. You cannot return the output of s=rng
from the generated code and pass it to rng in MATLAB.

• For MEX targets, if extrinsic calls are enabled, you cannot access
the data in the structure returned by rng.

rosser —

rot90 —

shiftdim • Second argument must be a constant.

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

sign —

size —

sort If the input is a complex type, sort orders the output according to
absolute value. When x is a complex type that has all zero imaginary
parts, use sort(real(x)) to compute the sort order for real types.
See “Code Generation for Complex Data” on page 13-4.

sortrows If the input is a complex type, sortrows orders the output according to
absolute value. When x is a complex type that has all zero imaginary
parts, use sortrows(real(x)) to compute the sort order for real
types. See “Code Generation for Complex Data” on page 13-4.

squeeze —

sub2ind • The first argument should be a valid size vector. Size vectors for
arrays with more than intmax elements are not supported.

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

subspace —

21-201

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

sum
• Specify dim as a constant.

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

toeplitz —

trace —

tril • If supplied, the argument representing the order of the diagonal
matrix must be a real and scalar integer value.

triu • If supplied, the argument representing the order of the diagonal
matrix must be a real and scalar integer value.

true • Dimensions must be real, nonnegative, integers.

vander —

wilkinson —

zeros • Dimensions must be real, nonnegative, integers.

Nonlinear Numerical Methods in MATLAB

Function Remarks and Limitations

quad2d
• Generates a warning if the size of the internal storage arrays is not
large enough. If a warning occurs, a possible workaround is to divide
the region of integration into pieces and sum the integrals over each
piece.

quadgk —

Numerical Integration and Differentiation in MATLAB

Function Remarks and Limitations

cumtrapz —

del2 —

21-202

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

diff • If supplied, the arguments representing the number of times to apply
diff and the dimension along which to calculate the difference must
be constants.

gradient —

trapz
• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

Optimization Functions in MATLAB

Function Remarks and Limitations

fminsearch • Ignores the Display option. Does not print status information during
execution. Check the exitflag output for the exit condition.

• The output structure does not include the algorithm or message fields.

• Ignores the OutputFcn and PlotFcns options.

fzero • The first argument must be a function handle. Does not support
structure, inline function, or string inputs for the first argument.

• Supports up to three output arguments. Does not support the fourth
output argument (the output structure).

optimget Input parameter names must be constant.

optimset • Does not support the syntax that has no input or output arguments:

optimset

• Functions specified in the options must be supported for code
generation.

• The fields of the options structure oldopts must be fixed-size fields.

• For code generation, optimization functions ignore the Display option.

21-203

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

• Does not support the additional options in an options structure created
by the Optimization Toolbox optimset function. If an input options
structure includes the additional Optimization Toolbox options, the
output structure does not include them.

Phased Array System Toolbox
C and C++ code generation for the following functions requires the Phased
Array System Toolbox software.

Name Remarks and Limitations

Antenna and Microphone Elements

aperture2gain Does not support variable-size inputs.

azel2phithetapat Does not support variable-size inputs.

azel2uvpat Does not support variable-size inputs.

circpol2pol Does not support variable-size inputs.

gain2aperture Does not support variable-size inputs.

phased.CosineAntennaElement • plotResponse and viewArray methods are
not supported.

• “Code Generation”.

phased.CrossedDipoleAntennaElement • plotResponse and viewArray methods are
not supported.

• “Code Generation”.

phased.CustomAntennaElement • plotResponse and viewArray methods are
not supported.

• “Code Generation”.

phased.CustomMicrophoneElement • plotResponse and viewArray methods are
not supported.

• “Code Generation”.

21-204

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Name Remarks and Limitations

phased.IsotropicAntennaElement • plotResponse and viewArray methods are
not supported.

• “Code Generation”.

phased.OmnidirectionalMicrophoneElement • plotResponse and viewArray methods are
not supported.

• “Code Generation”.

phased.ShortDipoleAntennaElement • plotResponse and viewArray methods are
not supported.

• “Code Generation”.

phitheta2azelpat Does not support variable-size inputs.

phitheta2uvpat Does not support variable-size inputs.

pol2circpol Does not support variable-size inputs.

polellip Does not support variable-size inputs.

polloss Does not support variable-size inputs.

polratio Does not support variable-size inputs.

polsignature • Does not support variable-size inputs.

• Supported only when output arguments are
specified.

stokes • Does not support variable-size inputs.

• Supported only when output arguments are
specified.

uv2azelpat Does not support variable-size inputs.

uv2phithetapat Does not support variable-size inputs.

Array Geometries and Analysis

az2broadside Does not support variable-size inputs.

broadside2az Does not support variable-size inputs.

21-205

21 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

phased.ArrayGain • Does not support arrays containing
polarized antenna elements, that is, the
phased.ShortDipoleAntennaElement or
phased.CrossedDipoleAntennaElement
antennas.

• “Code Generation”.

phased.ArrayResponse “Code Generation”.

phased.ConformalArray • plotResponse and viewArray methods are
not supported.

• “Code Generation”.

phased.ElementDelay “Code Generation”.

phased.PartitionedArray • plotResponse and viewArray methods are
not supported.

• “Code Generation”.

phased.ReplicatedSubarray • plotResponse and viewArray methods are
not supported.

• “Code Generation”.

phased.SteeringVector See “Code Generation”.

phased.ULA • plotResponse and viewArray methods are
not supported.

• “Code Generation”.

phased.URA • plotResponse and viewArray methods are
not supported.

• “Code Generation”.

Signal Radiation and Collection

phased.Collector “Code Generation”.

phased.Radiator “Code Generation”.

21-206

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Name Remarks and Limitations

phased.WidebandCollector • Requires dynamic memory allocation.
See “Limitations for System Objects that
Require Dynamic Memory Allocation”.

• “Code Generation”.

sensorsig Does not support variable-size inputs.

Waveforms

ambgfun Does not support variable-size inputs.

phased.FMCWWaveform “Code Generation”.

phased.LinearFMWaveform “Code Generation”.

phased.PhaseCodedWaveform “Code Generation”.

phased.RectangularWaveform “Code Generation”.

phased.SteppedFMWaveform “Code Generation”.

range2bw Does not support variable-size inputs.

range2time Does not support variable-size inputs.

time2range Does not support variable-size inputs.

unigrid Does not support variable-size inputs.

Transmitters and Receivers

delayseq Does not support variable-size inputs.

noisepow Does not support variable-size inputs.

phased.ReceiverPreamp “Code Generation”.

phased.Transmitter “Code Generation”.

systemp Does not support variable-size inputs.

Beamforming

cbfweights Does not support variable-size inputs.

lcmvweights Does not support variable-size inputs.

mvdrweights Does not support variable-size inputs.

21-207

21 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

phased.FrostBeamformer • Requires dynamic memory allocation.
See “Limitations for System Objects that
Require Dynamic Memory Allocation”.

• “Code Generation”.

phased.LCMVBeamformer “Code Generation”.

phased.MVDRBeamformer “Code Generation”.

phased.PhaseShiftBeamformer “Code Generation”.

phased.SteeringVector “Code Generation”.

phased.SubbandPhaseShiftBeamformer “Code Generation”.

phased.TimeDelayBeamformer • Requires dynamic memory allocation.
See “Limitations for System Objects that
Require Dynamic Memory Allocation”.

• “Code Generation”.

phased.TimeDelayLCMVBeamformer • Requires dynamic memory allocation.
See “Limitations for System Objects that
Require Dynamic Memory Allocation”.

• “Code Generation”.

sensorcov Does not support variable-size inputs.

steervec Does not support variable-size inputs.

Direction of Arrival (DOA) Estimation

aictest Does not support variable-size inputs.

espritdoa Does not support variable-size inputs.

mdltest Does not support variable-size inputs.

phased.BeamscanEstimator “Code Generation”.

phased.BeamscanEstimator2D “Code Generation”.

phased.BeamspaceESPRITEstimator “Code Generation”.

phased.ESPRITEstimator “Code Generation”.

phased.MVDREstimator “Code Generation”.

21-208

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Name Remarks and Limitations

phased.MVDREstimator2D “Code Generation”.

phased.RootMUSICEstimator “Code Generation”.

phased.RootWSFEstimator “Code Generation”.

phased.SumDifferenceMonopulseTracker “Code Generation”.

phased.SumDifferenceMonopulseTracker2D “Code Generation”.

rootmusicdoa Does not support variable-size inputs.

spsmooth Does not support variable-size inputs.

Space-Time Adaptive Processing (STAP)

dopsteeringvec Does not support variable-size inputs.

phased.ADPCACanceller “Code Generation”.

phased.AngleDopplerResponse “Code Generation”.

phased.DPCACanceller “Code Generation”.

phased.STAPSMIBeamformer “Code Generation”.

val2ind Does not support variable-size inputs.

Signal Propagation and Environment

billingsleyicm Does not support variable-size inputs.

depressionang Does not support variable-size inputs.

effearthradius Does not support variable-size inputs.

fspl Does not support variable-size inputs.

grazingang Does not support variable-size inputs.

horizonrange Does not support variable-size inputs.

phased.BarrageJammer “Code Generation”.

phased.ConstantGammaClutter “Code Generation”.

phased.FreeSpace • Requires dynamic memory allocation.
See “Limitations for System Objects that
Require Dynamic Memory Allocation”.

• “Code Generation”.

21-209

21 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

phased.RadarTarget “Code Generation”.

physconst Does not support variable-size inputs.

surfacegamma Does not support variable-size inputs.

surfclutterrcs Does not support variable-size inputs.

Detection and System Analysis

albersheim Does not support variable-size inputs.

beat2range Does not support variable-size inputs.

dechirp Does not support variable-size inputs.

npwgnthresh Does not support variable-size inputs.

phased.CFARDetector “Code Generation”.

phased.MatchedFilter • The CustomSpectrumWindow property is not
supported.

• “Code Generation”.

phased.RangeDopplerResponse • The CustomRangeWindow and the
CustomDopplerWindow properties are not
supported.

• “Code Generation”.

phased.StretchProcessor “Code Generation”.

phased.TimeVaryingGain “Code Generation”.

pulsint Does not support variable-size inputs.

radareqpow Does not support variable-size inputs.

radareqrng Does not support variable-size inputs.

radareqsnr Does not support variable-size inputs.

radarvcd Does not support variable-size inputs.

range2beat Does not support variable-size inputs.

rdcoupling Does not support variable-size inputs.

21-210

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Name Remarks and Limitations

rocpfa • Does not support variable-size inputs.

• The NonfluctuatingNoncoherent signal
type is not supported.

rocsnr • Does not support variable-size inputs.

• The NonfluctuatingNoncoherent signal
type is not supported.

shnidman Does not support variable-size inputs.

stretchfreq2rng Does not support variable-size inputs.

Motion Modeling and Coordinate Systems

azel2phitheta Does not support variable-size inputs.

azel2uv Does not support variable-size inputs.

azelaxes Does not support variable-size inputs.

cart2sphvec Does not support variable-size inputs.

dop2speed Does not support variable-size inputs.

global2localcoord Does not support variable-size inputs.

local2globalcoord Does not support variable-size inputs.

phased.Platform “Code Generation”.

phitheta2azel Does not support variable-size inputs.

phitheta2uv Does not support variable-size inputs.

radialspeed Does not support variable-size inputs.

rangeangle Does not support variable-size inputs.

rotx Does not support variable-size inputs.

roty Does not support variable-size inputs

rotz Does not support variable-size inputs.

speed2dop Does not support variable-size inputs.

sph2cartvec Does not support variable-size inputs.

21-211

21 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

uv2azel Does not support variable-size inputs.

uv2phitheta Does not support variable-size inputs.

Polynomials in MATLAB

Function Remarks and Limitations

poly • Does not discard nonfinite input values

• Complex input produces complex output

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

polyder The output can contain fewer NaNs than the MATLAB output. However,
if the input contains a NaN, the output contains at least one NaN.

polyfit “Variable Sizing Restrictions for Code Generation of Toolbox Functions”
on page 22-36

polyint —

polyval —

polyvalm —

roots • Output is variable size.

• Output is complex.

• Roots are not always in the same order as MATLAB.

• Roots of poorly conditioned polynomials do not always match MATLAB.

Programming Utilities in MATLAB

Function Remarks and Limitations

mfilename —

21-212

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Relational Operators in MATLAB

Function Remarks and Limitations

eq —

ge —

gt —

le —

lt —

ne —

Rounding and Remainder Functions in MATLAB

Function Remarks and Limitations

ceil —

fix —

floor —

mod • Performs the arithmetic using the output class. Results might not
match MATLAB due to differences in rounding errors.

If one of the inputs has type int64 or uint64, then both inputs must
have the same type.

rem • Performs the arithmetic using the output class. Results might not
match MATLAB due to differences in rounding errors.

• If one of the inputs has type int64 or uint64, then both inputs must
have the same type.

round —

21-213

21 Functions, Classes, and System Objects Supported for Code Generation

Set Operations in MATLAB

Function Remarks and Limitations

intersect • When you do not specify the 'rows' option:

- Inputs A and B must be vectors. If you specify the 'legacy' option,
inputs A and B must be row vectors.

- The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector
must have fixed length 1.

- The input [] is not supported. Use a 1-by-0 or 0-by-1 input, for
example, zeros(1,0), to represent the empty set.

- If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'legacy' option and the 'rows' option, the
outputs ia and ib are column vectors. If these outputs are empty, they
are 0-by-1, never 0-by-0, even if the output C is 0-by-0.

• When the setOrder is 'sorted' or when you specify the 'legacy'
option, the inputs must already be sorted in ascending order. The first
output, C, is sorted in ascending order.

• Complex inputs must be single or double.

• When one input is complex and the other input is real, do one of the
following:

- Set setOrder to 'stable'.

- Sort the real input in complex ascending order (by absolute
value). Suppose the real input is x. Use sort(complex(x))or
sortrows(complex(x)).

ismember • The second input, B, must be sorted in ascending order.

• Complex inputs must be single or double.

issorted “Variable Sizing Restrictions for Code Generation of Toolbox Functions”
on page 22-36

21-214

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

setdiff • When you do not specify the 'rows' option:

- Inputs A and B must be vectors. If you specify the 'legacy' option,
inputs A and B must be row vectors.

- The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector
must have fixed length 1.

- Do not use [] to represent the empty set. Use a 1-by-0 or 0-by-1
input, for example, zeros(1,0), to represent the empty set.

- If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'legacy' and 'rows' options, the output
ia is a column vector. If ia is empty, it is 0-by-1, never 0-by-0, even
if the output C is 0-by-0.

• When the setOrder is 'sorted' or when you specify the 'legacy'
option, the inputs must already be sorted in ascending order. The first
output, C, is sorted in ascending order.

• Complex inputs must be single or double.

• When one input is complex and the other input is real, do one of the
following:

- Set setOrder to 'stable'.

- Sort the real input in complex ascending order (by absolute
value). Suppose the real input is x. Use sort(complex(x))or
sortrows(complex(x)).

21-215

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

setxor • When you do not specify the 'rows' option:

- Inputs A and B must be vectors with the same orientation. If you
specify the 'legacy' option, inputs A and B must be row vectors.

- The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector
must have fixed length 1.

- The input [] is not supported. Use a 1-by-0 or 0-by-1 input, for
example , zeros(1,0), to represent the empty set.

- If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'legacy' option and the 'rows' option, the
outputs ia and ib are column vectors. If these outputs are empty, they
are 0-by-1, never 0-by-0, even if the output C is 0-by-0.

• When the setOrder is 'sorted' or when you specify the 'legacy'
flag, the inputs must already be sorted in ascending order. The first
output, C, is sorted in ascending order.

• Complex inputs must be single or double.

• When one input is complex and the other input is real, do one of the
following:

- Set setOrder to 'stable'.

- Sort the real input in complex ascending order (by absolute
value). Suppose the real input is x. Use sort(complex(x))or
sortrows(complex(x)).

21-216

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

union • When you do not specify the 'rows' option:

- Inputs A and B must be vectors with the same orientation. If you
specify the 'legacy' option, inputs A and B must be row vectors.

- The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector
must have fixed length 1.

- The input [] is not supported. Use a 1-by-0 or 0-by-1 input, for
example , zeros(1,0), to represent the empty set.

- If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'legacy' option and the 'rows' option, the
outputs ia and ib are column vectors. If these outputs are empty, they
are 0-by-1, never 0-by-0, even if the output C is 0-by-0.

• When the setOrder is 'sorted' or when you specify the 'legacy'
option, the inputs must already be sorted in ascending order. The first
output, C, is sorted in ascending order.

• Complex inputs must be single or double.

• When one input is complex and the other input is real, do one of the
following:

- Set setOrder to 'stable'.

- Sort the real input in complex ascending order (by absolute
value). Suppose the real input is x. Use sort(complex(x))or
sortrows(complex(x)).

unique • When you do not specify the'rows' option:

- The input A must be a vector. If you specify the 'legacy' option,
the input A must be a row vector.

- The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector
must have fixed length 1.

- The input [] is not supported. Use a 1-by-0 or 0-by-1 input, for
example, zeros(1,0), to represent the empty set.

21-217

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

- If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'rows' option and the 'legacy'option,
outputs ia and ic are column vectors. If these outputs are empty, they
are 0-by-1, even if the output C is 0-by-0.

• When the setOrder is 'sorted' or when you specify the 'legacy'
option, the input A must already be sorted in ascending order. The
first output, C, is sorted in ascending order.

• Complex inputs must be single or double.

Signal Processing in MATLAB

Function Remarks and Limitations

chol —

conv —

fft • Length of input vector must be a power of 2.

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

fft2 • Length of input matrix dimensions must each be a power of 2.

fftn • Length of input matrix dimensions must each be a power of 2.

fftshift —

filter
• If supplied, dim must be a constant.

• v

freqspace —

21-218

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

ifft • Length of input vector must be a power of 2.

• Output of ifft block is complex.

• Does not support the 'symmetric' option.

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

ifft2 • Length of input matrix dimensions must each be a power of 2.

• Does not support the 'symmetric' option.

ifftn • Length of input matrix dimensions must each be a power of 2.

• Does not support the 'symmetric' option.

ifftshift —

svd Uses a different SVD implementation than MATLAB. Because the
singular value decomposition is not unique, left and right singular vectors
might differ from those computed by MATLAB.

zp2tf —

Signal Processing Toolbox
C and C++ code generation for the following functions requires the Signal
Processing Toolbox software. These functions do not support variable-size
inputs, you must define the size and type of the function inputs. For more
information, see “Specifying Inputs in Code Generation from MATLAB ”.

Note Many Signal Processing Toolbox functions require constant inputs in
generated code. To specify a constant input for codegen, use coder.Constant.

Function Remarks/Limitations

barthannwin Window length must be a constant. Expressions or variables are
allowed if their values do not change.

bartlett Window length must be a constant. Expressions or variables are
allowed if their values do not change.

21-219

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

besselap Filter order must be a constant. Expressions or variables are allowed if
their values do not change.

bitrevorder —

blackman Window length must be a constant. Expressions or variables are
allowed if their values do not change.

blackmanharris Window length must be a constant. Expressions or variables are
allowed if their values do not change.

bohmanwin Window length must be a constant. Expressions or variables are
allowed if their values do not change.

buttap Filter order must be a constant. Expressions or variables are allowed if
their values do not change.

butter Filter coefficients must be constants. Expressions or variables are
allowed if their values do not change.

buttord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cfirpm All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb1ap All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb2ap All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb1ord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb2ord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

chebwin All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheby1 All Inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheby2 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

21-220

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks/Limitations

db2pow —

dct C and C++ code generation for dct requires DSP System Toolbox
software.

Length of transform dimension must be a power of two. If specified, the
pad or truncation value must be constant. Expressions or variables are
allowed if their values do not change.

downsample —

dpss All inputs must be constants. Expressions or variables are allowed if
their values do not change.

ellip Inputs must be constant. Expressions or variables are allowed if their
values do not change.

ellipap All inputs must be constants. Expressions or variables are allowed if
their values do not change.

ellipord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

filtfilt Filter coefficients must be constants. Expressions or variables are
allowed if their values do not change.

findpeaks —

fir1 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

fir2 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

fircls All inputs must be constants. Expressions or variables are allowed if
their values do not change.

fircls1 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

firls All inputs must be constants. Expressions or variables are allowed if
their values do not change.

firpm All inputs must be constants. Expressions or variables are allowed if
their values do not change.

21-221

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

firpmord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

flattopwin All inputs must be constants. Expressions or variables are allowed if
their values do not change.

freqz When called with no output arguments, and without a semicolon at the
end, freqz returns the complex frequency response of the input filter,
evaluated at 512 points.

If the semicolon is added, the function produces a plot of the magnitude
and phase response of the filter.

See “freqz With No Output Arguments”.

gausswin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

hamming All inputs must be constant. Expressions or variables are allowed if
their values do not change.

hann All inputs must be constant. Expressions or variables are allowed if
their values do not change.

idct C and C++ code generation for idct requires DSP System Toolbox
software.

Length of transform dimension must be a power of two. If specified, the
pad or truncation value must be constant. Expressions or variables are
allowed if their values do not change.

intfilt All inputs must be constant. Expressions or variables are allowed if
their values do not change.

kaiser All inputs must be constant. Expressions or variables are allowed if
their values do not change.

kaiserord —

levinson C and C++ code generation for levinson requires DSP System Toolbox
software.

If specified, the order of recursion must be a constant. Expressions or
variables are allowed if their values do not change.

21-222

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks/Limitations

maxflat All inputs must be constant. Expressions or variables are allowed if
their values do not change.

nuttallwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

parzenwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

pow2db —

rcosdesign All inputs must be constant. Expressions or variables are allowed if
their values do not change.

rectwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

resample The upsampling and downsampling factors must be specified as
constants. Expressions or variables are allowed if their values do not
change.

sgolay All inputs must be constant. Expressions or variables are allowed if
their values do not change.

sosfilt —

taylorwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

triang All inputs must be constant. Expressions or variables are allowed if
their values do not change.

tukeywin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

upfirdn C and C++ code generation for upfirdn requires DSP System Toolbox
software.

Filter coefficients, upsampling factor, and downsampling factor must
be constants. Expressions or variables are allowed if their values do
not change.

Variable-size inputs are not supported.

21-223

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

upsample Either declare input n as constant, or use the assert function in the
calling function to set upper bounds for n. For example,

assert(n<10)

xcorr —

yulewalk If specified, the order of recursion must be a constant. Expressions or
variables are allowed if their values do not change.

Special Values in MATLAB

Function Remarks and Limitations

eps • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and fi double
signals.

inf • Dimensions must be real, nonnegative, integers.

intmax —

intmin —

NaN or nan • Dimensions must be real, nonnegative, integers.

pi —

realmax —

realmin —

Specialized Math in MATLAB

Function Remarks and Limitations

beta —

betainc Always returns a complex result.

betaincinv Always returns a complex result.

betaln —

21-224

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

ellipke —

erf —

erfc —

erfcinv —

erfcx —

erfinv —

expint —

gamma —

gammainc Output is always complex.

gammaincinv Output is always complex.

gammaln —

psi —

Statistics in MATLAB

Function Remarks and Limitations

corrcoef • Row-vector input is only supported when the first two inputs are
vectors and nonscalar.

mean
• Does not support the type parameter.

median
• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36“Variable Sizing Restrictions for Code
Generation of Toolbox Functions” on page 22-36

mode • Does not support third output argument C (cell array).

• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

21-225

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

std “Variable Sizing Restrictions for Code Generation of Toolbox Functions”
on page 22-36

var
• If supplied, dim must be a constant.

• “Variable Sizing Restrictions for Code Generation of Toolbox
Functions” on page 22-36

Statistics Toolbox
C and C++ code generation for the following functions requires the Statistics
Toolbox software.

Function Remarks and Limitations

betacdf —

betainv —

betapdf —

betarnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

betastat —

binocdf —

binoinv —

binopdf —

binornd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

binostat —

21-226

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

cdf —

chi2cdf —

chi2inv —

chi2pdf —

chi2rnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

chi2stat —

evcdf —

evinv —

evpdf —

evrnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

evstat —

expcdf —

expinv —

exppdf —

exprnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

expstat —

fcdf —

21-227

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

finv —

fpdf —

frnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

fstat —

gamcdf —

gaminv —

gampdf —

gamrnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

gamstat —

geocdf —

geoinv —

geomean —

geopdf —

geornd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

geostat —

gevcdf —

gevinv —

21-228

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

gevpdf —

gevrnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

gevstat —

gpcdf —

gpinv —

gppdf —

gprnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

gpstat —

harmmean —

hygecdf —

hygeinv —

hygepdf —

hygernd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

hygestat —

icdf —

21-229

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

iqr —

kurtosis —

logncdf —

logninv —

lognpdf —

lognrnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

lognstat —

mad Input dim cannot be empty.

mnpdf Input dim cannot be empty.

moment If order is nonintegral and X is real, use moment(complex(X),
order).

nancov If the input is variable-size and is [] at run time, returns [] not NaN.

nanmax —

nanmean —

nanmedian —

nanmin —

nanstd —

nansum —

nanvar —

nbincdf —

nbininv —

nbinpdf —

21-230

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

nbinrnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

nbinstat —

ncfcdf —

ncfinv —

ncfpdf —

ncfrnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

ncfstat —

nctcdf —

nctinv —

nctpdf —

nctrnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

nctstat —

ncx2cdf —

ncx2rnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

21-231

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

ncx2stat —

normcdf —

norminv —

normpdf —

normrnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

normstat —

pdf —

poisscdf —

poissinv —

poisspdf —

poissrnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

poisstat —

prctile
• “Automatic dimension restriction”

• If the output Y is a vector, the orientation of Y differs from MATLAB
when all of the following are true:

- You do not supply the dim input.

- X is a variable-size array.

- X is not a variable-length vector.

- X is a vector at run time.

21-232

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

- The orientation of the vector X does not match the orientation
of the vector p.

In this case, the output Y matches the orientation of X not the
orientation of p.

quantile —

randg —

random —

raylcdf —

raylinv —

raylpdf —

raylrnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

raylstat —

skewness —

tcdf —

tinv —

tpdf —

trnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

tstat —

unidcdf —

unidinv —

21-233

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

unidpdf —

unidrnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

unidstat —

unifcdf —

unifinv —

unifpdf —

unifrnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

unifstat —

wblcdf —

wblinv —

wblpdf —

wblrnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.

• An input parameter is invalid for the distribution.

wblstat —

zscore —

21-234

Functions and Objects Supported for C and C++ Code Generation — Categorical List

String Functions in MATLAB

Function Remarks and Limitations

bin2dec • Does not match MATLAB when the input is empty.

bitmax —

blanks —

char —

deblank • Supports only inputs from the char class.

• Input values must be in the range 0-127.

dec2bin • If input d is double, d must be less than 2^52.

• If input d is single, d must be less than 2^23.

• Unless you specify input n to be constant and n is large enough that the
output has a fixed number of columns regardless of the input values,
this function requires variable-sizing support. Without variable-sizing
support, n must be at least 52 for double, 23 for single, 16 for char,
32 for int32, 16 for int16, and so on.

dec2hex • If input d is double, d must be less than 2^52.

• If input d is single, d must be less than 2^23.

• Unless you specify input n to be constant and n is large enough that the
output has a fixed number of columns regardless of the input values,
this function requires variable-sizing support. Without variable-sizing
support, n must be at least 13 for double, 6 for single, 4 for char, 8
for int32, 4 for int16, and so on.

hex2dec —

hex2num • For n = hex2num(S), size(S,2) <= length(num2hex(0))

ischar —

isletter • Input values from the char class must be in the range 0-127

isspace • Input values from the char class must be in the range 0–127.

isstrprop • Supports only inputs from char and integer classes.

• Input values must be in the range 0-127.

21-235

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

lower • Supports only char inputs.

• Input values must be in the range 0-127.

num2hex —

strcmp —

strcmpi • Input values from the char class must be in the range 0-127.

strfind • Does not support cell arrays.

• If pattern does not exist in str, returns zeros(1,0) not []. To check
for an empty return, use isempty.

• Inputs must be character row vectors.

strjust —

strncmp —

strncmpi • Input values from the char class must be in the range 0-127.

strrep • Does not support cell arrays.

• If oldSubstr does not exist in origStr, returns blanks(0). To check
for an empty return, use isempty.

• Inputs must be character row vectors.

strtok —

strtrim • Supports only inputs from the char class.

• Input values must be in the range 0-127.

upper • Supports only char inputs.

• Input values must be in the range 0-127.

21-236

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Structures in MATLAB

Function Remarks and Limitations

isfield • Does not support cell input for second argument

isstruct —

struct —

Trigonometry in MATLAB

Function Remarks and Limitations

acos • Generates an error during simulation and returns NaN in generated
code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing
in complex(x).

acosd —

acosh • Generates an error during simulation and returns NaN in generated
code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing
in complex(x).

acot —

acotd —

acoth —

acsc —

acscd —

acsch —

asec —

asecd —

asech —

21-237

21 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

asin • Generates an error during simulation and returns NaN in generated
code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing
in complex(x).

asind —

asinh —

atan —

atan2 —

atan2d —

atand —

atanh Generates an error during simulation and returns NaN in generated
code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing in
complex(x).

cos —

cosd —

cosh —

cot —

cotd —

coth —

csc —

cscd —

csch —

hypot —

sec —

secd —

sech —

sin —

sind —

21-238

Functions and Objects Supported for C and C++ Code Generation — Categorical List

Function Remarks and Limitations

sinh —

tan —

tand —

tanh —

21-239

21 Functions, Classes, and System Objects Supported for Code Generation

21-240

22

Code Generation for
Variable-Size Data

• “What Is Variable-Size Data?” on page 22-2

• “Variable-Size Data Definition for Code Generation” on page 22-3

• “Bounded Versus Unbounded Variable-Size Data” on page 22-4

• “Control Memory Allocation of Variable-Size Data” on page 22-5

• “Specify Variable-Size Data Without Dynamic Memory Allocation” on page
22-6

• “Variable-Size Data in Code Generation Reports” on page 22-10

• “Define Variable-Size Data for Code Generation” on page 22-12

• “C Code Interface for Arrays” on page 22-19

• “Diagnose and Fix Variable-Size Data Errors” on page 22-23

• “Incompatibilities with MATLAB in Variable-Size Support for Code
Generation” on page 22-27

• “Variable Sizing Restrictions for Code Generation of Toolbox Functions” on
page 22-36

22 Code Generation for Variable-Size Data

What Is Variable-Size Data?
Variable-size data is data whose size can change at run time. By contrast,
fixed-size data is data whose size is known and locked at compile time and,
therefore, cannot change at run time.

For example, in the following MATLAB function nway, B is a variable-size
array; its length is not known at compile time.

function B = nway(A,n)
% Compute average of every N elements of A and put them in B.
if ((mod(numel(A),n) == 0) && (n>=1 && n<=numel(A)))

B = ones(1,numel(A)/n);
k = 1;
for i = 1 : numel(A)/n

B(i) = mean(A(k + (0:n-1)));
k = k + n;

end
else

error('n <= 0 or does not divide number of elements evenly');
end

22-2

Variable-Size Data Definition for Code Generation

Variable-Size Data Definition for Code Generation
In the MATLAB language, data can vary in size. By contrast, the semantics
of generated code constrains the class, complexity, and shape of every
expression, variable, and structure field. Therefore, for code generation, you
must use each variable consistently. Each variable must:

• Be either complex or real (determined at first assignment)

• Have a consistent shape

For fixed-size data, the shape is the same as the size returned in MATLAB.
For example, if size(A) == [4 5], the shape of variable A is 4 x 5.
For variable-size data, the shape can be abstract. That is, one or more
dimensions can be unknown (such as 4x? or ?x?).

By default, the compiler detects code logic that attempts to change these fixed
attributes after initial assignments, and flags these occurrences as errors
during code generation. However, you can override this behavior by defining
variables or structure fields as variable-size data.

For more information, see “Bounded Versus Unbounded Variable-Size Data”
on page 22-4

22-3

22 Code Generation for Variable-Size Data

Bounded Versus Unbounded Variable-Size Data
You can generate code for bounded and unbounded variable-size data.
Bounded variable-size data has fixed upper bounds; this data can be allocated
statically on the stack or dynamically on the heap. Unbounded variable-size
data does not have fixed upper bounds; this data must be allocated on the
heap. If you use unbounded data, you must use dynamic memory allocation
so that the compiler:

• Does not check for upper bounds

• Allocates memory on the heap instead of the stack

You can control the memory allocation of variable-size data. For more
information, see “Control Memory Allocation of Variable-Size Data” on page
22-5.

22-4

Control Memory Allocation of Variable-Size Data

Control Memory Allocation of Variable-Size Data
Data whose size (in bytes) is greater than or equal to the dynamic memory
allocation threshold is allocated on the heap. The default dynamic memory
allocation threshold is 64 kilobytes. Data whose size is less than this
threshold is allocated on the stack.

Dynamic memory allocation is an expensive operation; the performance cost
might be too high for small data sets. If you use small variable-size data
sets or data that does not change size at run time, disable dynamic memory
allocation. See “Control Dynamic Memory Allocation” on page 9-85.

. You can control memory allocation for individual variables by specifying
upper bounds. See “Specifying Upper Bounds for Variable-Size Data” on page
22-6.

22-5

22 Code Generation for Variable-Size Data

Specify Variable-Size Data Without Dynamic Memory
Allocation

In this section...

“Fixing Upper Bounds Errors” on page 22-6

“Specifying Upper Bounds for Variable-Size Data” on page 22-6

Fixing Upper Bounds Errors
If MATLAB cannot determine or compute the upper bound, you must specify
an upper bound. See “Specifying Upper Bounds for Variable-Size Data” on
page 22-6 and “Diagnosing and Fixing Errors in Detecting Upper Bounds”
on page 22-25

Specifying Upper Bounds for Variable-Size Data

• “When to Specify Upper Bounds for Variable-Size Data” on page 22-6

• “Specifying Upper Bounds on the Command Line for Variable-Size Inputs”
on page 22-6

• “Specifying Unknown Upper Bounds for Variable-Size Inputs” on page 22-7

• “Specifying Upper Bounds for Local Variable-Size Data” on page 22-7

• “Using a Matrix Constructor with Nonconstant Dimensions” on page 22-8

When to Specify Upper Bounds for Variable-Size Data
When using static allocation on the stack during code generation, MATLAB
must be able to determine upper bounds for variable-size data. Specify the
upper bounds explicitly for variable-size data from external sources, such
as inputs and outputs.

Specifying Upper Bounds on the Command Line for
Variable-Size Inputs
Use the coder.typeof construct with the -args option on the codegen
command line (requires a MATLAB Coder license). For example:

22-6

Specify Variable-Size Data Without Dynamic Memory Allocation

codegen foo -args {coder.typeof(double(0),[3 100],1)}

This command specifies that the input to function foo is a matrix of real
doubles with two variable dimensions. The upper bound for the first
dimension is 3; the upper bound for the second dimension is 100. For a
detailed explanation of this syntax, see coder.typeof.

Specifying Unknown Upper Bounds for Variable-Size Inputs
If you use dynamic memory allocation, you can specify that you don’t know
the upper bounds of inputs. To specify an unknown upper bound, use the
infinity constant Inf in place of a numeric value. For example:

codegen foo -args {coder.typeof(double(0), [1 Inf])}

In this example, the input to function foo is a vector of real doubles without
an upper bound.

Specifying Upper Bounds for Local Variable-Size Data
When using static allocation, MATLAB uses a sophisticated analysis to
calculate the upper bounds of local data at compile time. However, when the
analysis fails to detect an upper bound or calculates an upper bound that is
not precise enough for your application, you need to specify upper bounds
explicitly for local variables.

You do not need to specify upper bounds when using dynamic allocation on
the heap. In this case, MATLAB assumes variable-size data is unbounded
and does not attempt to determine upper bounds.

Constraining the Value of a Variable That Specifies Dimensions of
Variable-Size Data. Use the assert function with relational operators to
constrain the value of variables that specify the dimensions of variable-size
data. For example:

function y = dim_need_bound(n) %#codegen
assert (n <= 5);
L= ones(n,n);
M = zeros(n,n);
M = [L; M];
y = M;

22-7

22 Code Generation for Variable-Size Data

This assert statement constrains input n to a maximum size of 5, defining L
and M as variable-sized matrices with upper bounds of 5 for each dimension.

Specifying the Upper Bounds for All Instances of a Local Variable.
Use the coder.varsize function to specify the upper bounds for all instances
of a local variable in a function. For example:

function Y = example_bounds1(u) %#codegen
Y = [1 2 3 4 5];
coder.varsize('Y', [1 10]);
if (u > 0)

Y = [Y Y+u];
else

Y = [Y Y*u];
end

The second argument of coder.varsize specifies the upper bound for each
instance of the variable specified in the first argument. In this example, the
argument [1 10] indicates that for every instance of Y:

• First dimension is fixed at size 1

• Second dimension can grow to an upper bound of 10

By default, coder.varsize assumes dimensions of 1 are fixed size. For more
information, see the coder.varsize reference page.

Using a Matrix Constructor with Nonconstant Dimensions
You can define a variable-size matrix by using a constructor with nonconstant
dimensions. For example:

function y = var_by_assign(u) %#codegen
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

If you are not using dynamic memory allocation, you must also add an assert
statement to provide upper bounds for the dimensions. For example:

22-8

Specify Variable-Size Data Without Dynamic Memory Allocation

function y = var_by_assign(u) %#codegen
assert (u < 20);
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

22-9

22 Code Generation for Variable-Size Data

Variable-Size Data in Code Generation Reports

In this section...

“What Reports Tell You About Size” on page 22-10

“How Size Appears in Code Generation Reports” on page 22-11

“How to Generate a Code Generation Report” on page 22-11

What Reports Tell You About Size
Code generation reports:

• Differentiate fixed-size from variable-size data

• Identify variable-size data with unknown upper bounds

• Identify variable-size data with fixed dimensions

If you define a variable-size array and then subsequently fix the dimensions
of this array in the code, the report appends * to the size of the variable. In
the generated C code, this variable appears as a variable-size array, but
the size of its dimensions does not change during execution.

• Provide guidance on how to fix size mismatch and upper bounds errors.

22-10

Variable-Size Data in Code Generation Reports

How Size Appears in Code Generation Reports

��	����	��������	�����
�������	�����	�����

��	
����	������	 �!
	����	�����	����

�"##	����	��������	�����
�����	�����	$	"##

%	����	�&��	'��	��
�����	'	��	��������	�����
���	�����(�����'	�����	���	���������

How to Generate a Code Generation Report
Add the -report option to your fiaccel command.

22-11

22 Code Generation for Variable-Size Data

Define Variable-Size Data for Code Generation

In this section...

“When to Define Variable-Size Data Explicitly” on page 22-12

“Using a Matrix Constructor with Nonconstant Dimensions” on page 22-13

“Inferring Variable Size from Multiple Assignments” on page 22-13

“Defining Variable-Size Data Explicitly Using coder.varsize” on page 22-15

When to Define Variable-Size Data Explicitly
For code generation, you must assign variables to have a specific class,
size, and complexity before using them in operations or returning them as
outputs. Generally, you cannot reassign variable properties after the initial
assignment. Therefore, attempts to grow a variable or structure field after
assigning it a fixed size might cause a compilation error. In these cases, you
must explicitly define the data as variable sized using one of these methods:

Method See

Assign the data from a variable-size
matrix constructor such as
• ones

• zeros

• repmat

“Using a Matrix Constructor with
Nonconstant Dimensions” on page
22-13

Assign multiple, constant sizes
to the same variable before using
(reading) the variable.

“Inferring Variable Size from
Multiple Assignments” on page
22-13

Define all instances of a variable to
be variable sized

“Defining Variable-Size Data
Explicitly Using coder.varsize” on
page 22-15

22-12

Define Variable-Size Data for Code Generation

Using a Matrix Constructor with Nonconstant
Dimensions
You can define a variable-size matrix by using a constructor with nonconstant
dimensions. For example:

function y = var_by_assign(u) %#codegen
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

If you are not using dynamic memory allocation, you must also add an assert
statement to provide upper bounds for the dimensions. For example:

function y = var_by_assign(u) %#codegen
assert (u < 20);
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

Inferring Variable Size from Multiple Assignments
You can define variable-size data by assigning multiple, constant sizes to the
same variable before you use (read) the variable in your code. When MATLAB
uses static allocation on the stack for code generation, it infers the upper
bounds from the largest size specified for each dimension. When you assign
the same size to a given dimension across all assignments, MATLAB assumes
that the dimension is fixed at that size. The assignments can specify different
shapes as well as sizes.

When dynamic memory allocation is used, MATLAB does not check for upper
bounds; it assumes variable-size data is unbounded.

Inferring Upper Bounds from Multiple Definitions with Different
Shapes

function y = var_by_multiassign(u) %#codegen

22-13

22 Code Generation for Variable-Size Data

if (u > 0)
y = ones(3,4,5);

else
y = zeros(3,1);

end

When static allocation is used, this function infers that y is a matrix with
three dimensions, where:

• First dimension is fixed at size 3

• Second dimension is variable with an upper bound of 4

• Third dimension is variable with an upper bound of 5

The code generation report represents the size of matrix y like this:

When dynamic allocation is used, the function analyzes the dimensions of
y differently:

• First dimension is fixed at size 3

• Second and third dimensions are unbounded

In this case, the code generation report represents the size of matrix y like
this:

22-14

Define Variable-Size Data for Code Generation

Defining Variable-Size Data Explicitly Using
coder.varsize
Use the function coder.varsize to define one or more variables or structure
fields as variable-size data. Optionally, you can also specify which dimensions
vary along with their upper bounds (see “Specifying Which Dimensions Vary”
on page 22-15). For example:

• Define B as a variable-size 2-by-2 matrix, where each dimension has an
upper bound of 64:

coder.varsize('B', [64 64]);

• Define B as a variable-size matrix:

coder.varsize('B');

When you supply only the first argument, coder.varsize assumes all
dimensions of B can vary and that the upper bound is size(B).

For more information, see the coder.varsize reference page.

Specifying Which Dimensions Vary
You can use the function coder.varsize to specify which dimensions vary.
For example, the following statement defines B as a row vector whose first
dimension is fixed at 2, but whose second dimension can grow to an upper
bound of 16:

coder.varsize('B', [2, 16], [0 1])

The third argument specifies which dimensions vary. This argument must be
a logical vector or a double vector containing only zeros and ones. Dimensions
that correspond to zeros or false have fixed size; dimensions that correspond
to ones or true vary in size. coder.varsize usually treats dimensions of size
1 as fixed (see “Defining Variable-Size Matrices with Singleton Dimensions”
on page 22-16).

For more information about the syntax, see the coder.varsize reference
page.

22-15

22 Code Generation for Variable-Size Data

Allowing a Variable to Grow After Defining Fixed Dimensions
Function var_by_if defines matrix Y with fixed 2-by-2 dimensions before first
use (where the statement Y = Y + u reads from Y). However, coder.varsize
defines Y as a variable-size matrix, allowing it to change size based on decision
logic in the else clause:

function Y = var_by_if(u) %#codegen
if (u > 0)

Y = zeros(2,2);
coder.varsize('Y');
if (u < 10)

Y = Y + u;
end

else
Y = zeros(5,5);

end

Without coder.varsize, MATLAB infers Y to be a fixed-size, 2-by-2 matrix
and generates a size mismatch error during code generation.

Defining Variable-Size Matrices with Singleton Dimensions
A singleton dimension is a dimension for which size(A,dim) = 1. Singleton
dimensions are fixed in size when:

• You specify a dimension with an upper bound of 1 in coder.varsize
expressions.

For example, in this function, Y behaves like a vector with one variable-size
dimension:

function Y = dim_singleton(u) %#codegen
Y = [1 2];
coder.varsize('Y', [1 10]);
if (u > 0)

Y = [Y 3];
else

Y = [Y u];
end

22-16

Define Variable-Size Data for Code Generation

• You initialize variable-size data with singleton dimensions using matrix
constructor expressions or matrix functions.

For example, in this function, both X and Y behave like vectors where only
their second dimensions are variable sized:

function [X,Y] = dim_singleton_vects(u) %#codegen
Y = ones(1,3);
X = [1 4];
coder.varsize('Y','X');
if (u > 0)

Y = [Y u];
else

X = [X u];
end

You can override this behavior by using coder.varsize to specify explicitly
that singleton dimensions vary. For example:

function Y = dim_singleton_vary(u) %#codegen
Y = [1 2];
coder.varsize('Y', [1 10], [1 1]);
if (u > 0)

Y = [Y Y+u];
else

Y = [Y Y*u];
end

In this example, the third argument of coder.varsize is a vector of ones,
indicating that each dimension of Y varies in size. For more information, see
the coder.varsize reference page.

Defining Variable-Size Structure Fields
To define structure fields as variable-size arrays, use colon (:) as the index
expression. The colon (:) indicates that all elements of the array are variable
sized. For example:

function y=struct_example() %#codegen

d = struct('values', zeros(1,0), 'color', 0);

22-17

22 Code Generation for Variable-Size Data

data = repmat(d, [3 3]);
coder.varsize('data(:).values');

for i = 1:numel(data)
data(i).color = rand-0.5;
data(i).values = 1:i;

end

y = 0;
for i = 1:numel(data)

if data(i).color > 0
y = y + sum(data(i).values);

end;
end

The expression coder.varsize('data(:).values') defines the field values
inside each element of matrix data to be variable sized.

Here are other examples:

• coder.varsize('data.A(:).B')

In this example, data is a scalar variable that contains matrix A. Each
element of matrix A contains a variable-size field B.

• coder.varsize('data(:).A(:).B')

This expression defines field B inside each element of matrix A inside each
element of matrix data to be variable sized.

22-18

C Code Interface for Arrays

C Code Interface for Arrays

In this section...

“C Code Interface for Statically Allocated Arrays” on page 22-19

“C Code Interface for Dynamically Allocated Arrays” on page 22-20

“Utility Functions for Creating emxArray Data Structures” on page 22-21

C Code Interface for Statically Allocated Arrays
In generated code, MATLAB contains two pieces of information about
statically allocated arrays: the maximum size of the array and its actual size.

For example, consider the MATLAB function uniquetol:

function B = uniquetol(A, tol) %#codegen
A = sort(A);
coder.varsize('B');
B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

Generate code for uniquetol specifying that input A is a variable-size real
double vector whose first dimension is fixed at 1 and second dimension can
vary up to 100 elements.

codegen -config:lib -report uniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

In the generated code, the function declaration is:

extern void uniquetol(const double A_data[100], const int A_size[2],...
double tol, emxArray_real_T *B);

22-19

22 Code Generation for Variable-Size Data

There are two pieces of information about A:

• double A_data[100]: the maximum size of input A (where 100 is the
maximum size specified using coder.typeof).

• int A_size[2]: the actual size of the input.

C Code Interface for Dynamically Allocated Arrays
In generated code, MATLAB represents dynamically allocated data as a
structure type called emxArray. An embeddable version of the MATLAB
mxArray, the emxArray is a family of data types, specialized for all base types.

emxArray Structure Definition

typedef struct emxArray_<baseTypedef>
{

<baseType> *data;
int *size;
int allocatedSize;
int numDimensions;
boolean_T canFreeData;

} emxArray_<baseTypedef>;

where baseTypedef is the predefined type in rtwtypes.h corresponding to
baseType. For example, here’s the definition for an emxArray of base type
double with unknown upper bounds:

typedef struct emxArray_real_T
{

double *data;
int *size;
int allocatedSize;
int numDimensions;
boolean_T canFreeData;

} emxArray_real_T;

Note that the predefined type corresponding to double is real_T. For more
information on the correspondence between built-in data types and predefined
types in rtwtypes.h, see “How MATLAB Coder Infers C/C++ Data Types”.

22-20

C Code Interface for Arrays

To define two variables, in1 and in2, of this type, use this statement:

emxArray_real_T *in1, *in2;

C Code Interface for Structure Fields

Field Description

*data Pointer to data of type <baseType>

*size Pointer to first element of size vector. Length
of the vector equals the number of dimensions.

allocatedSize Number of elements currently allocated for the
array. If the size changes, MATLAB reallocates
memory based on the new size.

numDimensions Number of dimensions of the size vector, that
is, the number of dimensions you can access
without crossing into unallocated or unused
memory

canFreeData Boolean flag indicating how to deallocate
memory:
• true – MATLAB deallocates memory
automatically

• false – Calling program determines when
to deallocate memory

Utility Functions for Creating emxArray Data
Structures
When you generate code that uses variable-size data, the code generation
software exports a set of utility functions that you can use to create and
interact with emxArrays in your generated code. To call these functions in
your main C function, include the generated header file. For example, when
you generate code for function foo, include foo_emxAPI.h in your main C
function. .

22-21

22 Code Generation for Variable-Size Data

Function Arguments Description

emxArray_<baseType>
*emxCreateWrapper_<baseType> (...)

*data
num_rows
num_cols

Creates a new
2-dimensional
emxArray, but does not
allocate it on the heap.
Instead uses memory
provided by the user
and sets canFreeData
to false so it does not
inadvertently free user
memory, such as the
stack.

emxArray_<baseType>
*emxCreateWrapperND_<baseType>
(...)

*data
numDimensions
*size

Same as
emxCreateWrapper,
except it creates a
new N-dimensional
emxArray.

emxArray_<baseType>
*emxCreate_<baseType> (...)

num_rows
num_cols

Creates a new
two-dimensional
emxArray on the heap,
initialized to zero. All
data elements have the
data type specified by
baseTypeName.

emxArray_<baseType>
*emxCreateND_<baseType> (...)

numDimensions
*size

Same as emxCreate,
except it creates a
new N-dimensional
emxArray on the heap.

emxArray_<baseType>
*emxDestroyArray_<baseType> (...)

*emxArray Frees dynamic
memory allocated
by *emxCreate
and *emxCreateND
functions.

22-22

Diagnose and Fix Variable-Size Data Errors

Diagnose and Fix Variable-Size Data Errors

In this section...

“Diagnosing and Fixing Size Mismatch Errors” on page 22-23

“Diagnosing and Fixing Errors in Detecting Upper Bounds” on page 22-25

Diagnosing and Fixing Size Mismatch Errors
Check your code for these issues:

Assigning Variable-Size Matrices to Fixed-Size Matrices

You cannot assign variable-size matrices to fixed-size matrices in generated
code. Consider this example:

function Y = example_mismatch1(n) %#codegen
assert(n<10);
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)

A = B;
end
Y = A;

Compiling this function produces this error:

??? Dimension 1 is fixed on the left-hand side
but varies on the right ...

There are several ways to fix this error:

• Allow matrix A to grow by adding the coder.varsize construct:

function Y = example_mismatch1_fix1(n) %#codegen
coder.varsize('A');
assert(n<10);
B = ones(n,n);
A = magic(3);

22-23

22 Code Generation for Variable-Size Data

A(1) = mean(A(:));
if (n == 3)

A = B;
end
Y = A;

• Explicitly restrict the size of matrix B to 3-by-3 by modifying the assert
statement:

function Y = example_mismatch1_fix2(n) %#codegen
coder.varsize('A');
assert(n==3)
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)

A = B;
end
Y = A;

• Use explicit indexing to make B the same size as A:

function Y = example_mismatch1_fix3(n) %#codegen
assert(n<10);
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)

A = B(1:3, 1:3);
end
Y = A;

Empty Matrix Reshaped to Match Variable-Size Specification

If you assign an empty matrix [] to variable-size data, MATLAB might
silently reshape the data in generated code to match a coder.varsize
specification. For example:

function Y = test(u) %#codegen
Y = [];
coder.varsize(`Y', [1 10]);

22-24

Diagnose and Fix Variable-Size Data Errors

If u < 0
Y = [Y u];

end

In this example, coder.varsize defines Y as a column vector of up to 10
elements, so its first dimension is fixed at size 1. The statement Y = []
designates the first dimension of Y as 0, creating a mismatch. The right
hand side of the assignment is an empty matrix and the left hand side is a
variable-size vector. In this case, MATLAB reshapes the empty matrix Y =
[] in generated code to Y = zeros(1,0) so it matches the coder.varsize
specification.

Performing Binary Operations on Fixed and Variable-Size Operands

You cannot perform binary operations on operands of different sizes.
Operands have different sizes if one has fixed dimensions and the other has
variable dimensions. For example:

function z = mismatch_operands(n) %#codegen
assert(n>=3 && n<10);
x = ones(n,n);
y = magic(3);
z = x + y;

When you compile this function, you get an error because y has fixed
dimensions (3 x 3), but x has variable dimensions. Fix this problem by using
explicit indexing to make x the same size as y:

function z = mismatch_operands_fix(n) %#codegen
assert(n>=3 && n<10);
x = ones(n,n);
y = magic(3);
z = x(1:3,1:3) + y;

Diagnosing and Fixing Errors in Detecting Upper
Bounds
Check your code for these issues:

22-25

22 Code Generation for Variable-Size Data

Using Nonconstant Dimensions in a Matrix Constructor

You can define variable-size data by assigning a variable to a matrix with
nonconstant dimensions. For example:

function y = dims_vary(u) %#codegen
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

However, compiling this function generates an error because you did not
specify an upper bound for u.

There are several ways to fix the problem:

• Enable dynamic memory allocation and recompile. During code generation,
MATLAB does not check for upper bounds when it uses dynamic memory
allocation for variable-size data.

• If you do not want to use dynamic memory allocation, add an assert
statement before the first use of u:

function y = dims_vary_fix(u) %#codegen
assert (u < 20);
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

22-26

Incompatibilities with MATLAB® in Variable-Size Support for Code Generation

Incompatibilities with MATLAB in Variable-Size Support
for Code Generation

In this section...

“Incompatibility with MATLAB for Scalar Expansion” on page 22-27

“Incompatibility with MATLAB in Determining Size of Variable-Size N-D
Arrays” on page 22-29

“Incompatibility with MATLAB in Determining Size of Empty Arrays” on
page 22-30

“Incompatibility with MATLAB in Determining Class of Empty Arrays” on
page 22-31

“Incompatibility with MATLAB in Vector-Vector Indexing” on page 22-32

“Incompatibility with MATLAB in Matrix Indexing Operations for Code
Generation” on page 22-33

“Incompatibility with MATLAB in Concatenating Variable-Size Matrices”
on page 22-34

“Dynamic Memory Allocation Not Supported for MATLAB Function Blocks”
on page 22-35

Incompatibility with MATLAB for Scalar Expansion
Scalar expansion is a method of converting scalar data to match the
dimensions of vector or matrix data. Except for some matrix operators,
MATLAB arithmetic operators work on corresponding elements of arrays with
equal dimensions. For vectors and rectangular arrays, both operands must be
the same size unless one is a scalar. If one operand is a scalar and the other is
not, MATLAB applies the scalar to every element of the other operand—this
property is known as scalar expansion.

During code generation, the standard MATLAB scalar expansion rules apply
except when operating on two variable-size expressions. In this case, both
operands must be the same size. The generated code does not perform scalar
expansion even if one of the variable-size expressions turns out to be scalar at
run time. Instead, it generates a size mismatch error at run time for MEX

22-27

22 Code Generation for Variable-Size Data

functions. Run-time error checking does not occur for non-MEX builds; the
generated code will have unspecified behavior.

For example, in the following function, z is scalar for the switch statement
case 0 and case 1. MATLAB applies scalar expansion when evaluating
y(:) = z; for these two cases.

function y = scalar_exp_test_err1(u) %#codegen
y = ones(3);
switch u

case 0
z = 0;

case 1
z = 1;

otherwise
z = zeros(3);

end
y(:) = z;

When you generate code for this function, the code generation software
determines that z is variable size with an upper bound of 3.

22-28

Incompatibilities with MATLAB® in Variable-Size Support for Code Generation

If you run the MEX function with u equal to zero or one, even though z is
scalar at run time, the generated code does not perform scalar expansion
and a run-time error occurs.

scalar_exp_test_err1_mex(0)
Sizes mismatch: 9 ~= 1.

Error in scalar_exp_test_err1 (line 11)
y(:) = z;

Workaround
Use indexing to force z to be a scalar value:

function y = scalar_exp_test_err1(u) %#codegen
y = ones(3);
switch u

case 0
z = 0;

case 1
z = 1;

otherwise
z = zeros(3);

end
y(:) = z(1);

Incompatibility with MATLAB in Determining Size of
Variable-Size N-D Arrays
For variable-size N-D arrays, the size function can return a different result
in generated code than in MATLAB. In generated code, size(A) returns a
fixed-length output because it does not drop trailing singleton dimensions
of variable-size N-D arrays. By contrast, size(A) in MATLAB returns a
variable-length output because it drops trailing singleton dimensions.

For example, if the shape of array A is :?x:?x:? and size(A,3)==1, size(A)
returns:

• Three-element vector in generated code

22-29

22 Code Generation for Variable-Size Data

• Two-element vector in MATLAB code

Workarounds
If your application requires generated code to return the same size of
variable-size N-D arrays as MATLAB code, consider one of these workarounds:

• Use the two-argument form of size.

For example, size(A,n) returns the same answer in generated code and
MATLAB code.

• Rewrite size(A):

B = size(A);
X = B(1:ndims(A));

This version returns X with a variable-length output. However, you cannot
pass a variable-size X to matrix constructors such as zeros that require a
fixed-size argument.

Incompatibility with MATLAB in Determining Size of
Empty Arrays
The size of an empty array in generated code might be different from its size
in MATLAB source code. The size might be 1x0 or 0x1 in generated code,
but 0x0 in MATLAB. Therefore, you should not write code that relies on the
specific size of empty matrices.

For example, consider the following code:

function y = foo(n) %#codegen
x = [];
i=0;

while (i<10)
x = [5, x];
i=i+1;

end
if n > 0

x = [];
end
y=size(x);

22-30

Incompatibilities with MATLAB® in Variable-Size Support for Code Generation

end

Concatenation requires its operands to match on the size of the dimension
that is not being concatenated. In the preceding concatenation the scalar
value has size 1x1 and x has size 0x0. To support this use case, the code
generation software determines the size for x as [1 x :?]. Because there
is another assignment x = [] after the concatenation, the size of x in the
generated code is 1x0 instead of 0x0.

Workaround
If your application checks whether a matrix is empty, use one of these
workarounds:

• Rewrite your code to use the isempty function instead of the size function.

• Instead of using x=[] to create empty arrays, create empty arrays of a
specific size using zeros. For example:

function y = test_empty(n) %#codegen
x = zeros(1,0);
i=0;

while (i<10)
x = [5, x];
i=i+1;

end
if n > 0

x = zeros(1,0);
end
y=size(x);
end

Incompatibility with MATLAB in Determining Class of
Empty Arrays
The class of an empty array in generated code can be different from its class
in MATLAB source code. Therefore, do not write code that relies on the class
of empty matrices.

For example, consider the following code:

22-31

22 Code Generation for Variable-Size Data

function y = fun(n)
x = [];
if n > 1

x = ['a', x];
end
y=class(x);

end

fun(0) returns double in MATLAB, but char in the generated code. When
the statement n > 1 is false, MATLAB does not execute x = ['a', x].
The class of x is double, the class of the empty array. However, the code
generation software considers all execution paths. It determines that based
on the statement x = ['a', x], the class of x is char.

Workaround
Instead of using x=[] to create an empty array, create an empty array of
a specific class. For example, use blanks(0) to create an empty array of
characters.

function y = fun(n)
x = blanks(0);
if n > 1

x = ['a', x];
end
y=class(x);

end

Incompatibility with MATLAB in Vector-Vector
Indexing
In vector-vector indexing, you use one vector as an index into another vector.
When either vector is variable sized, you might get a run-time error during
code generation. Consider the index expression A(B). The general rule for
indexing is that size(A(B)) == size(B). However, when both A and B are
vectors, MATLAB applies a special rule: use the orientation of A as the
orientation of the output. For example, if size(A) == [1 5] and size(B) ==
[3 1], then size(A(B)) == [1 3].

In this situation, if the code generation software detects that both A and B are
vectors at compile time, it applies the special rule and gives the same result

22-32

Incompatibilities with MATLAB® in Variable-Size Support for Code Generation

as MATLAB. However, if either A or B is a variable-size matrix (has shape
?x?) at compile time, the code generation software applies only the general
indexing rule. Then, if both A and B become vectors at run time, the code
generation software reports a run-time error when you run the MEX function.
Run-time error checking does not occur for non-MEX builds; the generated
code will have unspecified behavior. It is best practice to generate and test a
MEX function before generating C code.

Workaround
Force your data to be a vector by using the colon operator for indexing:
A(B(:)). For example, suppose your code intentionally toggles between
vectors and regular matrices at run time. You can do an explicit check for
vector-vector indexing:

...
if isvector(A) && isvector(B)

C = A(:);
D = C(B(:));

else
D = A(B);

end
...

The indexing in the first branch specifies that C and B(:) are compile-time
vectors. As a result, the code generation software applies the standard
vector-vector indexing rule.

Incompatibility with MATLAB in Matrix Indexing
Operations for Code Generation
The following limitation applies to matrix indexing operations for code
generation:

• Initialization of the following style:

for i = 1:10
M(i) = 5;

end

22-33

22 Code Generation for Variable-Size Data

In this case, the size of M changes as the loop is executed. Code generation
does not support increasing the size of an array over time.

For code generation, preallocate M as highlighted in the following code.

M=zeros(1,10);
for i = 1:10

M(i) = 5;
end

The following limitation applies to matrix indexing operations for code
generation when dynamic memory allocation is disabled:

• M(i:j) where i and j change in a loop

During code generation, memory is not dynamically allocated for the size of
the expressions that change as the program executes. To implement this
behavior, use for-loops as shown in the following example:

...
M = ones(10,10);
for i=1:10
for j = i:10
M(i,j) = 2 * M(i,j);

end
end
...

Note The matrix M must be defined before entering the loop, as shown in
the highlighted code.

Incompatibility with MATLAB in Concatenating
Variable-Size Matrices
For code generation, when you concatenate variable-sized arrays, the
dimensions that are not being concatenated must match exactly.

22-34

Incompatibilities with MATLAB® in Variable-Size Support for Code Generation

Dynamic Memory Allocation Not Supported for
MATLAB Function Blocks
You cannot use dynamic memory allocation for variable-size data in MATLAB
Function blocks. Use bounded instead of unbounded variable-size data.

22-35

22 Code Generation for Variable-Size Data

Variable Sizing Restrictions for Code Generation of
Toolbox Functions

In this section...

“Common Restrictions” on page 22-36

“Toolbox Functions with Variable Sizing Restrictions” on page 22-37

Common Restrictions
The following common restrictions apply to multiple toolbox functions, but
only for code generation. To determine which of these restrictions apply to
specific library functions, see the table in “Toolbox Functions with Variable
Sizing Restrictions” on page 22-37.

Variable-length vector restriction
Inputs to the library function must be variable-length vectors or fixed-size
vectors. A variable-length vector is a variable-size array that has the shape
1x:n or :nx1 (one dimension is variable sized and the other is fixed at size 1).
Other shapes are not permitted, even if they are vectors at run time.

Automatic dimension restriction
When the function selects the working dimension automatically, it bases the
selection on the upper bounds for the dimension sizes. In the case of the sum
function, sum(X) selects its working dimension automatically, while sum(X,
dim) uses dim as the explicit working dimension.

For example, if X is a variable-size matrix with dimensions 1x:3x:5, sum(x)
behaves like sum(X,2) in generated code. In MATLAB, it behaves like
sum(X,2) provided size(X,2) is not 1. In MATLAB, when size(X,2) is 1,
sum(X) behaves like sum(X,3). Consequently, you get a run-time error if an
automatically selected working dimension assumes a length of 1 at run time.

To avoid the issue, specify the intended working dimension explicitly as
a constant value.

22-36

Variable Sizing Restrictions for Code Generation of Toolbox Functions

Array-to-vector restriction
The function issues an error when a variable-size array that is not a
variable-length vector assumes the shape of a vector at run time. To avoid
the issue, specify the input explicitly as a variable-length vector instead of
a variable-size array.

Array-to-scalar restriction
The function issues an error if a variable-size array assumes a scalar value at
run time. To avoid this issue, specify scalars as fixed size.

Toolbox Functions with Variable Sizing Restrictions
The following restrictions apply to specific toolbox functions, but only for
code generation.

Function Restrictions with Variable-Size Data

all
• See “Automatic dimension restriction” on page
22-36.

• An error occurs if you pass the first argument a
variable-size matrix that is 0-by-0 at run time.

any
• See “Automatic dimension restriction” on page
22-36.

• An error occurs if you pass the first argument a
variable-size matrix that is 0-by-0 at run time.

bsxfun
• Dimensions expand only where one input array
or the other has a fixed length of 1.

cat
• Dimension argument must be a constant.

• An error occurs if variable-size inputs are
empty at run time.

22-37

22 Code Generation for Variable-Size Data

Function Restrictions with Variable-Size Data

conv
• See “Variable-length vector restriction” on page
22-36.

• Input vectors must have the same orientation,
either both row vectors or both column vectors.

cov
• For cov(X), see“Array-to-vector restriction” on
page 22-37.

cross
• Variable-size array inputs that become vectors
at run time must have the same orientation.

deconv
• For both arguments, see“Variable-length vector
restriction” on page 22-36.

detrend
• For first argument for row vectors only, see
“Array-to-vector restriction” on page 22-37 .

diag
• See “Array-to-vector restriction” on page 22-37 .

diff
• See “Automatic dimension restriction” on page
22-36.

• Length of the working dimension must be
greater than the difference order input when
the input is variable sized. For example, if the
input is a variable-size matrix that is 3-by-5 at
run time, diff(x,2,1) works but diff(x,5,1)
generates a run-time error.

fft
• See “Automatic dimension restriction” on page
22-36.

22-38

Variable Sizing Restrictions for Code Generation of Toolbox Functions

Function Restrictions with Variable-Size Data

filter
• For first and second arguments, see
“Variable-length vector restriction” on page
22-36.

• See “Automatic dimension restriction” on page
22-36.

hist
• For second argument, see “Variable-length
vector restriction” on page 22-36.

• For second input argument, see“Array-to-scalar
restriction” on page 22-37.

histc
• See “Automatic dimension restriction” on page
22-36.

ifft
• See “Automatic dimension restriction” on page
22-36.

ind2sub
• First input (the size vector input) must be fixed
size.

interp1
• For the Y input and xi input, see“Array-to-vector
restriction” on page 22-37.

• Y input can become a column vector dynamically.

• A run-time error occurs if Y input is not a
variable-length vector and becomes a row vector
at run time.

ipermute
• Order input must be fixed size.

issorted
• For optional rows input, see “Variable-length
vector restriction” on page 22-36.

22-39

22 Code Generation for Variable-Size Data

Function Restrictions with Variable-Size Data

magic
• Argument must be a constant.

• Output can be fixed-size matrices only.

max
• See “Automatic dimension restriction” on page
22-36.

mean
• See “Automatic dimension restriction” on page
22-36.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

median
• See “Automatic dimension restriction” on page
22-36.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

min
• See “Automatic dimension restriction” on page
22-36.

mode
• See “Automatic dimension restriction” on page
22-36.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

22-40

Variable Sizing Restrictions for Code Generation of Toolbox Functions

Function Restrictions with Variable-Size Data

mtimes
• When an input is variable-size, MATLAB
determines whether to generate code for a
general matrix*matrix multiplication or a
scalar*matrix multiplication, based on whether
one of the arguments is a fixed-size scalar. If
neither argument is a fixed-size scalar, the
inner dimensions of the two arguments must
agree even if a variable-size matrix input is a
scalar at run time.

nchoosek
• The second input, k, must be a fixed-size scalar.

• The second input, k, must be a constant
for static allocation. If you enable dynamic
allocation, the second input can be a variable.

• You cannot create a variable-size array by
passing in a variable, k, unless you enable
dynamic allocation.

permute
• Order input must be fixed-size.

planerot
• Input must be a fixed-size, two-element column
vector. It cannot be a variable-size array that
takes on the size 2-by-1 at run time.

poly
• See “Variable-length vector restriction” on page
22-36.

polyfit
• For first and second arguments, see
“Variable-length vector restriction” on page
22-36.

22-41

22 Code Generation for Variable-Size Data

Function Restrictions with Variable-Size Data

prod
• See “Automatic dimension restriction” on page
22-36.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

rand
• For an upper-bounded variable N, rand(1,N)
produces a variable-length vector of 1x:M where
M is the upper bound on N.

• For an upper-bounded variable N, rand([1,N])
may produce a variable-length vector of :1x:M
where M is the upper bound on N.

randi
• For an upper-bounded variable N, randn(1,N)
produces a variable-length vector of 1x:M where
M is the upper bound on N.

• For an upper-bounded variable N, randn([1,N])
may produce a variable-length vector of :1x:M
where M is the upper bound on N.

randn
• For an upper-bounded variable N, randn(1,N)
produces a variable-length vector of 1x:M where
M is the upper bound on N.

• For an upper-bounded variable N, randn([1,N])
may produce a variable-length vector of :1x:M
where M is the upper bound on N.

reshape
• When the input is a variable-size empty array,
the maximum dimension size of the output
array (also empty) cannot be larger than that
of the input.

roots
• See “Variable-length vector restriction” on page
22-36.

22-42

Variable Sizing Restrictions for Code Generation of Toolbox Functions

Function Restrictions with Variable-Size Data

shiftdim
• If you do not supply the second argument, the
number of shifts is determined at compilation
time by the upper bounds of the dimension
sizes. Consequently, at run time the number of
shifts is constant.

• An error occurs if the dimension that is shifted
to the first dimension has length 1 at run
time. To avoid the error, supply the number of
shifts as the second input argument (must be a
constant).

• First input argument must have the same
number of dimensions when you supply a
positive number of shifts.

std
• See “Automatic dimension restriction” on page
22-36.

• An error occurs if you pass a variable-size
matrix with 0-by-0 dimensions at run time.

sub2ind
• First input (the size vector input) must be fixed
size.

sum
• See “Automatic dimension restriction” on page
22-36.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

trapz
• See “Automatic dimension restriction” on page
22-36.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

22-43

22 Code Generation for Variable-Size Data

Function Restrictions with Variable-Size Data

typecast
• See “Variable-length vector restriction” on page
22-36 on first argument.

var
• See “Automatic dimension restriction” on page
22-36.

• An error occurs if you pass a variable-size
matrix with 0-by-0 dimensions at run time.

22-44

23

Primary Functions

23 Primary Functions

Primary Function Input Specification

In this section...

“Why You Must Specify Input Properties” on page 23-2

“Properties to Specify” on page 23-2

“Rules for Specifying Properties of Primary Inputs” on page 23-4

“Methods for Defining Properties of Primary Inputs” on page 23-5

“Define Input Properties by Example at the Command Line” on page 23-5

“Specify Constant Inputs at the Command Line” on page 23-8

“Specify Variable-Size Inputs at the Command Line” on page 23-10

Why You Must Specify Input Properties
Fixed-Point Designer must determine the properties of all variables in the
MATLAB files at compile time. To infer variable properties in MATLAB
files, Fixed-Point Designer must be able to identify the properties of the
inputs to the primary function, also known as the top-level or entry-point
function. Therefore, if your primary function has inputs, you must specify the
properties of these inputs, to Fixed-Point Designer. If your primary function
has no input parameters, Fixed-Point Designer can compile your MATLAB
file without modification. You do not need to specify properties of inputs to
local functions or external functions called by the primary function.

Properties to Specify
If your primary function has inputs, you must specify the following properties
for each input.

For... Specify properties...

Class Size Complexity numerictype fimath

Fixed-point
inputs

23-2

Primary Function Input Specification

For... Specify properties...

Each field in
a structure
input

Specify properties for each field according to its class

When a primary input is a structure, the code generation software treats each
field as a separate input. Therefore, you must specify properties for allfields of a
primary structure input in the order that they appear in the structure definition:

• For each field of input structures, specify class, size, and complexity.

• For each field that is fixed-point class, also specify numerictype, and fimath.

Other inputs

Default Property Values
Fixed-Point Designer assigns the following default values for properties of
primary function inputs.

Property Default

class double

size scalar

complexity real

numerictype No default

fimath MATLAB default fimath object

Supported Classes
The following table presents the class names supported by Fixed-Point
Designer.

Class Name Description

logical Logical array of true and false values

char Character array

int8 8-bit signed integer array

23-3

23 Primary Functions

Class Name Description

uint8 8-bit unsigned integer array

int16 16-bit signed integer array

uint16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

int64 64-bit signed integer array

uint64 64–bit unsigned integer array

single Single-precision floating-point or
fixed-point number array

double Double-precision floating-point or
fixed-point number array

struct Structure array

embedded.fi Fixed-point number array

Rules for Specifying Properties of Primary Inputs
When specifying the properties of primary inputs, follow these rules.

• You must specify the class of all primary inputs. If you do not specify the
size or complexity of primary inputs, they default to real scalars.

• For each primary function input whose class is fixed point (fi), you must
specify the input numerictype and fimath properties.

• For each primary function input whose class is struct, you must specify
the properties of each of its fields in the order that they appear in the
structure definition.

23-4

Primary Function Input Specification

Methods for Defining Properties of Primary Inputs
Method Advantages Disadvantages

“Define Input
Properties by
Example at the
Command Line” on
page 23-5

Note If you define
input properties
programmatically
in the MATLAB file,
you cannot use this
method

• Easy to use

• Does not alter original MATLAB
code

• Designed for prototyping a
function that has a small
number of primary inputs

• Must be specified at the
command line every time you
invoke fiaccel (unless you use
a script)

• Not efficient for specifying
memory-intensive inputs such
as large structures and arrays

“Define Input
Properties
Programmatically
in the MATLAB File”

• Integrated with MATLAB code;
no need to redefine properties
each time you invoke

• Provides documentation of
property specifications in the
MATLAB code

• Efficient for specifying
memory-intensive inputs
such as large structures

• Uses complex syntax

• project files do not currently
recognize properties defined
programmatically. If you are
using a project, you must
reenter the input types in the
project.

Define Input Properties by Example at the Command
Line

• “Command Line Option -args” on page 23-6

• “Rules for Using the -args Option” on page 23-6

• “Specifying Properties of Primary Inputs by Example” on page 23-6

23-5

23 Primary Functions

• “Specifying Properties of Primary Fixed-Point Inputs by Example” on page
23-7

Command Line Option -args
The fiaccel function provides a command-line option -args for specifying
the properties of primary (entry-point) function inputs as a cell array of
example values. The cell array can be a variable or literal array of constant
values. Using this option, you specify the properties of inputs at the same
time as you generate code for the MATLAB function with fiaccel.

Rules for Using the -args Option
When using the -args command-line option to define properties by example,
follow these rules:

• The cell array of sample values must contain the same number of elements
as primary function inputs.

• The order of elements in the cell array must correspond to the order in
which inputs appear in the primary function signature — for example, the
first element in the cell array defines the properties of the first primary
function input.

Note If you specify an empty cell array with the -args option, fiaccel
interprets this to mean that the function takes no inputs; a compile-time error
occurs if the function does have inputs.

Specifying Properties of Primary Inputs by Example
Consider a function that adds its two inputs:

function y = emcf(u,v) %#codegen
% The directive %#codegen indicates that you
% intend to generate code for this algorithm
y = u + v;

The following examples show how to specify different properties of the
primary inputs u and v by example at the command line:

23-6

Primary Function Input Specification

• Use a literal cell array of constants to specify that both inputs are real,
scalar, fixed-point values:

fiaccel -o emcfx emcf ...
-args {fi(0,1,16,15),fi(0,1,16,15)}

• Use a literal cell array of constants to specify that input u is an unsigned
16-bit, 1-by-4 vector and input v is a scalar, fixed-point value:

fiaccel -o emcfx emcf ...
-args {zeros(1,4,'uint16'),fi(0,1,16,15)}

• Assign sample values to a cell array variable to specify that both inputs are
real, unsigned 8-bit integer vectors:

a = fi([1;2;3;4],0,8,0)
b = fi([5;6;7;8],0,8,0)
ex = {a,b}
fiaccel -o emcfx emcf -args ex

Specifying Properties of Primary Fixed-Point Inputs by
Example
Consider a function that calculates the square root of a fixed-point number:

function y = sqrtfi(x) %#codegen
y = sqrt(x);

To specify the properties of the primary fixed-point input x by example on the
MATLAB command line, follow these steps:

1 Define the numerictype properties for x, as in this example:

T = numerictype('WordLength',32,...

'FractionLength',23,'Signed',true);

2 Define the fimath properties for x, as in this example:

F = fimath('SumMode','SpecifyPrecision',...

'SumWordLength',32,'SumFractionLength',23,...

'ProductMode','SpecifyPrecision', ...

ProductWordLength',32,'ProductFractionLength',23);

23-7

23 Primary Functions

3 Create a fixed-point variable with the numerictype and fimath properties
you just defined, as in this example:

myeg = { fi(4.0,T,F) };

4 Compile the function sqrtfi using the fiaccel command, passing the
variable myeg as the argument to the-args option, as in this example:

fiaccel sqrtfi -args myeg;

Specify Constant Inputs at the Command Line
If you know that your primary inputs will not change at run time, you can
reduce overhead in the generated code by specifying that the primary inputs
are constant values. Constant inputs are commonly used for flags that control
how an algorithm executes and values that specify the sizes or types of data.

To specify that inputs are constants, use the -args command-line option with
a coder.Constant object. To specify that an input is a constant with the size,
class, complexity, and value of constant_input, use the following syntax:

-args {coder.Constant(constant_input)}

Calling Functions with Constant Inputs
fiaccel compiles constant function inputs into the generated code. As
a result, the MEX function signature differs from the MATLAB function
signature. At run time you supply the constant argument to the MATLAB
function, but not to the MEX function.

For example, consider the following function identity which copies its input
to its output:

function y = identity(u) %#codegen
y = u;

To generate a MEX function identity_mex with a constant input, type the
following command at the MATLAB prompt:

fiaccel -o identity_mex identity...
-args {coder.Constant(fi(0.1,1,16,15))}

To run the MATLAB function, supply the constant argument as follows:

23-8

Primary Function Input Specification

identity(fi(0.1,1,16,15))

You get the following result:

ans =

0.1000

Now, try running the MEX function with this command:

identity_mex

You should get the same answer.

Specifying a Structure as a Constant Input
Suppose you define a structure tmp in the MATLAB workspace to specify the
dimensions of a matrix, as follows:

tmp = struct('rows', 2, 'cols', 3);

The following MATLAB function rowcol accepts a structure input p to define
matrix y:

function y = rowcol(u,p) %#codegen
y = fi(zeros(p.rows,p.cols),1,16,15) + u;

The following example shows how to specify that primary input u is a double
scalar variable and primary input p is a constant structure:

fiaccel rowcol ...
-args {fi(0,1,16,15),coder.Constant(tmp)}

To run this code, use

u = fi(0.5,1,16,15)
y_m = rowcol(u,tmp)

y_mex = rowcol_mex(u)

23-9

23 Primary Functions

Specify Variable-Size Inputs at the Command Line
Variable-size data is data whose size might change at run time. MATLAB
supports bounded and unbounded variable-size data for code generation.
Bounded variable-size data has fixed upper bounds. This data can be allocated
statically on the stack or dynamically on the heap. Unbounded variable-size
data does not have fixed upper bounds. This data must be allocated on the
heap. You can define inputs to have one or more variable-size dimensions —
and specify their upper bounds — using the -args option and coder.typeof
function:

-args {coder.typeof(example_value, size_vector, variable_dims}

Specifies a variable-size input with:

• Same class and complexity as example_value

• Same size and upper bounds as size_vector

• Variable dimensions specified by variable_dims

When you enable dynamic memory allocation, you can specify Inf in the size
vector for dimensions with unknown upper bounds at compile time.

When variable_dims is a scalar, it is applied to all the dimensions, with the
following exceptions:

• If the dimension is 1 or 0, which are fixed.

• If the dimension is unbounded, which is always variable size.

Specifying a Variable-Size Vector Input

1 Write a function that computes the sum of every n elements of a vector A
and stores them in a vector B:

function B = nway(A,n) %#codegen
% Compute sum of every N elements of A and put them in B.

coder.extrinsic('error');
Tb = numerictype(1,32,24);
if ((mod(numel(A),n) == 0) && ...

23-10

Primary Function Input Specification

(n>=1 && n<=numel(A)))
B = fi(zeros(1,numel(A)/n),Tb);
k = 1;
for i = 1 : numel(A)/n

B(i) = sum(A(k + (0:n-1)));
k = k + n;

end
else

B = fi(zeros(1,0),Tb);
error('n<=0 or does not divide evenly');

end

2 Specify the first input A as a fi object. Its first dimension stays fixed in
size and its second dimension can grow to an upper bound of 100. Specify
the second input n as a double scalar.

fiaccel nway ...
-args {coder.typeof(fi(0,1,16,15,'SumMode','KeepLSB'),[1 100],1),0}...
-report

3 As an alternative, assign the coder.typeof expression to a MATLAB
variable, then pass the variable as an argument to -args:

vareg = coder.typeof(fi(0,1,16,15,'SumMode','KeepLSB'),[1 100],1)
fiaccel nway -args {vareg, double(0)} -report

23-11

23 Primary Functions

Define Input Properties Programmatically in the MATLAB
File

With MATLAB Coder, you use the MATLAB assert function to define
properties of primary function inputs directly in your MATLAB file.

In this section...

“How to Use assert with MATLAB® Coder™” on page 23-12

“Rules for Using assert Function” on page 23-19

“Specifying General Properties of Primary Inputs” on page 23-20

“Specifying Properties of Primary Fixed-Point Inputs” on page 23-20

“Specifying Class and Size of Scalar Structure” on page 23-21

“Specifying Class and Size of Structure Array” on page 23-22

How to Use assert with MATLAB Coder
Use the assert function to invoke standard MATLAB functions for specifying
the class, size, and complexity of primary function inputs.

You must use one of the following methods when specifying input properties
using the assert function. Use the exact syntax that is provided; do not
modify it.

• “Specify Any Class” on page 23-13

• “Specify fi Class” on page 23-13

• “Specify Structure Class” on page 23-14

• “Specify Fixed Size” on page 23-14

• “Specify Scalar Size” on page 23-15

• “Specify Upper Bounds for Variable-Size Inputs” on page 23-15

• “Specify Inputs with Fixed- and Variable-Size Dimensions” on page 23-15

• “Specify Size of Individual Dimensions” on page 23-16

• “Specify Real Input” on page 23-17

23-12

Define Input Properties Programmatically in the MATLAB® File

• “Specify Complex Input” on page 23-17

• “Specify numerictype of Fixed-Point Input” on page 23-17

• “Specify fimath of Fixed-Point Input” on page 23-18

• “Specify Multiple Properties of Input” on page 23-18

Specify Any Class

assert (isa (param, 'class_name'))

Sets the input parameter param to the MATLAB class class_name. For
example, to set the class of input U to a 32-bit signed integer, call:

...
assert(isa(U,'int32'));
...

If you set the class of an input parameter to fi, you must also set its
numerictype, see “Specify numerictype of Fixed-Point Input” on page 23-17.
You can also set its fimath properties, see “Specify fimath of Fixed-Point
Input” on page 23-18. If you do not set the fimath properties, codegen uses
the MATLAB default fimath value.

If you set the class of an input parameter to struct, you must specify the
properties of all fields in the order that they appear in the structure definition.

Specify fi Class

assert (isfi (param))
assert (isa (param, 'embedded.fi'))

Sets the input parameter param to the MATLAB class fi (fixed-point numeric
object). For example, to set the class of input U to fi, call:

...
assert(isfi(U));
...

or

23-13

23 Primary Functions

...
assert(isa(U,'embedded.fi'));
...

If you set the class of an input parameter to fi, you must also set its
numerictype, see “Specify numerictype of Fixed-Point Input” on page 23-17.
You can also set its fimath properties, see “Specify fimath of Fixed-Point
Input” on page 23-18. If you do not set the fimath properties, codegen uses
the MATLAB default fimath value.

Specify Structure Class

assert (isstruct (param))
assert (isa (param, 'struct'))

Sets the input parameter param to the MATLAB class struct (structure). For
example, to set the class of input U to a struct, call:

...
assert(isstruct(U));
...

or

...
assert(isa(U, 'struct'));
...

If you set the class of an input parameter to struct, you must specify the
properties of all fields in the order they appear in the structure definition.

Specify Fixed Size

assert (all (size (param) == [dims]))

Sets the input parameter param to the size specified by dimensions dims. For
example, to set the size of input U to a 3-by-2 matrix, call:

...
assert(all(size(U)== [3 2]));
...

23-14

Define Input Properties Programmatically in the MATLAB® File

Specify Scalar Size

assert (isscalar (param))
assert (all (size (param) == [1]))

Sets the size of input parameter param to scalar. To set the size of input
U to scalar, call:

...
assert(isscalar(U));
...

or

...
assert(all(size(U)== [1]));
...

Specify Upper Bounds for Variable-Size Inputs

assert (all(size(param)<=[N0 N1 ...]));
assert (all(size(param)<[N0 N1 ...]));

Sets the upper-bound size of each dimension of input parameter param. To set
the upper-bound size of input U to be less than or equal to a 3-by-2 matrix, call:

assert(all(size(U)<=[3 2]));

Note You can also specify upper bounds for variable-size inputs using
coder.varsize.

Specify Inputs with Fixed- and Variable-Size Dimensions

assert (all(size(param)>=[M0 M1 ...]));
assert (all(size(param)<=[N0 N1 ...]));

When you use assert(all(size(param)>=[M0 M1 ...])) to specify the
lower-bound size of each dimension of an input parameter:

23-15

23 Primary Functions

• You must also specify an upper-bound size for each dimension of the input
parameter.

• For each dimension, k, the lower-bound Mk must be less than or equal to
the upper-bound Nk.

• To specify a fixed-size dimension, set the lower and upper bound of a
dimension to the same value.

• Bounds must be non-negative.

To fix the size of the first dimension of input U to 3 and set the second
dimension as variable size with upper-bound of 2, call:

assert(all(size(U)>=[3 0]));
assert(all(size(U)<=[3 2]));

Specify Size of Individual Dimensions

assert (size(param, k)==Nk);
assert (size(param, k)<=Nk);
assert (size(param, k)<Nk);

You can specify individual dimensions as well as specifying all dimensions
simultaneously or instead of specifying all dimensions simultaneously. The
following rules apply:

• You must specify the size of each dimension at least once.

• The last dimension specification takes precedence over earlier
specifications.

Sets the upper-bound size of dimension k of input parameter param. To set
the upper-bound size of the first dimension of input U to 3, call:

assert(size(U,1)<=3)

To fix the size of the second dimension of input U to 2, call:

assert(size(U,2)==2)

23-16

Define Input Properties Programmatically in the MATLAB® File

Specify Real Input

assert (isreal (param))

Specifies that the input parameter param is real. To specify that input U is
real, call:

...
assert(isreal(U));
...

Specify Complex Input

assert (~isreal (param))

Specifies that the input parameter param is complex. To specify that input U
is complex, call:

...
assert(~isreal(U));
...

Specify numerictype of Fixed-Point Input

assert (isequal (numerictype (fiparam), T))

Sets the numerictype properties of fi input parameter fiparam to the
numerictype object T. For example, to specify the numerictype property of
fixed-point input U as a signed numerictype object T with 32-bit word length
and 30-bit fraction length, use the following code:

%#codegen
...
% Define the numerictype object.
T = numerictype(1, 32, 30);

% Set the numerictype property of input U to T.
assert(isequal(numerictype(U),T));
...

23-17

23 Primary Functions

Specify fimath of Fixed-Point Input

assert (isequal (fimath (fiparam), F))

Sets the fimath properties of fi input parameter fiparam to the fimath
object F. For example, to specify the fimath property of fixed-point input U so
that it saturates on integer overflow, use the following code:

%#codegen
...
% Define the fimath object.
F = fimath('OverflowMode','saturate');

% Set the fimath property of input U to F.
assert(isequal(fimath(U),F));
...

If you do not specify the fimath properties using assert, codegen uses the
MATLAB default fimath value.

Specify Multiple Properties of Input

assert (function1 (params) &&
function2 (params) &&
function3 (params) && ...)

Specifies the class, size, and complexity of one or more inputs using a single
assert function call. For example, the following code specifies that input U is
a double, complex, 3-by-3 matrix, and input V is a 16-bit unsigned integer:

%#codegen
...
assert(isa(U,'double') &&

~isreal(U) &&
all(size(U) == [3 3]) &&
isa(V,'uint16'));

...

23-18

Define Input Properties Programmatically in the MATLAB® File

Rules for Using assert Function
When using the assert function to specify the properties of primary function
inputs, follow these rules:

• Call assert functions at the beginning of the primary function, before
control-flow operations such as if statements or subroutine calls.

• Do not call assert functions inside conditional constructs, such as if, for,
while, and switch statements.

• Use the assert function with MATLAB Coder only for specifying properties
of primary function inputs before converting your MATLAB code to C/C++
code.

• If you set the class of an input parameter to fi, you must also set its
numerictype. See “Specify numerictype of Fixed-Point Input” on page
23-17. You can also set its fimath properties. See “Specify fimath of
Fixed-Point Input” on page 23-18. If you do not set the fimath properties,
codegen uses the MATLAB default fimath value.

• If you set the class of an input parameter to struct, you must specify the
class, size, and complexity of all fields in the order that they appear in the
structure definition.

• When you use assert(all(size(param)>=[M0 M1 ...])) to specify the
lower-bound size of each dimension of an input parameter:

- You must also specify an upper-bound size for each dimension of the
input parameter.

- For each dimension, k, the lower-bound Mk must be less than or equal to
the upper-bound Nk.

- To specify a fixed-size dimension, set the lower and upper bound of a
dimension to the same value.

- Bounds must be non-negative.

• If you specify individual dimensions, the following rules apply:

- You must specify the size of each dimension at least once.

- The last dimension specification takes precedence over earlier
specifications.

23-19

23 Primary Functions

Specifying General Properties of Primary Inputs
In the following code excerpt, a primary MATLAB function mcspecgram
takes two inputs: pennywhistle and win. The code specifies the following
properties for these inputs:

Input Property Value

class int16

size 220500-by-1 vector

pennywhistle

complexity real (by default)

class double

size 1024-by-1 vector

win

complexity real (by default)

%#codegen
function y = mcspecgram(pennywhistle,win)
nx = 220500;
nfft = 1024;
assert(isa(pennywhistle,'int16'));
assert(all(size(pennywhistle) == [nx 1]));
assert(isa(win, 'double'));
assert(all(size(win) == [nfft 1]));
...

Alternatively, you can combine property specifications for one or more inputs
inside assert commands:

%#codegen

function y = mcspecgram(pennywhistle,win)

nx = 220500;

nfft = 1024;

assert(isa(pennywhistle,'int16') && all(size(pennywhistle) == [nx 1]));

assert(isa(win, 'double') && all(size(win) == [nfft 1]));

...

Specifying Properties of Primary Fixed-Point Inputs
To specify fixed-point inputs, you must install Fixed-Point Designer software.

23-20

Define Input Properties Programmatically in the MATLAB® File

In the following example, the primary MATLAB function mcsqrtfi takes one
fixed-point input x. The code specifies the following properties for this input.

Property Value

class fi

numerictype numerictype object T, as specified in the
primary function

fimath fimath object F, as specified in the primary
function

size scalar

complexity real (by default)

function y = mcsqrtfi(x) %#codegen
T = numerictype('WordLength',32,'FractionLength',23,...

'Signed',true);
F = fimath('SumMode','SpecifyPrecision',...

'SumWordLength',32,'SumFractionLength',23,...
'ProductMode','SpecifyPrecision',...
'ProductWordLength',32,'ProductFractionLength',23);

assert(isfi(x));
assert(isequal(numerictype(x),T));
assert(isequal(fimath(x),F));

y = sqrt(x);

Specifying Class and Size of Scalar Structure
Assume you have defined S as the following scalar MATLAB structure:

S = struct('r',double(1),'i',int8(4));

Here is code that specifies the class and size of S and its fields when passed as
an input to your MATLAB function:

function y = fcn(S) %#codegen

% Specify the class of the input as struct.
assert(isstruct(S));

23-21

23 Primary Functions

% Specify the class and size of the fields r and i
% in the order in which you defined them.
assert(isa(S.r,'double'));
assert(isa(S.i,'int8');
...

In most cases, when you don’t explicitly specify values for properties,
MATLAB Coder uses defaults — except for structure fields. The only way
to name a field in a structure is to set at least one of its properties. As a
minimum, you must specify the class of a structure field

Specifying Class and Size of Structure Array
For structure arrays, you must choose a representative element of the array
for specifying the properties of each field. For example, assume you have
defined S as the following 2-by-2 array of MATLAB structures:

S = struct('r',{double(1), double(2)},'i',{int8(4), int8(5)});

The following code specifies the class and size of each field of structure input S
using the first element of the array:

%#codegen
function y = fcn(S)

% Specify the class of the input S as struct.
assert(isstruct(S));

% Specify the size of the fields r and i
% based on the first element of the array.
assert(all(size(S) == [2 2]));
assert(isa(S(1).r,'double'));
assert(isa(S(1).i,'int8'));

The only way to name a field in a structure is to set at least one of its
properties. As a minimum, you must specify the class of all fields.

23-22

24

System Objects Supported
for Code Generation

24 System Objects Supported for Code Generation

Code Generation for System Objects
You can generate C and C++ code for a subset of System objects provided
by the following toolboxes.

Toolbox Name See

Communications System Toolbox “Code Generation with System
Objects and Functions” in the
Communications System Toolbox
documentation.

Computer Vision System Toolbox “System Objects in MATLAB Code
Generation” in the Computer Vision
System Toolbox documentation.

DSP System Toolbox “System Objects in MATLAB Code
Generation” in the DSP System
Toolbox documentation.

Image Acquisition Toolbox • imaq.VideoDevice.

• “Code Generation with
VideoDevice System Object”
in the Image Acquisition Toolbox
documentation.

Phased Array System Toolbox “Code Generation” in the
Phased Array System Toolbox
documentation.

To use these System objects, you need to install the requisite toolbox. For a
list of System objects supported for C and C++ code generation, see “Functions
and Objects Supported for C and C++ Code Generation — Alphabetical List”
on page 21-2 and “Functions and Objects Supported for C and C++ Code
Generation — Categorical List” on page 21-135.

System objects are MATLAB object-oriented implementations of algorithms.
They extend MATLAB by enabling you to model dynamic systems represented
by time-varying algorithms. System objects are well integrated into the
MATLAB language, regardless of whether you are writing simple functions,
working interactively in the command window, or creating large applications.

24-2

Code Generation for System Objects

In contrast to MATLAB functions, System objects automatically manage
state information, data indexing, and buffering, which is particularly useful
for iterative computations or stream data processing. This enables efficient
processing of long data sets. For general information about MATLAB objects,
see “Begin Using Object-Oriented Programming”.

24-3

24 System Objects Supported for Code Generation

24-4

25

System Objects

• “Create System Objects” on page 25-2

• “Set Up System Objects” on page 25-4

• “Process Data Using System Objects” on page 25-7

• “Tuning System object Properties in MATLAB” on page 25-10

• “Find Help and Examples for System Objects” on page 25-12

• “Use System Objects in MATLAB Code Generation” on page 25-13

25 System Objects

Create System Objects

In this section...

“Create a System object” on page 25-2

“Change a System object Property” on page 25-3

“Check if a System object Property Has Changed” on page 25-3

“Run a System object” on page 25-3

“Display Available System Objects” on page 25-3

A System object is a MATLAB object-oriented implementation of an algorithm.
System objects extend MATLAB by enabling you to model dynamic systems
represented by time-varying algorithms. System objects are well integrated
into the MATLAB language, regardless of whether you are writing simple
functions, working interactively in the command window, or creating large
applications.

In contrast to MATLAB functions, System objects automatically manage
state information, data indexing, and buffering, which is particularly useful
for iterative computations or stream data processing. This enables efficient
processing of long data sets.

Note System objects predefined in the software do not support sparse
matrices. System objects you define support sparse matrices (see).

Create a System object
To use System objects, you must first create an object. For example,

Hram = hdlram % Create default hdlram object, H

25-2

Create System Objects

Change a System object Property
In general, you should set the object properties before you use the step
method to run data through the object. To change the value of a property,
use this format,

H.RAMType = 'Dual Port' % Set the RAMType property

The property values of the hdlram object, H, are displayed.

Check if a System object Property Has Changed
To check if a tunable property has changed since step was last called, use
this syntax:

flag = isChangedProperty(H,'Normalize')

flag is true if the Normalize property of object H has changed.

Run a System object
To execute a System object, use the step method.

Y = step(H,X); % Process input data, X

The output data from the step method is stored in Y, which, in this case, is
port input and output data.

Display Available System Objects
To see a list of all the System objects for a particular package, type . To
display help for specific objects, properties, or methods, see “Find Help and
Examples for System Objects” on page 25-12 .

25-3

25 System Objects

Set Up System Objects

In this section...

“Create a New System object” on page 25-4

“Retrieve System object Property Values” on page 25-4

“Set System object Property Values” on page 25-4

Create a New System object
You must create a System object before using it. You can create the object at
the MATLAB command line or within a program file. Your command-line code
and programs can pass MATLAB variables into and out of System objects.

For general information about working with MATLAB objects, see
“Object-Oriented Programming” in the MATLAB documentation.

Retrieve System object Property Values
System objects have properties that configure the object. You use the default
values or set each property to a specific value. The combination of a property
and its value is referred to as a Name-Value pair. You can display the list of
relevant property names and their current values for an object by using the
object handle only, <handleName>. Some properties are relevant only when
you set another property or properties to particular values. If a property
is not relevant, it does not display.

To display a particular property value, use the handle of the created object
followed by the property name: <handle>.<Name>.

Example
This example retrieves and displays the RAMType property value for the
previously created hdlram object:

H.RAMType

Set System object Property Values
You set the property values of a System object to model the desired algorithm.

25-4

Set Up System Objects

Note When you use Name-Value pair syntax, the object sets property values
in the order you list them. If you specify a dependent property value before its
parent property, an error or warning may occur.

Set Properties for a New System object
To set a property when you first create the object, use Name-Value pair
syntax. For properties that allow a specific set of string values, you can use
tab completion to select from a list of valid values.

H1 = hdlram('RAMType','Single port')

where

• H1 is the handle to the object

•

• hdlram is the object name.

• CoefficientsSource is the property name.

RAMType is the property name.

• `Single port' is the property value.

Set Properties for an Existing System object
To set a property after you have created an object, use either of the following
syntaxes:

H1.RAMType = 'Dual port'

or

set(H1,'RAMType','Dual port')

Use Value-Only Inputs
Some object properties have no useful default values or must be specified
every time you create an object. For these properties, you can specify only
the value without specifying the corresponding property name. If you use

25-5

25 System Objects

value-only inputs, those inputs must be in a specific order, which is the
same as the order in which the properties are displayed. Refer to the object
reference page for details.

25-6

Process Data Using System Objects

Process Data Using System Objects

In this section...

“What are System object Methods?” on page 25-7

“The Step Method” on page 25-7

“Common Methods” on page 25-7

“Advantages of Using Methods” on page 25-9

What are System object Methods?
After you create a System object, you use various object methods to process
data or obtain information from or about the object. All methods that are
applicable to an object are described in the reference pages for that object.
System object method names begin with a lowercase letter and class and
property names begin with an uppercase letter. The syntax for using methods
is <method>(<handle>), such as step(H).

The Step Method
The step method is the key System object method. You use step to process
data using the algorithm defined by that object. The step method performs
other important tasks related to data processing, such as initialization and
handling object states. Every System object has its own customized step
method, which is described in detail on the step reference page for that object.
For more information about the step method and other available methods, see
the descriptions in “Common Methods” on page 25-7.

Common Methods
All System objects support the following methods, each of which is described
in a method reference page associated with the particular object. In cases
where a method is not applicable to a particular object, calling that method
has no effect on the object.

25-7

25 System Objects

Method Description

step Processes data using the algorithm defined by the
object. As part of this processing, it initializes needed
resources, returns outputs, and updates the object
states. After you call the step method, you cannot
change any input specifications (i.e., dimensions, data
type, complexity). During execution, you can change
only tunable properties. The step method returns
regular MATLAB variables.

Example: Y = step(H,X)

release Releases any special resources allocated by the object,
such as file handles and device drivers, and unlocks
the object. For System objects, use the release
method instead of a destructor. See “Understand
System object Modes” on page 25-10.

clone Creates another object with the same property values

isLocked Returns a logical value indicating whether the object
is locked. See “Understand System object Modes” on
page 25-10.

reset Resets the internal states of the object to the initial
values for that object

isDone Applies to source objects only. Returns a logical value
indicating whether the step method has reached
the end of the data file. If a particular object does
not have end-of-data capability, this method value
returns false.

isChangedProperty Returns true if the specified tunable property value
has changed since the last call to step.Example: flag
= isChangedProperty(obj,'propertyName')

info Returns a structure containing characteristic
information about the object. The fields of this
structure vary depending on the object. If a particular
object does not have characteristic information, the
structure is empty.

25-8

Process Data Using System Objects

Method Description

getNumInputs Returns the number of inputs (excluding the object
itself) expected by the step method. This number
varies for an object depending on whether any
properties enable additional inputs.

getNumOutputs Returns the number of outputs expected from the step
method. This number varies for an object depending
on whether any properties enable additional outputs.

getDiscreteState Returns the discrete states of the object in a structure.
If the object is unlocked (when the object is first
created and before you have run the step method
on it or after you have released the object), the
states are empty. If the object has no discrete states,
getDiscreteState returns an empty structure.

Advantages of Using Methods
System objects use a minimum of two commands to process data—a
constructor to create the object and the step method to run data through the
object. This separation of declaration from execution lets you create multiple,
persistent, reusable objects, each with different settings. Using this approach
avoids repeated input validation and verification, allows for easy use within a
programming loop, and improves overall performance. In contrast, MATLAB
functions must validate parameters every time you call the function.

These advantages make System objects particularly well suited for processing
streaming data, where segments of a continuous data stream are processed
iteratively. This ability to process streaming data provides the advantage of
not having to hold large amounts of data in memory. Use of streaming data
also allows you to use simplified programs that use loops efficiently.

25-9

25 System Objects

Tuning System object Properties in MATLAB

In this section...

“Understand System object Modes” on page 25-10

“Change Properties While Running System Objects” on page 25-11

“Change System object Input Complexity or Dimensions” on page 25-11

Understand System object Modes
System objects are in one of two modes: unlocked or locked. After you create
an object and until it starts processing data, that object is in unlocked mode.
You can change any of its properties as desired.

The object initializes and locks when it begins processing data. The typical
way in which an object becomes locked is when the step method is called on
that object. To determine if an object is locked, use the isLocked method. To
unlock an object, use the release method. When the object is locked, you
cannot change any of the following:

• Number of inputs or outputs

• Data type

• Dimensions of inputs or tunable properties, except for System objects
that support variable-size data. Variable-size data is data whose size can
change at run time. By contrast, fixed-size data is data whose size is known
and locked at compile time and, therefore, cannot change at run time.

• Value of any nontunable property

Several System objects do not allow changing the complexity of inputs from
real to complex. You can, however, change the input complexity from complex
to real without unlocking the object.

These restrictions allow the object to maintain states and allocate memory
appropriately.

25-10

Tuning System object™ Properties in MATLAB®

Change Properties While Running System Objects
When an object is in locked mode, it is processing data and you can only
change the values of properties that are tunable. To determine if a particular
System object property is tunable, see the corresponding reference page or
use a command of this form:

help hdlram.RAMType

where

• hdlram is the object name.

• RAMType is the property name.

Note Unless otherwise specified, System object properties are not tunable.

For information on locked and unlocked modes, see “Understand System
object Modes” on page 25-10.

Change System object Input Complexity or
Dimensions
During simulations you can change an input’s complexity from complex to
real, but not from real to complex. You cannot change any input complexity
during code generation.

For objects that do not support variable-size input, if you change the input
dimensions while the object is in locked mode, the object produces a warning
and unlocks. The object then reinitializes the next time you call the step
method. See the object’s reference page for more information. You can change
the value of a tunable property and the input size without a warning or error
being produced. For all other changes at runtime, an error occurs.

25-11

25 System Objects

Find Help and Examples for System Objects
Refer to the following resources for more information about System objects.

• Object help – help hdlram

• Documentation pages for object – doc hdlram

• Property help – help hdlram.RAMType

• Fixed-point property help – hdlram.helpFixedPoint, where
helpFixedPoint is the standard way to get fixed point property information
for any System object.

• Method help – help hdlram.step, where step is the method name.

To view examples, go to the Help contents for the associated product. Under
Examples, select MATLAB Examples.

25-12

Use System Objects in MATLAB® Code Generation

Use System Objects in MATLAB Code Generation

In this section...

“Considerations for Using System Objects in Generated Code” on page 25-13

“Use System Objects with codegen” on page 25-17

“Use System Objects with the MATLAB Function Block” on page 25-17

“Use System Objects with MATLAB® Compiler™” on page 25-18

Considerations for Using System Objects in
Generated Code
You can generate C/C++ code from System objects using MATLAB Coder
product. Using this product with System objects, you can generate efficient
and compact code for deployment in desktop and embedded systems and
accelerate fixed-point algorithms. System objects also support code generation
using the MATLAB Function block in Simulink and the MATLAB Coder
codegen function.

For general information on generating code, see

• MATLAB Coder product

• Simulink Coder product

• Embedded Coder® product

The following example, which uses System objects, shows the key factors to
consider, such as passing property values and using extrinsic functions, when
you make MATLAB code suitable for code generation.

function lmssystemidentification
% LMSSYSTEMIDENTIFICATION System identification using
% LMS adaptive filter
%#codegen

% Declare System objects as persistent.

persistent hlms hfilt;

25-13

25 System Objects

% Initialize persistent System objects only once
% Do this with 'if isempty(persistent variable).'
% This condition will be false after the first time.

if isempty(hlms)

% Create LMS adaptive filter used for system
% identification. Pass property value arguments
% as constructor arguments. Property values must
% be constants during compile time.

hlms = dsp.LMSFilter(11, 'StepSize', 0.01);

% Create system (an FIR filter) to be identified.

hfilt = dsp.DigitalFilter(...
'TransferFunction', 'FIR (all zeros)', ...
'Numerator', fir1(10, .25));

end

x = randn(1000,1); % Input signal
d = step(hfilt, x) + 0.01*randn(1000,1); % Desired signal
[~,~,w] = step(hlms, x, d); % Filter weights

% Declare functions called into MATLAB that do not generate
% code as extrinsic.

coder.extrinsic('stem');

stem([get(hfilt, 'Numerator').', w]);
end

% To compile this function use codegen lmssystemidentification.
% This produces a mex file with the same name in the current
% directory.

For a detailed code generation example, see “Generate Code for MATLAB
Handle Classes and System Objects” in the MATLAB Coder product
documentation.

25-14

Use System Objects in MATLAB® Code Generation

The following usage rules and limitations apply to using System objects in
code generated from MATLAB.

Object Construction and Initialization

• If objects are stored in persistent variables, initialize System objects once by
embedding the object handles in an if statement with a call to isempty().

• Set arguments to System object constructors as compile-time constants.

• You cannot initialize System objects properties with other MATLAB class
objects as default values in code generation. You must initialize these
properties in the constructor.

Inputs and Outputs

• The data type of the inputs should not change.

• If you want the size of inputs to change, verify that variable-size is enabled.
Code generation support for variable-size data also requires that the Enable
variable sizing option is enabled, which is the default in MATLAB.

Note Variable-size properties in MATLAB Function block in
Simulink are not supported. System objects predefined in the
software do not support variable-size if their data exceeds the
DynamicMemoryAllocationThreshold value.

• Do not set System objects to become outputs from the MATLAB Function
block.

• Do not use the Save and Restore Simulation State as SimState option for
any System object in a MATLAB Function block.

• Do not pass a System object as an example input argument to a function
being compiled with codegen.

• Do not pass a System object to functions declared as extrinsic (functions
called in interpreted mode) using the coder.extrinsic function. System
objects returned from extrinsic functions and scope System objects that
automatically become extrinsic can be used as inputs to another extrinsic
function, but do not generate code.

25-15

25 System Objects

Tunable and Nontunable Properties

• The value assigned to a nontunable property must be a constant and there
can be at most one assignment to that property (including the assignment
in the constructor).

• For most System objects, the only time you can set their nontunable
properties during code generation is when you construct the objects.

- For System objects that are predefined in the software, you can set their
tunable properties at construction time or using dot notation after the
object is locked.

- For System objects that you define, you can change their tunable
properties at construction time or using dot notation during code
generation.

• Objects cannot be used as default values for properties.

• In MATLAB simulations, default values are shared across all instances of
an object. Two instances of a class can access the same default value if that
property has not been overwritten by either instance.

Cell Arrays and Global Variables

• Do not use cell arrays.

• Global variables are not supported. To avoid syncing global variables
between a MEX file and the workspace, use a coder configuration object.
For example:

f = coder.MEXConfig;
f.GlobalSyncMethod='NoSync'

Then, include '-config f' in your codegen command.

Methods

• Code generation support is available only for these System object methods:

- get

- getNumInputs

- getNumOutputs

25-16

Use System Objects in MATLAB® Code Generation

- isDone (for sources only)

- release

- reset

- set (for tunable properties)

- step

• Code generation support for using dot notation depends on whether the
System object is predefined in the software or is one that you defined.

- For System objects that are predefined in the software, you cannot use
dot notation to call methods.

- For System objects that you define, you can use dot notation or function
call notation, with the System object as first argument, to call methods.

Use System Objects with codegen
You can include System objects in MATLAB code in the same way you
include any other elements. You can then compile a MEX file from your
MATLAB code by using the codegen command, which is available if you have
a MATLAB Coder license. This compilation process, which involves a number
of optimizations, is useful for accelerating simulations. See “Getting Started
with MATLAB Coder” and “MATLAB Classes” for more information.

Use System Objects with the MATLAB Function Block
Using the MATLAB Function block, you can include a MATLAB language
function in a Simulink model. This model can then generate embeddable code.
You can include any System object in the MATLAB Function block. System
objects provide higher-level algorithms for code generation than do most
associated blocks. For more information, see “What Is a MATLAB Function
Block?” in the Simulink documentation.

25-17

25 System Objects

Use System Objects with MATLAB Compiler

Note MATLAB Compiler software supports System objects for use inside
MATLAB functions. The compiler product does not support System objects
for use in MATLAB scripts.

25-18

Fixed-Point Designer for
Simulink Models

26

Getting Started

• “Product Description” on page 26-2

• “What You Need to Get Started” on page 26-3

• “Physical Quantities and Measurement Scales” on page 26-5

• “Why Use Fixed-Point Hardware?” on page 26-14

• “Why Use the Fixed-Point Designer Software?” on page 26-16

• “Developing and Testing Fixed-Point Systems” on page 26-17

• “Supported Data Types” on page 26-20

• “Configure Blocks with Fixed-Point Output” on page 26-21

• “Configure Blocks with Fixed-Point Parameters” on page 26-30

• “Pass Fixed-Point Data Between Simulink Models and MATLAB” on page
26-34

• “Cast from Doubles to Fixed Point” on page 26-39

26 Getting Started

Product Description
Design and simulate fixed-point systems

Fixed-Point Designer enables the fixed-point capabilities of the Simulink
product family, letting you use those products to design, simulate, and
implement fixed-point control and signal processing algorithms.

With Fixed-Point Designer, you specify fixed-point data attributes, including
word length and scaling for signals and parameters, in your model. You
can perform bit-true simulations to observe the effects of limited range and
precision on designs built with Simulink, Stateflow, DSP System Toolbox, and
other Simulink products. Automated fixed-point advisors guide you through
the steps of converting floating-point models to fixed point. Additional tools
analyze your model or use simulation results to recommend data types and
scaling.

Fixed-Point Designer supports C, HDL, and PLC code generation with
Simulink code-generation products.

Key Features

• Fixed-point modeling and simulation in Simulink, Stateflow, and other
Simulink products

• Bit-true, fixed-point arithmetic for code generated by Simulink C, HDL,
and PLC code generation products

• Automated advisors that convert models from floating- to fixed-point data
types

• Analysis tools for deriving ranges for all signals based on design information

• Data type tools that use range data to recommend word length and scaling

• Control of fixed-point data type and of scaling from 1- to 128-bit word sizes

• Customizable fixed-point operators and math functions for embedded
code generation

26-2

What You Need to Get Started

What You Need to Get Started

In this section...

“Installation” on page 26-3

“Sharing Fixed-Point Models” on page 26-3

Installation
To determine if the Fixed-Point Designer software is installed on your system,
type

ver

at the MATLAB command line. When you enter this command, the MATLAB
Command Window displays information about the version of MATLAB
software you are running, including a list of installed add-on products and
their version numbers. Check the list to see if the Fixed-Point Designer
software appears.

For information about installing this product, refer to the installation
documentation.

If you experience installation difficulties and have Web access, look for
the installation and license information at the MathWorks Web site
(http://www.mathworks.com/support).

Sharing Fixed-Point Models
You can edit a model containing fixed-point blocks without the Fixed-Point
Designer software. However, you must have a Fixed-Point Designer software
license to

• Update a Simulink diagram (Ctrl+D) containing fixed-point data types

• Run a model containing fixed-point data types

• Generate code from a model containing fixed-point data types

• Log the minimum and maximum values produced by a simulation

• Automatically scale the output of a model

26-3

http://www.mathworks.com/support

26 Getting Started

If you do not have the Fixed-Point Designer software, you can work with a
model containing Simulink blocks with fixed-point settings as follows:

1 In the Model Hierarchy pane, select the root model.

2 From the Simulink model Analysis menu, select Fixed-Point Tool.

In the Fixed-Point Tool:

• Set the Fixed-point instrumentation mode parameter to Force Off.

• Set the Data type override parameter to Double or Single.

• Set the Data type override applies to parameter to All numeric
types.

3 If you use fi objects or embedded numeric data types in your model,
set the fipref DataTypeOverride property to TrueDoubles and the
DataTypeOverride property to All numeric types.

At the MATLAB command line, enter:

p = fipref('DataTypeOverride', 'TrueDoubles', ...
'DataTypeOverrideAppliesTo', 'AllNumericTypes');

Note If you use fi objects or embedded numeric data types in your model or
workspace, you might introduce fixed-point data types into your model. You
can set fipref to prevent the checkout of a Fixed-Point Designer license.

26-4

Physical Quantities and Measurement Scales

Physical Quantities and Measurement Scales

In this section...

“Introduction” on page 26-5

“Selecting a Measurement Scale” on page 26-6

“Select a Measurement Scale for Temperature” on page 26-8

Introduction
The decision to use fixed-point hardware is simply a choice to represent
numbers in a particular form. This representation often offers advantages
in terms of the power consumption, size, memory usage, speed, and cost of
the final product.

A measurement of a physical quantity can take many numerical forms. For
example, the boiling point of water is 100 degrees Celsius, 212 degrees
Fahrenheit, 373 kelvin, or 671.4 degrees Rankine. No matter what number is
given, the physical quantity is exactly the same. The numbers are different
because four different scales are used.

Well known standard scales like Celsius are very convenient for the exchange
of information. However, there are situations where it makes sense to create
and use unique nonstandard scales. These situations usually involve making
the most of a limited resource.

For example, nonstandard scales allow map makers to get the maximum
detail on a fixed size sheet of paper. A typical road atlas of the USA will show
each state on a two-page display. The scale of inches to miles will be unique
for most states. By using a large ratio of miles to inches, all of Texas can fit
on two pages. Using the same scale for Rhode Island would make poor use of
the page. Using a much smaller ratio of miles to inches would allow Rhode
Island to be shown with the maximum possible detail.

Fitting measurements of a variable inside an embedded processor is similar to
fitting a state map on a piece of paper. The map scale should allow all the
boundaries of the state to fit on the page. Similarly, the binary scale for a
measurement should allow the maximum and minimum possible values to
fit. The map scale should also make the most of the paper in order to get

26-5

26 Getting Started

maximum detail. Similarly, the binary scale for a measurement should make
the most of the processor in order to get maximum precision.

Use of standard scales for measurements has definite compatibility
advantages. However, there are times when it is worthwhile to break
convention and use a unique nonstandard scale. There are also occasions
when a mix of uniqueness and compatibility makes sense. See the sections
that follow for more information.

Selecting a Measurement Scale
Suppose that you want to make measurements of the temperature of liquid
water, and that you want to represent these measurements using 8-bit
unsigned integers. Fortunately, the temperature range of liquid water is
limited. No matter what scale you use, liquid water can only go from the
freezing point to the boiling point. Therefore, this is the range of temperatures
that you must capture using just the 256 possible 8-bit values: 0,1,2,...,255.

One approach to representing the temperatures is to use a standard scale. For
example, the units for the integers could be Celsius. Hence, the integers 0 and
100 represent water at the freezing point and at the boiling point, respectively.
On the upside, this scale gives a trivial conversion from the integers to degrees
Celsius. On the downside, the numbers 101 to 255 are unused. By using this
standard scale, more than 60% of the number range has been wasted.

A second approach is to use a nonstandard scale. In this scale, the integers
0 and 255 represent water at the freezing point and at the boiling point,
respectively. On the upside, this scale gives maximum precision since there
are 254 values between freezing and boiling instead of just 99. On the
downside, the units are roughly 0.3921568 degree Celsius per bit so the
conversion to Celsius requires division by 2.55, which is a relatively expensive
operation on most fixed-point processors.

A third approach is to use a “semistandard” scale. For example, the integers
0 and 200 could represent water at the freezing point and at the boiling
point, respectively. The units for this scale are 0.5 degrees Celsius per bit.
On the downside, this scale doesn’t use the numbers from 201 to 255, which
represents a waste of more than 21%. On the upside, this scale permits
relatively easy conversion to a standard scale. The conversion to Celsius
involves division by 2, which is a very easy shift operation on most processors.

26-6

Physical Quantities and Measurement Scales

Measurement Scales: Beyond Multiplication
One of the key operations in converting from one scale to another is
multiplication. The preceding case study gave three examples of conversions
from a quantized integer value Q to a real-world Celsius value V that involved
only multiplication:

V

Q

Q

Q

100
100

1

100
255

2

100
200

1

2

o

o

o

C

Conversion

C

Conversion

C
 33 3Conversion

Graphically, the conversion is a line with slope S, which must pass through
the origin. A line through the origin is called a purely linear conversion.
Restricting yourself to a purely linear conversion can be very wasteful and it
is often better to use the general equation of a line:

V = SQ + B.

By adding a bias term B, you can obtain greater precision when quantizing
to a limited number of bits.

The general equation of a line gives a very useful conversion to a quantized
scale. However, like all quantization methods, the precision is limited and
errors can be introduced by the conversion. The general equation of a line
with quantization error is given by

V SQ B Error= + ± .

If the quantized value Q is rounded to the nearest representable number, then

− ≤ ≤S
Error

S
2 2

.

26-7

26 Getting Started

That is, the amount of quantization error is determined by both the number of
bits and by the scale. This scenario represents the best-case error. For other
rounding schemes, the error can be twice as large.

Select a Measurement Scale for Temperature
On typical electronically controlled internal combustion engines, the flow
of fuel is regulated to obtain the desired ratio of air to fuel in the cylinders
just prior to combustion. Therefore, knowledge of the current air flow rate
is required. Some manufacturers use sensors that directly measure air flow,
while other manufacturers calculate air flow from measurements of related
signals. The relationship of these variables is derived from the ideal gas
equation. The ideal gas equation involves division by air temperature. For
proper results, an absolute temperature scale such as kelvin or Rankine
must be used in the equation. However, quantization directly to an absolute
temperature scale would cause needlessly large quantization errors.

The temperature of the air flowing into the engine has a limited range. On a
typical engine, the radiator is designed to keep the block below the boiling
point of the cooling fluid. Assume a maximum of 225oF (380 K). As the
air flows through the intake manifold, it can be heated to this maximum
temperature. For a cold start in an extreme climate, the temperature can be
as low as -60oF (222 K). Therefore, using the absolute kelvin scale, the range
of interest is 222 K to 380 K.

The air temperature needs to be quantized for processing by the embedded
control system. Assuming an unrealistic quantization to 3-bit unsigned
numbers: 0,1,2,...,7, the purely linear conversion with maximum precision is

V Q= 380
7 5

 K
 bit.

.

The quantized conversion and range of interest are shown in the following
figure.

26-8

Physical Quantities and Measurement Scales

Notice that there are 7.5 possible quantization values. This is because only
half of the first bit corresponds to temperatures (real-world values) greater
than zero.

The quantization error is –25.33 K/bit ≤ Error ≤ 25.33 K/bit.

26-9

26 Getting Started

The range of interest of the quantized conversion and the absolute value of
the quantized error are shown in the following figure.

As an alternative to the purely linear conversion, consider the general linear
conversion with maximum precision:

26-10

Physical Quantities and Measurement Scales

V Q= −⎛
⎝⎜

⎞
⎠⎟

+ + −⎛
⎝⎜

⎞
⎠⎟

380 222
8

222 0 5
380 222

8
 K K

 K
 K K

.

The quantized conversion and range of interest are shown in the following
figure.

26-11

26 Getting Started

The quantization error is -9.875 K/bit ≤ Error ≤ 9.875 K/bit, which is
approximately 2.5 times smaller than the error associated with the purely
linear conversion.

The range of interest of the quantized conversion and the absolute value of
the quantized error are shown in the following figure.

26-12

Physical Quantities and Measurement Scales

Clearly, the general linear scale gives much better precision than the purely
linear scale over the range of interest.

26-13

26 Getting Started

Why Use Fixed-Point Hardware?
Digital hardware is becoming the primary means by which control systems
and signal processing filters are implemented. Digital hardware can be
classified as either off-the-shelf hardware (for example, microcontrollers,
microprocessors, general-purpose processors, and digital signal processors)
or custom hardware. Within these two types of hardware, there are many
architecture designs. These designs range from systems with a single
instruction, single data stream processing unit to systems with multiple
instruction, multiple data stream processing units.

Within digital hardware, numbers are represented as either fixed-point or
floating-point data types. For both these data types, word sizes are fixed at
a set number of bits. However, the dynamic range of fixed-point values is
much less than floating-point values with equivalent word sizes. Therefore,
in order to avoid overflow or unreasonable quantization errors, fixed-point
values must be scaled. Since floating-point processors can greatly simplify the
real-time implementation of a control law or digital filter, and floating-point
numbers can effectively approximate real-world numbers, then why use a
microcontroller or processor with fixed-point hardware support?

• Size and Power Consumption — The logic circuits of fixed-point
hardware are much less complicated than those of floating-point hardware.
This means that the fixed-point chip size is smaller with less power
consumption when compared with floating-point hardware. For example,
consider a portable telephone where one of the product design goals is to
make it as portable (small and light) as possible. If one of today’s high-end
floating-point, general-purpose processors is used, a large heat sink and
battery would also be needed, resulting in a costly, large, and heavy
portable phone.

• Memory Usage and Speed— In general fixed-point calculations require
less memory and less processor time to perform.

• Cost — Fixed-point hardware is more cost effective where price/cost is
an important consideration. When digital hardware is used in a product,
especially mass-produced products, fixed-point hardware costs much less
than floating-point hardware and can result in significant savings.

After making the decision to use fixed-point hardware, the next step is to
choose a method for implementing the dynamic system (for example, control

26-14

Why Use Fixed-Point Hardware?

system or digital filter). Floating-point software emulation libraries are
generally ruled out because of timing or memory size constraints. Therefore,
you are left with fixed-point math where binary integer values are scaled.

26-15

26 Getting Started

Why Use the Fixed-Point Designer Software?
The Fixed-Point Designer software allows you to efficiently design control
systems and digital filters that you will implement using fixed-point
arithmetic. With the Fixed-Point Designer software, you can construct
Simulink and Stateflow models that contain detailed fixed-point information
about your systems. You can then perform bit-true simulations with the
models to observe the effects of limited range and precision on your designs.

You can configure the Fixed-Point Tool to automatically log the overflows,
saturations, and signal extremes of your simulations. You can also use it to
automate data typing and scaling decisions and to compare your fixed-point
implementations against idealized, floating-point benchmarks.

You can use the Fixed-Point Designer software with the Simulink
Coder product to automatically generate efficient, integer-only C code
representations of your designs. You can use this C code in a production
target or for rapid prototyping. In addition, you can use the Fixed-Point
Designer software with the Embedded Coder product to generate real-time
C code for use on an integer production, embedded target. You can also use
Fixed-Point Designer with HDL Coder to generate portable, synthesizable
VHDL and Verilog code from Simulink models and Stateflow charts.

26-16

Developing and Testing Fixed-Point Systems

Developing and Testing Fixed-Point Systems
The Fixed-Point Designer software provides tools that aid in the development
and testing of fixed-point dynamic systems. You directly design dynamic
system models in the Simulink software that are ready for implementation on
fixed-point hardware. The development cycle is illustrated below.

26-17

26 Getting Started

26-18

Developing and Testing Fixed-Point Systems

Using the MATLAB, Simulink, and Fixed-Point Designer software, you follow
these steps of the development cycle:

1 Model the system (plant or signal source) within the Simulink software
using double-precision numbers. Typically, the model will contain
nonlinear elements.

2 Design and simulate a fixed-point dynamic system (for example, a control
system or digital filter) with fixed-point Simulink blocks that meets the
design, performance, and other constraints.

3 Analyze the results and go back to step 1 if needed.

When you have met the design requirements, you can use the model as a
specification for creating production code using the Simulink Coder product or
generating HDL code using the HDL Coder product.

The above steps interact strongly. In steps 1 and 2, there is a significant
amount of freedom to select different solutions. Generally, you fine-tune the
model based upon feedback from the results of the current implementation
(step 3). There is no specific modeling approach. For example, you may obtain
models from first principles such as equations of motion, or from a frequency
response such as a sine sweep. There are many controllers that meet the
same frequency-domain or time-domain specifications. Additionally, for each
controller there are an infinite number of realizations.

The Fixed-Point Designer software helps expedite the design cycle by allowing
you to simulate the effects of various fixed-point controller and digital filter
structures.

26-19

26 Getting Started

Supported Data Types
The Fixed-Point Designer software supports the following integer and
fixed-point data types for simulation and code generation:

• Unsigned data types from 1 to 128 bits

• Signed data types from 2 to 128 bits

• Boolean, double, and single

• Scaled doubles

The software supports all scaling choices including pure integer, binary point,
and slope bias. For slope bias scaling, it does not support complex fixed-point
types that have non-zero bias or non-trivial slope.

The save data type support extends to signals, parameters, and states.

26-20

Configure Blocks with Fixed-Point Output

Configure Blocks with Fixed-Point Output
To create a fixed-point model, configure Simulink blocks to output fixed-point
signals. Simulink blocks that support fixed-point output provide parameters
that allow you to specify whether a block should output fixed-point signals
and, if so, the size, scaling, and other attributes of the fixed-point output.
These parameters typically appear on the Signal Attributes pane of the
block’s parameter dialog box.

The following sections explain how to use these parameters to configure a
block for fixed-point output.

26-21

26 Getting Started

In this section...

“Specify the Output Data Type and Scaling” on page 26-22

“Specify Fixed-Point Data Types with the Data Type Assistant” on page
26-24

“Rounding” on page 26-27

“Overflow Handling” on page 26-28

“Lock the Output Data Type Setting” on page 26-28

“Real-World Values Versus Stored Integer Values” on page 26-28

Specify the Output Data Type and Scaling
Many Simulink blocks allow you to specify an output data type and scaling
using a parameter that appears on the block dialog box. This parameter
(typically named Output data type) provides a pull-down menu that lists
the data types a particular block supports. In general, you can specify the
output data type as a rule that inherits a data type, a built-in data type, an
expression that evaluates to a data type, or a Simulink data type object. For
more information, see “Specify Block Output Data Types”.

The Fixed-Point Designer software enables you to configure Simulink blocks
with:

• Fixed-point data types

Fixed-point data types are characterized by their word size in bits and by
their binary point—the means by which fixed-point values are scaled. See
“Fixed-Point Numbers” on page 27-3 for more information.

• Floating-point data types

Floating-point data types are characterized by their sign bit, fraction
(mantissa) field, and exponent field. See “Floating-Point Numbers” on
page 27-27 for more information.

To configure blocks with Fixed-Point Designer data types, specify the data
type parameter on a block dialog box as an expression that evaluates to a
data type. Alternatively, you can use an assistant that simplifies the task of
entering data type expressions (see “Specify Fixed-Point Data Types with

26-22

Configure Blocks with Fixed-Point Output

the Data Type Assistant” on page 26-24). The sections that follow describe
varieties of fixed-point and floating-point data types, and the corresponding
functions that you use to specify them.

Integers
To specify unsigned and signed integers, use the uint and sint functions,
respectively.

For example, to configure a 16-bit unsigned integer via the block dialog box,
specify the Output data type parameter as uint(16). To configure a 16-bit
signed integer, specify the Output data type parameter as sint(16).

For integer data types, the default binary point is assumed to lie to the right
of all bits.

Fractional Numbers
To specify unsigned and signed fractional numbers, use the ufrac and sfrac
functions, respectively.

For example, to configure the output as a 16-bit unsigned fractional number
via the block dialog box, specify the Output data type parameter to be
ufrac(16). To configure a 16-bit signed fractional number, specify Output
data type to be sfrac(16).

Fractional numbers are distinguished from integers by their default scaling.
Whereas signed and unsigned integer data types have a default binary point
to the right of all bits, unsigned fractional data types have a default binary
point to the left of all bits, while signed fractional data types have a default
binary point to the right of the sign bit.

Both unsigned and signed fractional data types support guard bits, which
act to guard against overflow. For example, sfrac(16,4) specifies a 16-bit
signed fractional number with 4 guard bits. The guard bits lie to the left
of the default binary point.

Generalized Fixed-Point Numbers
You can specify unsigned and signed generalized fixed-point numbers with
the ufix and sfix functions, respectively.

26-23

26 Getting Started

For example, to configure the output as a 16-bit unsigned generalized
fixed-point number via the block dialog box, specify the Output data
type parameter to be ufix(16). To configure a 16-bit signed generalized
fixed-point number, specify Output data type to be sfix(16).

Generalized fixed-point numbers are distinguished from integers and
fractionals by the absence of a default scaling. For these data types, a block
typically inherits its scaling from another block.

Note Alternatively, you can use the fixdt function to create integer,
fractional, and generalized fixed-point objects. The fixdt function also allows
you to specify scaling for fixed-point data types.

Floating-Point Numbers
The Fixed-Point Designer software supports single-precision and
double-precision floating-point numbers as defined by the IEEE® Standard
754-1985 for Binary Floating-Point Arithmetic. You can specify floating-point
numbers with the Simulink float function.

For example, to configure the output as a single-precision floating-point
number via the block dialog box, specify the Output data type parameter
as float('single'). To configure a double-precision floating-point number,
specify Output data type as float('double').

Specify Fixed-Point Data Types with the Data Type
Assistant
The Data Type Assistant is an interactive graphical tool that simplifies
the task of specifying data types for Simulink blocks and data objects. The
assistant appears on block and object dialog boxes, adjacent to parameters
that provide data type control, such as the Output data type parameter. For
more information about accessing and interacting with the assistant, see
“Specify Data Types Using Data Type Assistant”.

You can use the Data Type Assistant to specify a fixed-point data type.
When you select Fixed point in theMode field, the assistant displays fields

26-24

Configure Blocks with Fixed-Point Output

for describing additional attributes of a fixed-point data type, as shown in
this example:

You can set the following fixed-point attributes:

Signedness
Select whether you want the fixed-point data to be Signed or Unsigned.
Signed data can represent positive and negative quantities. Unsigned data
represents positive values only.

26-25

26 Getting Started

Word length
Specify the size (in bits) of the word that will hold the quantized integer.
Large word sizes represent large quantities with greater precision than small
word sizes. Fixed-point word sizes up to 128 bits are supported for simulation.

Scaling
Specify the method for scaling your fixed-point data to avoid overflow
conditions and minimize quantization errors. You can select the following
scaling modes:

Scaling
Mode

Description

Binary
point

If you select this mode, the assistant displays the Fraction length field,
specifying the binary point location.

Binary points can be positive or negative integers. A positive integer moves the
binary point left of the rightmost bit by that amount. For example, an entry of 2
sets the binary point in front of the second bit from the right. A negative integer
moves the binary point further right of the rightmost bit by that amount, as
in this example:

See “Binary-Point-Only Scaling” on page 27-7 for more information.

Slope and
bias

If you select this mode, the assistant displays fields for entering the Slope
and Bias.

• Slope can be any positive real number.

• Bias can be any real number.

26-26

Configure Blocks with Fixed-Point Output

Scaling
Mode

Description

See “Slope and Bias Scaling” on page 27-8 for more information.

Best
precision

If you select this mode, the block scales a constant vector or matrix such that
the precision of its elements is maximized. This mode is available only for
particular blocks.

See “Constant Scaling for Best Precision” on page 27-15 for more information.

Calculate Best-Precision Scaling
The Fixed-Point Designer software can automatically calculate
“best-precision” values for both Binary point and Slope and bias scaling,
based on the values that you specify for other parameters on the dialog box.
To calculate best-precision-scaling values automatically, enter values for the
block’s Output minimum and Output maximum parameters. Afterward,
click the Calculate Best-Precision Scaling button in the assistant.

Rounding
You specify how fixed-point numbers are rounded with the Integer rounding
mode parameter. The following rounding modes are supported:

• Ceiling— This mode rounds toward positive infinity and is equivalent to
the MATLAB ceil function.

• Convergent — This mode rounds toward the nearest representable
number, with ties rounding to the nearest even integer. Convergent
rounding is equivalent to the Fixed-Point Designer convergent function.

• Floor— This mode rounds toward negative infinity and is equivalent to
the MATLAB floor function.

• Nearest — This mode rounds toward the nearest representable number,
with the exact midpoint rounded toward positive infinity. Rounding toward
nearest is equivalent to the Fixed-Point Designer nearest function.

• Round— This mode rounds to the nearest representable number, with ties
for positive numbers rounding in the direction of positive infinity and ties

26-27

26 Getting Started

for negative numbers rounding in the direction of negative infinity. This
mode is equivalent to the Fixed-Point Designer round function.

• Simplest— This mode automatically chooses between round toward floor
and round toward zero to produce generated code that is as efficient as
possible.

• Zero— This mode rounds toward zero and is equivalent to the MATLAB
fix function.

For more information about each of these rounding modes, see “Rounding”
on page 28-4.

Overflow Handling
To control how overflow conditions are handled for fixed-point operations, use
the Saturate on integer overflow check box.

If this box is selected, overflows saturate to either the maximum or minimum
value represented by the data type. For example, an overflow associated with
a signed 8-bit integer can saturate to -128 or 127.

If this box is not selected, overflows wrap to the appropriate value that is
representable by the data type. For example, the number 130 does not fit in a
signed 8-bit integer, and would wrap to -126.

Lock the Output Data Type Setting
If the output data type is a generalized fixed-point number, you have the
option of locking its output data type setting by selecting the Lock output
data type setting against changes by the fixed-point tools check box.

When locked, the Fixed-Point Tool and automatic scaling script autofixexp
do not change the output data type setting. Otherwise, the Fixed-Point Tool
and autofixexp script are free to adjust the output data type setting.

Real-World Values Versus Stored Integer Values
You can configure Data Type Conversion blocks to treat signals as real-world
values or as stored integers with the Input and output to have equal
parameter.

26-28

Configure Blocks with Fixed-Point Output

The possible values are Real World Value (RWV) and Stored Integer
(SI).

In terms of the variables defined in “Scaling” on page 27-6, the real-world
value is given by V and the stored integer value is given by Q. You may want
to treat numbers as stored integer values if you are modeling hardware that
produces integers as output.

26-29

26 Getting Started

Configure Blocks with Fixed-Point Parameters
Certain Simulink blocks allow you to specify fixed-point numbers as the
values of parameters used to compute the block’s output, e.g., the Gain
parameter of a Gain block.

Note S-functions and the Stateflow Chart block do not support fixed-point
parameters.

You can specify a fixed-point parameter value either directly by setting the
value of the parameter to an expression that evaluates to a fi object, or
indirectly by setting the value of the parameter to an expression that refers to
a fixed-point Simulink.Parameter object.

In this section...

“Specify Fixed-Point Values Directly” on page 26-30

“Specify Fixed-Point Values Via Parameter Objects” on page 26-31

Note Simulating or performing data type override on a model with fi objects
requires a Fixed-Point Designer software license. See “Sharing Fixed-Point
Models” on page 26-3 for more information.

Specify Fixed-Point Values Directly
You can specify fixed-point values for block parameters using fi objects. In
the block dialog’s parameter field, simply enter the name of a fi object or an
expression that includes the fi constructor function.

For example, entering the expression

fi(3.3,1,8,3)

as the Constant value parameter for the Constant block specifies a signed
fixed-point value of 3.3, with a word length of 8 bits and a fraction length
of 3 bits.

26-30

Configure Blocks with Fixed-Point Parameters

Specify Fixed-Point Values Via Parameter Objects
You can specify fixed-point parameter objects for block parameters using
instances of the Simulink.Parameter class. To create a fixed-point parameter
object, either specify a fi object as the parameter object’s Value property, or
specify the relevant fixed-point data type for the parameter object’s DataType
property.

For example, suppose you want to create a fixed-point constant in your model.
You could do this using a fixed-point parameter object and a Constant block
as follows:

1 Enter the following command at the MATLAB prompt to create an instance
of the Simulink.Parameter class:

my_fixpt_param = Simulink.Parameter

26-31

26 Getting Started

2 Specify either the name of a fi object or an expression that includes the fi
constructor function as the parameter object’s Value property:

my_fixpt_param.Value = fi(3.3,true,8,3)

Alternatively, you can set the parameter object’s Value and DataType
properties separately. In this case, specify the relevant fixed-point data
type using a Simulink.AliasType object, a Simulink.NumericType object,
or a fixdt expression. For example, the following commands independently
set the parameter object’s value and data type, using a fixdt expression as
the DataType string:

my_fixpt_param.Value = 3.3;
my_fixpt_param.DataType = 'fixdt(true,8,2^-3,0)'

3 Specify the parameter object as the value of a block’s parameter. For
example, my_fixpt_param specifies the Constant value parameter for the
Constant block in the following model:

26-32

Configure Blocks with Fixed-Point Parameters

Consequently, the Constant block outputs a signed fixed-point value of 3.3,
with a word length of 8 bits and a fraction length of 3 bits.

26-33

26 Getting Started

Pass Fixed-Point Data Between Simulink Models and
MATLAB

You can read fixed-point data from the MATLAB software into your Simulink
models, and there are a number of ways in which you can log fixed-point
information from your models and simulations to the workspace.

Read Fixed-Point Data from the Workspace
Use the From Workspace block to read fixed-point data from the MATLAB
workspace into a Simulink model. To do this, the data must be in structure
format with a Fixed-Point Designer fi object in the values field. In array
format, the From Workspace block only accepts real, double-precision data.

To read in fi data, the Interpolate data parameter of the From Workspace
block must not be selected, and the Form output after final data value by
parameter must be set to anything other than Extrapolation.

Write Fixed-Point Data to the Workspace
You can write fixed-point output from a model to the MATLAB workspace via
the To Workspace block in either array or structure format. Fixed-point data
written by a To Workspace block to the workspace in structure format can be
read back into a Simulink model in structure format by a From Workspace
block.

Note To write fixed-point data to the workspace as a fi object, select the
Log fixed-point data as a fi object check box on the To Workspace block
dialog. Otherwise, fixed-point data is converted to double and written to the
workspace as double.

For example, you can use the following code to create a structure in the
MATLAB workspace with a fi object in the values field. You can then use
the From Workspace block to bring the data into a Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])

26-34

Pass Fixed-Point Data Between Simulink® Models and MATLAB®

a =

0 -0.5440
0.8415 0.4121
0.9093 0.9893
0.1411 0.6570

-0.7568 -0.2794
-0.9589 -0.9589
-0.2794 -0.7568
0.6570 0.1411
0.9893 0.9093
0.4121 0.8415

-0.5440 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15
s.signals.values = a

s =

signals: [1x1 struct]

s.signals.dimensions = 2

s =

signals: [1x1 struct]

s.time = [0:10]'

s =

signals: [1x1 struct]
time: [11x1 double]

The From Workspace block in the following model has the fi structure s in
the Data parameter. In the model, the following parameters in the Solver
pane of the Configuration Parameters dialog box have the indicated settings:

26-35

26 Getting Started

• Start time — 0.0

• Stop time — 10.0

• Type — Fixed-step

• Solver — Discrete (no continuous states)

• Fixed-step size (fundamental sample time)— 1.0

The To Workspace block writes the result of the simulation to the MATLAB
workspace as a fi structure.

simout.signals.values

ans =

26-36

Pass Fixed-Point Data Between Simulink® Models and MATLAB®

0 -8.7041
13.4634 6.5938
14.5488 15.8296
2.2578 10.5117

-12.1089 -4.4707
-15.3428 -15.3428
-4.4707 -12.1089
10.5117 2.2578
15.8296 14.5488
6.5938 13.4634

-8.7041 0

Log Fixed-Point Signals
When fixed-point signals are logged to the MATLAB workspace via signal
logging, they are always logged as Fixed-Point Designer fi objects.

To enable signal logging for a signal:

1 Select the signal.

2 Open the Record dropdown.

3 Select Log Selected Signals.

For more information, refer to “Signal Logging”.

When you log signals from a referenced model or Stateflow chart in your
model, the word lengths of fi objects may be larger than you expect. The word
lengths of fixed-point signals in referenced models and Stateflow charts are
logged as the next larger data storage container size.

Access Fixed-Point Block Data During Simulation
Simulink provides an application programming interface (API) that enables
programmatic access to block data, such as block inputs and outputs,
parameters, states, and work vectors, while a simulation is running. You can
use this interface to develop MATLAB programs capable of accessing block
data while a simulation is running or to access the data from the MATLAB
command line. Fixed-point signal information is returned to you via this API

26-37

26 Getting Started

as fi objects. For more information about the API, refer to “Access Block Data
During Simulation”.

26-38

Cast from Doubles to Fixed Point

Cast from Doubles to Fixed Point

In this section...

“About This Example” on page 26-39

“Block Descriptions” on page 26-40

“Simulations” on page 26-41

About This Example
The purpose of this example is to show you how to simulate a continuous
real-world doubles signal using a generalized fixed-point data type. Although
simple in design, the model gives you an opportunity to explore many of the
important features of the Fixed-Point Designer software, including

• Data types

• Scaling

• Rounding

• Logging minimum and maximum simulation values to the workspace

• Overflow handling

This example uses the fxpdemo_dbl2fix model. Open the model:

fxpdemo_dbl2fix

26-39

26 Getting Started

The sections that follow describe the model and its simulation results.

Block Descriptions
In this example, you configure the Signal Generator block to output a sine
wave signal with an amplitude defined on the interval [-5 5]. The Signal
Generator block always outputs double-precision numbers.

The Data Type Conversion (Dbl-to-FixPt) block converts the double-precision
numbers from the Signal Generator block into one of the Fixed-Point Designer
data types. For simplicity, the size of the output signal is 5 bits in this
example.

26-40

Cast from Doubles to Fixed Point

The Data Type Conversion (FixPt-to-Dbl) block converts one of the Fixed-Point
Designer data types into a Simulink data type. In this example, it outputs
double-precision numbers.

Simulations
The following sections describe how to simulate the model using
binary-point-only scaling and [Slope Bias] scaling.

Binary-Point-Only Scaling
When using binary-point-only scaling, your goal is to find the optimal
power-of-two exponent E, as defined in “Scaling” on page 27-6. For this scaling
mode, the fractional slope F is 1 and there is no bias.

To run the simulation:

1 Configure the Signal Generator block to output a sine wave signal with an
amplitude defined on the interval [-5 5].

a Double-click the Signal Generator block to open the Block Parameters
dialog.

b Set the Wave form parameter to sine.

c Set the Amplitude parameter to 5.

d Click OK.

2 Configure the Data Type Conversion (Dbl-to-FixPt) block.

a Double-click the Dbl-to-FixPt block to open the Block Parameters
dialog.

b Verify that the Output data type parameter is fixdt(1,5,2).
fixdt(1,5,2) specifies a 5-bit, signed, fixed-point number with scaling
2^-2, which puts the binary point two places to the left of the rightmost
bit. Hence the maximum value is 011.11 = 3.75, a minimum value of
100.00 = -4.00, and the precision is (1/2)2 = 0.25.

c Verify that the Integer rounding mode parameter is Floor. Floor
rounds the fixed-point result toward negative infinity.

26-41

26 Getting Started

d Select the Saturate on integer overflow checkbox to prevent the block
from wrapping on overflow.

e Click OK.

3 Select Simulation > Run in your Simulink model window.

The Scope displays the real-world and fixed-point simulation results.

The simulation shows the quantization effects of fixed-point arithmetic. Using
a 5-bit word with a precision of (1/2)2 = 0.25 produces a discretized output that
does not span the full range of the input signal.

26-42

Cast from Doubles to Fixed Point

If you want to span the complete range of the input signal with 5 bits using
binary-point-only scaling, then your only option is to sacrifice precision.
Hence, the output scaling is 2^-1, which puts the binary point one place to
the left of the rightmost bit. This scaling gives a maximum value of 0111.1 =
7.5, a minimum value of 1000.0 = -8.0, and a precision of (1/2)1 = 0.5.

To simulate using a precision of 0.5, set the Output data type parameter of
the Data Type Conversion (Dbl-to-FixPt) block to fixdt(1,5,1) and rerun
the simulation.

[Slope Bias] Scaling
When using [Slope Bias] scaling, your goal is to find the optimal fractional
slope F and fixed power-of-two exponent E, as defined in “Scaling” on page
27-6. There is no bias for this example because the sine wave is on the
interval [-5 5].

To arrive at a value for the slope, you begin by assuming a fixed power-of-two
exponent of -2. To find the fractional slope, you divide the maximum value of
the sine wave by the maximum value of the scaled 5-bit number. The result
is 5.00/3.75 = 1.3333. The slope (and precision) is 1.3333.(0.25) = 0.3333.
You specify the [Slope Bias] scaling as [0.3333 0] by entering the expression
fixdt(1,5,0.3333,0) as the value of the Output data type parameter.

You could also specify a fixed power-of-two exponent of -1 and a corresponding
fractional slope of 0.6667. The resulting slope is the same since E is reduced
by 1 bit but F is increased by 1 bit. The Fixed-Point Designer software would
automatically store F as 1.3332 and E as -2 because of the normalization
condition of 1 ≤ F < 2.

To run the simulation:

1 Configure the Signal Generator block to output a sine wave signal with an
amplitude defined on the interval [-5 5].

a Double-click the Signal Generator block to open the Block Parameters
dialog.

b Set the Wave form parameter to sine.

c Set the Amplitude parameter to 5.

26-43

26 Getting Started

d Click OK.

2 Configure the Data Type Conversion (Dbl-to-FixPt) block.

a Double-click the Dbl-to-FixPt block to open the Block Parameters
dialog.

b Set the Output data type parameter to fixdt(1,5,0.3333,0) to
specify [Slope Bias] scaling as [0.3333 0].

c Verify that the Integer rounding mode parameter is Floor. Floor
rounds the fixed-point result toward negative infinity.

d Select the Saturate on integer overflow checkbox to prevent the block
from wrapping on overflow.

e Click OK.

3 Select Simulation > Run in your Simulink model window.

The Scope displays the real-world and fixed-point simulation results.

26-44

Cast from Doubles to Fixed Point

You do not need to find the slope using this method. You need only the range
of the data you are simulating and the size of the fixed-point word used in the
simulation. You can achieve reasonable simulation results by selecting your
scaling based on the formula

max value min value
ws

_ _
,

−()
−2 1

where

• max_value is the maximum value to be simulated.

26-45

26 Getting Started

• min_value is the minimum value to be simulated.

• ws is the word size in bits.

• 2ws - 1 is the largest value of a word with size ws.

For this example, the formula produces a slope of 0.32258.

26-46

27

Data Types and Scaling

• “Data Types and Scaling in Digital Hardware” on page 27-2

• “Fixed-Point Numbers” on page 27-3

• “Fixed-Point Numbers in Simulink” on page 27-15

• “Floating-Point Numbers” on page 27-27

27 Data Types and Scaling

Data Types and Scaling in Digital Hardware
In digital hardware, numbers are stored in binary words. A binary word
is a fixed-length sequence of binary digits (1’s and 0’s). The way in which
hardware components or software functions interpret this sequence of 1’s
and 0’s is described by a data type.

Binary numbers are represented as either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The binary point is the
means by which fixed-point values are scaled. With the Fixed-Point Designer
software, fixed-point data types can be integers, fractionals, or generalized
fixed-point numbers. The main difference between these data types is their
default binary point.

Floating-point data types are characterized by a sign bit, a fraction (or
mantissa) field, and an exponent field. The blockset adheres to the IEEE
Standard 754-1985 for Binary Floating-Point Arithmetic (referred to simply
as the IEEE Standard 754 throughout this guide) and supports singles,
doubles, and a nonstandard IEEE-style floating-point data type.

When choosing a data type, you must consider these factors:

• The numerical range of the result

• The precision required of the result

• The associated quantization error (i.e., the rounding mode)

• The method for dealing with exceptional arithmetic conditions

These choices depend on your specific application, the computer architecture
used, and the cost of development, among others.

With the Fixed-Point Designer software, you can explore the relationship
between data types, range, precision, and quantization error in the modeling
of dynamic digital systems. With the Simulink Coder product, you can
generate production code based on that model. With HDL Coder, you can
generate portable, synthesizable VHDL and Verilog code from Simulink
models and Stateflow charts.

27-2

Fixed-Point Numbers

Fixed-Point Numbers

In this section...

“Fixed-Point Numbers” on page 27-3

“Signed Fixed-Point Numbers” on page 27-4

“Binary Point Interpretation” on page 27-4

“Scaling” on page 27-6

“Quantization” on page 27-8

“Range and Precision” on page 27-10

Fixed-Point Numbers
Fixed-point numbers and their data types are characterized by their word
size in bits, binary point, and whether they are signed or unsigned. The
Fixed-Point Designer software supports integers and fixed-point numbers.
The main difference among these data types is their binary point.

Note Fixed-point numbers can have a word size up to 128 bits.

A common representation of a binary fixed-point number , either signed or
unsigned, is shown in the following figure.

where

• bi are the binary digits (bits)

• ws is the word length in bits

27-3

27 Data Types and Scaling

• The most significant bit (MSB) is the leftmost bit, and is represented by

location bws1

• The least significant bit (LSB) is the rightmost bit, and is represented by

location b0

• The binary point is shown four places to the left of the LSB

Signed Fixed-Point Numbers
Computer hardware typically represents the negation of a binary fixed-point
number in three different ways: sign/magnitude, one’s complement, and two’s
complement. Two’s complement is the preferred representation of signed
fixed-point numbers and supported by the Fixed-Point Designer software.

Negation using two’s complement consists of a bit inversion (translation into
one’s complement) followed by the addition of a one. For example, the two’s
complement of 000101 is 111011.

Whether a fixed-point value is signed or unsigned is usually not encoded
explicitly within the binary word; that is, there is no sign bit. Instead, the
sign information is implicitly defined within the computer architecture.

Binary Point Interpretation
The binary point is the means by which fixed-point numbers are scaled. It is
usually the software that determines the binary point. When performing basic
math functions such as addition or subtraction, the hardware uses the same
logic circuits regardless of the value of the scale factor. In essence, the logic
circuits have no knowledge of a scale factor. They are performing signed or
unsigned fixed-point binary algebra as if the binary point is to the right of b0.

Fixed-Point Designer supports the general binary point scaling V Q E * ^2 .
V is the real-world value, Q is the stored integer value, and E is equal to
-FractionLength. In other words, RealWorldValue = StoredInteger * 2
^ -FractionLength.

FractionLength defines the scaling of the stored integer value. The word
length limits the values that the stored integer can take, but it does not limit
the values FractionLength can take. The software does not restrict the value

27-4

Fixed-Point Numbers

of exponent E based on the word length of the stored integer Q. Because E is
equal to -FractionLength, restricting the binary point to being contiguous
with the fraction is unnecessary; the fraction length can be negative or greater
than the word length.

For example, a word consisting of three unsigned bits is usually represented
in scientific notation in one of the following ways.

bbb bbb

bb b bbb

b bb bbb

bbb bbb

. .

. .

. .

. .

= ×

= ×

= ×

= ×

−

−

−

2

2

2

2

0

1

2

3

If the exponent were greater than 0 or less than -3, then the representation
would involve lots of zeros.

bbb bbb

bbb bbb

bbb bbb

bbb bb

00000 2

00 2

00 2

00000

5

2

5

. .

. .

. .

.

= ×

= ×

= ×

=

−

bb.× −2 8

These extra zeros never change to ones, however, so they don’t show up in
the hardware. Furthermore, unlike floating-point exponents, a fixed-point
exponent never shows up in the hardware, so fixed-point exponents are not
limited by a finite number of bits.

Consider a signed value with a word length of 8, a fraction length of 10, and
a stored integer value of 5 (binary value 00000101). The real-word value is
calculated using the formula
RealWorldValue = StoredInteger * 2 ^ -FractionLength. In this case,
RealWorldValue = 5 * 2 ^ -10 = 0.0048828125. Because the fraction
length is 2 bits longer than the word length, the binary value of the stored
integer is x.xx00000101 , where x is a placeholder for implicit zeros.
0.0000000101 (binary) is equivalent to 0.0048828125 (decimal). For an
example using a fi object, see “Create a fi Object With Fraction Length
Greater Than Word Length”.

27-5

27 Data Types and Scaling

Scaling
The dynamic range of fixed-point numbers is much less than floating-point
numbers with equivalent word sizes. To avoid overflow conditions and
minimize quantization errors, fixed-point numbers must be scaled.

With the Fixed-Point Designer software, you can select a fixed-point data type
whose scaling is defined by its binary point, or you can select an arbitrary
linear scaling that suits your needs. This section presents the scaling choices
available for fixed-point data types.

You can represent a fixed-point number by a general slope and bias encoding
scheme

V V SQ B≈ = +
~

,

where

• V is an arbitrarily precise real-world value.

• V
~
is the approximate real-world value.

• Q, the stored value, is an integer that encodes V.

• S F E 2 is the slope.

• B is the bias.

The slope is partitioned into two components:

• 2E specifies the binary point. E is the fixed power-of-two exponent.

• F is the slope adjustment factor. It is normalized such that 1 2 F .

Note S and B are constants and do not show up in the computer hardware
directly. Only the quantization value Q is stored in computer memory.

27-6

Fixed-Point Numbers

The scaling modes available to you within this encoding scheme are described
in the sections that follow. For detailed information about how the supported
scaling modes effect fixed-point operations, refer to “Recommendations for
Arithmetic and Scaling” on page 28-33.

Binary-Point-Only Scaling
Binary-point-only or power-of-two scaling involves moving the binary point
within the fixed-point word. The advantage of this scaling mode is to minimize
the number of processor arithmetic operations.

With binary-point-only scaling, the components of the general slope and bias
formula have the following values:

• F = 1

• S F E E 2 2

• B 0

The scaling of a quantized real-world number is defined by the slope S, which
is restricted to a power of two. The negative of the power-of-two exponent is
called the fraction length. The fraction length is the number of bits to the
right of the binary point. For Binary-Point-Only scaling, specify fixed-point
data types as

• signed types — fixdt(1, WordLength, FractionLength)

• unsigned types — fixdt(0, WordLength, FractionLength)

Integers are a special case of fixed-point data types. Integers have a trivial
scaling with slope 1 and bias 0, or equivalently with fraction length 0. Specify
integers as

• signed integer — fixdt(1, WordLength, 0)

• unsigned integer — fixdt(0, WordLength, 0)

27-7

27 Data Types and Scaling

Slope and Bias Scaling
When you scale by slope and bias, the slope S and bias B of the quantized
real-world number can take on any value. The slope must be a positive
number. Using slope and bias, specify fixed-point data types as

• fixdt(Signed, WordLength, Slope, Bias)

Unspecified Scaling
Specify fixed-point data types with an unspecified scaling as

• fixdt(Signed, WordLength)

Simulink signals, parameters, and states must never have unspecified
scaling. When scaling is unspecified, you must use some other mechanism
such as automatic best precision scaling to determine the scaling that the
Simulink software uses.

Quantization
The quantization Q of a real-world value V is represented by a weighted sum
of bits. Within the context of the general slope and bias encoding scheme, the
value of an unsigned fixed-point quantity is given by

V S b Bi
i

i

ws~
. ,=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
=

−

∑ 2
0

1

while the value of a signed fixed-point quantity is given by

V S b b Bws
ws

i
i

i

ws~
. ,= − +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+−
−

=

−

∑1
1

0

2
2 2

where

• bi are binary digits, with bi 1 0, , for i ws 0 1 1, ,...,

• The word size in bits is given by ws, with ws = 1, 2, 3,..., 128.

27-8

Fixed-Point Numbers

• S is given by F E 2 , where the scaling is unrestricted because the binary
point does not have to be contiguous with the word.

bi are called bit multipliers and 2i are called the weights.

Fixed-Point Format
Formats for 8-bit signed and unsigned fixed-point values are shown in the
following figure.

Note that you cannot discern whether these numbers are signed or unsigned
data types merely by inspection since this information is not explicitly
encoded within the word.

The binary number 0011.0101 yields the same value for the unsigned and
two’s complement representation because the MSB = 0. Setting B = 0 and
using the appropriate weights, bit multipliers, and scaling, the value is

V F Q bE E
i

i

i

ws~
= () =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= × + × + × + × + ×

=

−

−

∑2 2 2

2 0 2 0 2 1 2 1 2 0

0

1

4 7 6 5 4 22 1 2 0 2 1 2

3 3125

3 2 1 0+ × + × + ×()
= . .

Conversely, the binary number 1011.0101 yields different values for the
unsigned and two’s complement representation since the MSB = 1.

Setting B = 0 and using the appropriate weights, bit multipliers, and scaling,
the unsigned value is

27-9

27 Data Types and Scaling

V F Q bE E
i

i

i

ws~
= () =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= × + × + × + × + ×

=

−

−

∑2 2 2

2 1 2 0 2 1 2 1 2 0

0

1

4 7 6 5 4 22 1 2 0 2 1 2

11 3125

3 2 1 0+ × + × + ×()
= . ,

while the two’s complement value is

V F Q b bE E
ws

ws
i

i

i

ws~
= () = − +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − × + ×

−
−

=

−

−

∑2 2 2 2

2 1 2 0 2

1
1

0

2

4 7 6 ++ × + × + × + × + × + ×()
= −

1 2 1 2 0 2 1 2 0 2 1 2

4 6875

5 4 3 2 1 0

. .

Range and Precision
The range of a number gives the limits of the representation, while
the precision gives the distance between successive numbers in the
representation. The range and precision of a fixed-point number depend on
the length of the word and the scaling.

Range
The following figure illustrates the range of representable numbers for an
unsigned fixed-point number of size ws, scaling S, and bias B.

The following figure illustrates the range of representable numbers for a
two’s complement fixed-point number of size ws, scaling S, and bias B where
the values of ws, scaling S, and bias B allow for both negative and positive
numbers.

27-10

Fixed-Point Numbers

For both the signed and unsigned fixed-point numbers of any data type, the
number of different bit patterns is 2ws.

For example, if the fixed-point data type is an integer with scaling defined

as S 1 and B = 0, then the maximum unsigned value is 2 1ws , because
zero must be represented. In two’s complement, negative numbers must

be represented as well as zero, so the maximum value is 2 11ws .
Additionally, since there is only one representation for zero, there must be
an unequal number of positive and negative numbers. This means there is a

representation for 2 1ws but not for 2 1ws .

Precision
The precision of a data type is given by the slope. In this usage, precision
means the difference between neighboring representable values.

Fixed-Point Data Type Parameters
The low limit, high limit, and default binary-point-only scaling for the
supported fixed-point data types discussed in “Binary Point Interpretation”
on page 27-4 are given in the following table. See “Precision” on page 28-3
and “Range” on page 28-27 for more information.

27-11

27 Data Types and Scaling

Fixed-Point Data Type Range and Default Scaling

Name Data Type Low Limit High Limit

Default
Scaling
(~Precision)

Unsigned
Integer

fixdt(0,ws,0) 0
2 1ws

1

Signed
Integer

fixdt(1,ws,0)
 2 1ws 2 11ws

1

Unsigned
Binary
Point

fixdt(0,ws,fl) 0
()2 1 2ws fl 2 fl

Signed
Binary
Point

fixdt(1,ws,fl)
 2 1ws fl

()2 1 21ws fl 2 fl

Unsigned
Slope
Bias

fixdt(0,ws,s,b) b
s bws()2 1

s

Signed
Slope
Bias

fixdt(1,ws,s,b)
 s bws()2 1 s bws()2 11

s

s = Slope, b = Bias, ws = WordLength, fl = FractionLength

Range of an 8-Bit Fixed-Point Data Type — Binary-Point-Only
Scaling
The precisions, range of signed values, and range of unsigned values for an
8-bit generalized fixed-point data type with binary-point-only scaling are
listed in the follow table. Note that the first scaling value (21) represents a
binary point that is not contiguous with the word.

27-12

Fixed-Point Numbers

Scaling Precision

Range of Signed
Values (Low,
High)

Range of Unsigned
Values (Low, High)

21 2.0 -256, 254 0, 510

20 1.0 -128, 127 0, 255

2-1 0.5 -64, 63.5 0, 127.5

2-2 0.25 -32, 31.75 0, 63.75

2-3 0.125 -16, 15.875 0, 31.875

2-4 0.0625 -8, 7.9375 0, 15.9375

2-5 0.03125 -4, 3.96875 0, 7.96875

2-6 0.015625 -2, 1.984375 0, 3.984375

2-7 0.0078125 -1, 0.9921875 0, 1.9921875

2-8 0.00390625 -0.5, 0.49609375 0, 0.99609375

Range of an 8-Bit Fixed-Point Data Type — Slope and Bias
Scaling
The precision and ranges of signed and unsigned values for an 8-bit fixed-point
data type using slope and bias scaling are listed in the following table. The
slope starts at a value of 1.25 with a bias of 1.0 for all slopes. Note that the
slope is the same as the precision.

Bias Slope/Precision
Range of Signed
Values (low, high)

Range of Unsigned
Values (low, high)

1 1.25 -159, 159.75 1, 319.75

1 0.625 -79, 80.375 1, 160.375

1 0.3125 -39, 40.6875 1, 80.6875

1 0.15625 -19, 20.84375 1, 40.84375

1 0.078125 -9, 10.921875 1, 20.921875

1 0.0390625 -4, 5.9609375 1, 10.9609375

1 0.01953125 -1.5, 3.48046875 1, 5.98046875

27-13

27 Data Types and Scaling

Bias Slope/Precision
Range of Signed
Values (low, high)

Range of Unsigned
Values (low, high)

1 0.009765625 -0.25, 2.240234375 1, 3.490234375

1 0.0048828125 0.375, 1.6201171875 1, 2.2451171875

27-14

Fixed-Point Numbers in Simulink

Fixed-Point Numbers in Simulink

Constant Scaling for Best Precision
The following fixed-point Simulink blocks provide a mode for scaling
parameters whose values are constant vectors or matrices:

• Constant

• Discrete FIR Filter

• Gain

• Relay

• Repeating Sequence Stair

This scaling mode is based on binary-point-only scaling. Using this mode, you
can scale a constant vector or matrix such that a common binary point is
found based on the best precision for the largest value in the vector or matrix.

Constant scaling for best precision is available only for fixed-point data types
with unspecified scaling. All other fixed-point data types use their specified
scaling. You can use the Data Type Assistant (see “Specify Data Types
Using Data Type Assistant”) on a block dialog box to enable the best precision
scaling mode.

1 On a block dialog box, click the Show data type assistant button

.

The Data Type Assistant appears.

2 In the Data Type Assistant, and from theMode list, select Fixed point.

The Data Type Assistant displays additional options associated with
fixed-point data types.

3 From the Scaling list, select Best precision.

27-15

27 Data Types and Scaling

27-16

Fixed-Point Numbers in Simulink

To understand how you might use this scaling mode, consider a 3-by-3 matrix
of doubles, M, defined as

3.3333e-003 3.3333e-004 3.3333e-005
3.3333e-002 3.3333e-003 3.3333e-004
3.3333e-001 3.3333e-002 3.3333e-003

Now suppose you specify M as the value of the Gain parameter for a Gain
block. The results of specifying your own scaling versus using the constant
scaling mode are described here:

• Specified Scaling

Suppose the matrix elements are converted to a signed, 10-bit generalized
fixed-point data type with binary-point-only scaling of 2-7 (that is, the
binary point is located seven places to the left of the right most bit). With
this data format, M becomes

0 0 0
3.1250e-002 0 0
3.3594e-001 3.1250e-002 0

Note that many of the matrix elements are zero, and for the nonzero
entries, the scaled values differ from the original values. This is because a
double is converted to a binary word of fixed size and limited precision for
each element. The larger and more precise the conversion data type, the
more closely the scaled values match the original values.

• Constant Scaling for Best Precision

If M is scaled based on its largest matrix value, you obtain

2.9297e-003 0 0
3.3203e-002 2.9297e-003 0
3.3301e-001 3.3203e-002 2.9297e-003

Best precision would automatically select the fraction length that
minimizes the quantization error. Even though precision was maximized
for the given word length, quantization errors can still occur. In this
example, a few elements still quantize to zero.

27-17

27 Data Types and Scaling

Fixed-Point Data Type and Scaling Notation
Simulink data type names must be valid MATLAB identifiers with less than
128 characters. The data type name provides information about container
type, number encoding, and scaling.

You can represent a fixed-point number using the fixed-point scaling equation

V V SQ B≈ = +
~

,

where

• V is the real-world value.

• V
~
is the approximate real-world value.

• S F E 2 is the slope.

• F is the slope adjustment factor.

• E is the fixed power-of-two exponent.

• Q is the stored integer.

• B is the bias.

For more information, see “Scaling” on page 27-6.

The following table provides a key for various symbols that appear in
Simulink products to indicate the data type and scaling of a fixed-point value.

Symbol Description Example

Container Type

ufix Unsigned fixed-point
data type

ufix8 is an 8-bit unsigned
fixed-point data type

sfix Signed fixed-point data
type

sfix128 is a 128-bit signed
fixed-point data type

27-18

Fixed-Point Numbers in Simulink

Symbol Description Example

fltu Scaled Doubles override
of an unsigned
fixed-point data type
(ufix)

fltu32 is a scaled doubles
override of ufix32

flts Scaled Doubles override
of a signed fixed-point
data type (sfix)

flts64 is a scaled doubles
override of sfix64

Number Encoding

e 10^ 125e8 equals 125*(10^(8))

n Negative n31 equals -31

p Decimal point 1p5 equals 1.5

p2 equals 0.2

Scaling Encoding

S Slope ufix16_S5_B7 is a 16-bit
unsigned fixed-point data
type with Slope of 5 and
Bias of 7

B Bias ufix16_S5_B7 is a 16-bit
unsigned fixed-point data
type with Slope of 5 and
Bias of 7

E Fixed exponent (2^)

A negative fixed
exponent describes
the fraction length

sfix32_En31 is a 32-bit
signed fixed-point data type
with a fraction length of 31

F Slope adjustment factor ufix16_F1p5_En50
is a 16-bit unsigned
fixed-point data type with a
SlopeAdjustmentFactor of
1.5 and a FixedExponent
of -50

27-19

27 Data Types and Scaling

Symbol Description Example

C,c,D, or d Compressed encoding for
Bias

Note If you pass
this string to the
slDataTypeAndScale
function, it returns a
valid fixdt data type.

No example available. For
backwards compatibility
only.

To identify and replace calls
to slDataTypeAndScale,
use the “Check for calls
to slDataTypeAndScale”
Model Advisor check.

T or t Compressed encoding for
Slope

Note If you pass
this string to the
slDataTypeAndScale,
it returns a valid fixdt
data type.

No example available. For
.backwards compatibility
only.

To identify and replace calls
to slDataTypeAndScale,
use the “Check for calls
to slDataTypeAndScale”
Model Advisor check.

Scaled Doubles

What Are Scaled Doubles?
Scaled doubles are a hybrid between floating-point and fixed-point numbers.
The Fixed-Point Designer software stores them as doubles with the scaling,
sign, and word length information retained. For example, the storage
container for a fixed-point data type sfix16_En14 is int16. The storage
container of the equivalent scaled doubles data type, flts16_En14 is
floating-point double. For details of the fixed-point scaling notation, see
“Fixed-Point Data Type and Scaling Notation” on page 27-18. The Fixed-Point
Designer software applies the scaling information to the stored floating-point
double to obtain the real-world value. Storing the value in a double almost
always eliminates overflow and precision issues.

27-20

Fixed-Point Numbers in Simulink

What is the Difference between Scaled Double and Double Data
Types?. The storage container for both the scaled double and double data
types is floating-point double. Therefore both data type override settings,
Double and Scaled double, provide the range and precision advantages
of floating-point doubles. Scaled doubles retain the information about the
specified data type and scaling, but doubles do not retain this information.

Consider an example where you are storing 0.75001 degrees Celsius in a data
type sfix16_En13. For this data type:

• The slope, S 2 13 .

• The bias, B 0 .

Using the scaling equation V V SQ B≈ = +
~

, where V is the real-world value
and Q is the stored value.

• B 0 .

• V SQ Q
~

. 2 0 7500113 .

Because the storage container of the data type sfix16_En13 is 16 bits, the
stored integer Q can only be represented as an integer within these 16 bits, so
the ideal value of Q is quantized to 6144 causing precision loss.

If you override the data type sfix16_En13 with Double, the data type changes
to Double and you lose the information about the scaling. The stored-value
equals the real-world value 0.75001.

If you override the data type sfix16_En13 with Scaled Double, the data type
changes to flts16_En13. The scaling is still given by _En13 and is identical
to that of the original data type. The only difference is the storage container
used to hold the stored value which is now double so the stored-value is
6144.08192. This example shows one advantage of using scaled doubles: the
virtual elimination of quantization errors.

27-21

27 Data Types and Scaling

When to Use Scaled Doubles
The Fixed-Point Tool enables you to perform various data type overrides
on fixed-point signals in your simulations. Use scaled doubles to override
the fixed-point data types and scaling using double-precision numbers to
avoid quantization effects. Overriding the fixed-point data types provides a
floating-point benchmark that represents the ideal output.

Scaled doubles are useful for:

• Testing and debugging

• Applying data type overrides to individual subsystems

If you apply a data type override to subsystems in your model rather
than to the whole model, Scaled doubles provide the information that the
fixed-point portions of the model need for consistent data type propagation.

Use Scaled Doubles to Avoid Precision Loss
This example uses the ex_scaled_double model to show how you can avoid
precision loss by overriding the data types in your model with scaled doubles.
For more information about scaled doubles, see “Scaled Doubles” on page
27-20.

27-22

Fixed-Point Numbers in Simulink

About the Model

In this model:

• The Constant block output data type is fixdt(1,8,4).

• The Bitwise Operator block uses the AND operator and the bit mask 0xFF to
pass the input value to the output. Because the Treat mask as parameter
is set to Stored Integer, the block outputs the stored integer value, S, of

its input. The encoding scheme is V SQ B , where V is the real-world
value and Q is the stored integer value. For more information, see “Scaling”
on page 27-6.

27-23

27 Data Types and Scaling

Running the Example

1 Open the ex_scaled_double model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_scaled_double

2 From the model menu, select Analysis > Fixed-Point Tool.

The Fixed-Point Tool opens.

3 In the Fixed-Point Tool, set the Data type override parameter to Use
local settings and click Apply.

4 From the model menu, select Simulation > Run.

The simulation runs and the Display block displays 4.125 as the output
value of the Constant block. The Stored Integer Display block displays
0100 0010, which is the binary equivalent of the stored integer value.
Precision loss occurs because the output data type, fixdt(1,8,4), cannot
represent the output value 4.1 exactly.

5 In the Fixed-Point Tool, set the Data type override parameter to Scaled
double and the Data type override applies to parameter to All
numeric types. Then click Apply and rerun the simulation.

Note You cannot use a Data type override setting of Double because the
Bitwise Operator block does not support floating-point data types.

The simulation runs and this time the Display block correctly displays 4.1
as the output value of the Constant block. The Stored Integer Display
block displays 65, which is the binary equivalent of the stored integer
value. Because the model uses scaled doubles to override the data type
fixdt(1,8,4), the compiled output data type changes to flts8_En4, which
is the scaled doubles equivalent of fixdt(1,8,4). No precision loss occurs
because the scaled doubles retain the information about the specified data
type and scaling, and they use a double to hold the stored value.

27-24

Fixed-Point Numbers in Simulink

Display Port Data Types
To display the data types for the ports in your model.

1 From the Simulink Display menu, select Signals and Ports, and then
select Port Data Types.

The port display for fixed-point signals consists of three parts: the data
type, the number of bits, and the scaling. These three parts reflect the block
Output data type parameter value or the data type and scaling that is
inherited from the driving block or through back propagation.

The following model displays its port data types.

27-25

27 Data Types and Scaling

In the model, the data type displayed with the In1 block indicates that the
output data type name is sfix16_Sp2_B10. This corresponds to fixdt(1,
16, 0.2, 10) which is a signed 16 bit fixed-point number with slope 0.2 and
bias 10.0. The data type displayed with the In2 block indicates that the
output data type name is sfix16_En6. This corresponds to fixdt(1, 16, 6)
which is a signed 16 bit fixed-point number with fraction length of 6.

27-26

Floating-Point Numbers

Floating-Point Numbers

In this section...

“Floating-Point Numbers” on page 27-27

“Scientific Notation” on page 27-28

“The IEEE Format” on page 27-28

“Range and Precision” on page 27-30

“Exceptional Arithmetic” on page 27-33

Floating-Point Numbers
Fixed-point numbers are limited in that they cannot simultaneously represent
very large or very small numbers using a reasonable word size. This limitation
can be overcome by using scientific notation. With scientific notation, you can
dynamically place the binary point at a convenient location and use powers of
the binary to keep track of that location. Thus, you can represent a range of
very large and very small numbers with only a few digits.

You can represent any binary floating-point number in scientific notation

form as f e2 , where f is the fraction (or mantissa), 2 is the radix or base
(binary in this case), and e is the exponent of the radix. The radix is always a
positive number, while f and e can be positive or negative.

When performing arithmetic operations, floating-point hardware must take
into account that the sign, exponent, and fraction are all encoded within the
same binary word. This results in complex logic circuits when compared with
the circuits for binary fixed-point operations.

The Fixed-Point Designer software supports single-precision and
double-precision floating-point numbers as defined by the IEEE Standard
754. Additionally, a nonstandard IEEE-style number is supported.

27-27

27 Data Types and Scaling

Scientific Notation
A direct analogy exists between scientific notation and radix point notation.
For example, scientific notation using five decimal digits for the fraction
would take the form

± × = ± × = ± ×− +d dddd ddddd dddddp p p. . . ,10 0 10 0 104 1

where d 0 9,..., and p is an integer of unrestricted range.

Radix point notation using five bits for the fraction is the same except for
the number base

± × = ± × = ± ×− +b bbbb bbbbb bbbbbq q q. . . ,2 0 2 0 24 1

where b 0 1, and q is an integer of unrestricted range.

For fixed-point numbers, the exponent is fixed but there is no reason why the
binary point must be contiguous with the fraction. For more information, see
“Binary Point Interpretation” on page 27-4.

The IEEE Format
The IEEE Standard 754 has been widely adopted, and is used with virtually
all floating-point processors and arithmetic coprocessors—with the notable
exception of many DSP floating-point processors.

Among other things, this standard specifies four floating-point number
formats, of which singles and doubles are the most widely used. Each format
contains three components: a sign bit, a fraction field, and an exponent field.
These components, as well as the specific formats for singles and doubles, are
discussed in the sections that follow.

The Sign Bit
While two’s complement is the preferred representation for signed fixed-point
numbers, IEEE floating-point numbers use a sign/magnitude representation,
where the sign bit is explicitly included in the word. Using this representation,
a sign bit of 0 represents a positive number and a sign bit of 1 represents a
negative number.

27-28

Floating-Point Numbers

The Fraction Field
In general, floating-point numbers can be represented in many different ways
by shifting the number to the left or right of the binary point and decreasing
or increasing the exponent of the binary by a corresponding amount.

To simplify operations on these numbers, they are normalized in the IEEE
format. A normalized binary number has a fraction of the form 1.f where f has
a fixed size for a given data type. Since the leftmost fraction bit is always a 1,
it is unnecessary to store this bit and is therefore implicit (or hidden). Thus,
an n-bit fraction stores an n+1-bit number. The IEEE format also supports
denormalized numbers, which have a fraction of the form 0.f. Normalized and
denormalized formats are discussed in more detail in the next section.

The Exponent Field
In the IEEE format, exponent representations are biased. This means a fixed
value (the bias) is subtracted from the field to get the true exponent value.
For example, if the exponent field is 8 bits, then the numbers 0 through 255
are represented, and there is a bias of 127. Note that some values of the
exponent are reserved for flagging Inf (infinity), NaN (not-a-number), and
denormalized numbers, so the true exponent values range from -126 to 127.
See the sections “Inf” on page 27-33 and “NaN” on page 27-33.

Single-Precision Format
The IEEE single-precision floating-point format is a 32-bit word divided into a
1-bit sign indicator s, an 8-bit biased exponent e, and a 23-bit fraction f. For
more information, see “The Sign Bit” on page 27-28, “The Exponent Field”
on page 27-29, and “The Fraction Field” on page 27-29. A representation of
this format is given below.

The relationship between this format and the representation of real numbers
is given by

27-29

27 Data Types and Scaling

value

f es e

s e=

− < <

−

−

−

() ()(.) ,

() ()(

1 2 1 0 255

1 2

127

126

normalized,

00 0 0.) , ,f e fdenormalized,
exceptional value otherwise.

= >

⎧

⎨
⎪⎪

⎩
⎪

“Exceptional Arithmetic” on page 27-33 discusses denormalized values.

Double-Precision Format
The IEEE double-precision floating-point format is a 64-bit word divided into
a 1-bit sign indicator s, an 11-bit biased exponent e, and a 52-bit fraction f.For
more information, see “The Sign Bit” on page 27-28, “The Exponent Field” on
page 27-29, and “The Fraction Field” on page 27-29. A representation of this
format is shown in the following figure.

The relationship between this format and the representation of real numbers
is given by

value

f es e

s e=

− < <

−

−

−

() ()(.) ,

() (

1 2 1 0 2047

1 2

1023

102

normalized,
22 0 0 0)(.) ,f e fdenormalized,

exceptional value otherwise.
= >

⎧⎧

⎨
⎪

⎩
⎪

,

“Exceptional Arithmetic” on page 27-33 discusses denormalized values.

Range and Precision
The range of a number gives the limits of the representation while
the precision gives the distance between successive numbers in the
representation. The range and precision of an IEEE floating-point number
depend on the specific format.

27-30

Floating-Point Numbers

Range
The range of representable numbers for an IEEE floating-point number with f
bits allocated for the fraction, e bits allocated for the exponent, and the bias of

e given by bias e 2 11() is given below.

where

• Normalized positive numbers are defined within the range 2 1()bias to

()2 2 2 f bias .

• Normalized negative numbers are defined within the range 2 1()bias to

 ()2 2 2f bias .

• Positive numbers greater than ()2 2 2 f bias and negative numbers greater

than (_2 2 2f bias are overflows.

• Positive numbers less than 2 1()bias and negative numbers less than

 2 1()bias are either underflows or denormalized numbers.

• Zero is given by a special bit pattern, where e 0 and f 0 .

Overflows and underflows result from exceptional arithmetic conditions.
Floating-point numbers outside the defined range are always mapped to ±Inf.

Note You can use the MATLAB commands realmin and realmax to
determine the dynamic range of double-precision floating-point values for
your computer.

27-31

27 Data Types and Scaling

Precision
Because of a finite word size, a floating-point number is only an approximation
of the “true” value. Therefore, it is important to have an understanding of the
precision (or accuracy) of a floating-point result. In general, a value v with an

accuracy q is specified by v q . For IEEE floating-point numbers,

v = (–1)s(2e–bias)(1.f)

and

q = 2–f×2e–bias

Thus, the precision is associated with the number of bits in the fraction field.

Note In the MATLAB software, floating-point relative accuracy is given by
the command eps, which returns the distance from 1.0 to the next larger
floating-point number. For a computer that supports the IEEE Standard 754,
eps = 2-52 or 2.22045 · 10-16.

Floating-Point Data Type Parameters
The high and low limits, exponent bias, and precision for the supported
floating-point data types are given in the following table.

Data Type Low Limit High Limit Exponent Bias Precision

Single 2-126 ≈ 10-38 2128 ≈ 3 · 1038 127 2-23 ≈ 10-7

Double 2-1022 ≈ 2 · 10-308 21024 ≈ 2 · 10308 1023 2-52 ≈ 10-16

Nonstandard 2(1 - bias) (2 - 2-f) · 2bias 2(e - 1) - 1 2-f

Because of the sign/magnitude representation of floating-point numbers,
there are two representations of zero, one positive and one negative. For both
representations e = 0 and f.0 = 0.0.

27-32

Floating-Point Numbers

Exceptional Arithmetic
In addition to specifying a floating-point format, the IEEE Standard 754
specifies practices and procedures so that predictable results are produced
independently of the hardware platform. Specifically, denormalized numbers,
Inf, and NaN are defined to deal with exceptional arithmetic (underflow and
overflow).

If an underflow or overflow is handled as Inf or NaN, then significant
processor overhead is required to deal with this exception. Although the IEEE
Standard 754 specifies practices and procedures to deal with exceptional
arithmetic conditions in a consistent manner, microprocessor manufacturers
might handle these conditions in ways that depart from the standard.

Denormalized Numbers
Denormalized numbers are used to handle cases of exponent underflow. When
the exponent of the result is too small (i.e., a negative exponent with too large
a magnitude), the result is denormalized by right-shifting the fraction and
leaving the exponent at its minimum value. The use of denormalized numbers
is also referred to as gradual underflow. Without denormalized numbers, the
gap between the smallest representable nonzero number and zero is much
wider than the gap between the smallest representable nonzero number and
the next larger number. Gradual underflow fills that gap and reduces the
impact of exponent underflow to a level comparable with roundoff among the
normalized numbers. Thus, denormalized numbers provide extended range
for small numbers at the expense of precision.

Inf
Arithmetic involving Inf (infinity) is treated as the limiting case of real
arithmetic, with infinite values defined as those outside the range of
representable numbers, or –∞ ≤ (representable numbers) < ∞. With the
exception of the special cases discussed below (NaN), any arithmetic operation
involving Inf yields Inf. Inf is represented by the largest biased exponent
allowed by the format and a fraction of zero.

NaN
A NaN (not-a-number) is a symbolic entity encoded in floating-point format.
There are two types of NaN: signaling and quiet. A signaling NaN signals an

27-33

27 Data Types and Scaling

invalid operation exception. A quiet NaN propagates through almost every
arithmetic operation without signaling an exception. The following operations
result in a NaN: ∞–∞, –∞+∞, 0×∞, 0/0, and ∞/∞.

Both types of NaN are represented by the largest biased exponent allowed by
the format and a fraction that is nonzero. The bit pattern for a quiet NaN is
given by 0.f where the most significant number in fmust be a one, while the bit
pattern for a signaling NaN is given by 0.f where the most significant number
in f must be zero and at least one of the remaining numbers must be nonzero.

27-34

28

Arithmetic Operations

• “Fixed-Point Arithmetic Operations” on page 28-2

• “Precision” on page 28-3

• “Range” on page 28-27

• “Recommendations for Arithmetic and Scaling” on page 28-33

• “Parameter and Signal Conversions” on page 28-44

• “Rules for Arithmetic Operations” on page 28-49

• “Conversions and Arithmetic Operations” on page 28-67

28 Arithmetic Operations

Fixed-Point Arithmetic Operations
When developing a dynamic system using floating-point arithmetic, you
generally don’t have to worry about numerical limitations since floating-point
data types have high precision and range. Conversely, when working with
fixed-point arithmetic, you must consider these factors when developing
dynamic systems:

• Overflow

Adding two sufficiently large negative or positive values can produce a
result that does not fit into the representation. This will have an adverse
effect on the control system.

• Quantization

Fixed-point values are rounded. Therefore, the output signal to the
plant and the input signal to the control system do not have the same
characteristics as the ideal discrete-time signal.

• Computational noise

The accumulated errors that result from the rounding of individual terms
within the realization introduce noise into the control signal.

• Limit cycles

In the ideal system, the output of a stable transfer function (digital filter)
approaches some constant for a constant input. With quantization, limit
cycles occur where the output oscillates between two values in steady state.

This chapter describes the limitations involved when arithmetic operations
are performed using encoded fixed-point variables. It also provides
recommendations for encoding fixed-point variables such that simulations
and generated code are reasonably efficient.

28-2

Precision

Precision

In this section...

“Limitations on Precision” on page 28-3

“Rounding” on page 28-4

“Choose a Rounding Mode” on page 28-4

“Rounding Modes for Fixed-Point Simulink Blocks” on page 28-5

“Rounding Mode: Ceiling” on page 28-7

“Rounding Mode: Convergent” on page 28-8

“Rounding Mode: Floor” on page 28-10

“Rounding Mode: Nearest” on page 28-11

“Rounding Mode: Round” on page 28-12

“Rounding Mode: Simplest” on page 28-14

“Rounding Mode: Zero” on page 28-17

“Pad with Trailing Zeros” on page 28-19

“Limitations on Precision and Errors” on page 28-20

“Maximize Precision” on page 28-21

“Net Slope and Net Bias Precision” on page 28-21

“Detect Net Slope and Bias Precision Issues” on page 28-24

“Detect Fixed-Point Constant Precision Loss” on page 28-25

Limitations on Precision
Computer words consist of a finite numbers of bits. This means that the
binary encoding of variables is only an approximation of an arbitrarily precise
real-world value. Therefore, the limitations of the binary representation
automatically introduce limitations on the precision of the value. For a
general discussion of range and precision, refer to “Range and Precision” on
page 27-10.

The precision of a fixed-point word depends on the word size and binary point
location. Extending the precision of a word can always be accomplished with

28-3

28 Arithmetic Operations

more bits, but you face practical limitations with this approach. Instead, you
must carefully select the data type, word size, and scaling such that numbers
are accurately represented. Rounding and padding with trailing zeros are
typical methods implemented on processors to deal with the precision of
binary words.

Rounding
The result of any operation on a fixed-point number is typically stored in a
register that is longer than the number’s original format. When the result is
put back into the original format, the extra bits must be disposed of. That is,
the result must be rounded. Rounding involves going from high precision to
lower precision and produces quantization errors and computational noise.

Choose a Rounding Mode
To choose the most suitable rounding mode for your application, you need to
consider your system requirements and the properties of each rounding mode.
The most important properties to consider are:

• Cost — Independent of the hardware being used, how much processing
expense does the rounding method require?

• Bias — What is the expected value of the rounded values minus the
original values?

• Possibility of overflow — Does the rounding method introduce the
possibility of overflow?

For more information on when to use each rounding mode, see “Rounding
Methods” on page 1-10 in the Fixed-Point Designer User’s Guide.

Choosing a Rounding Mode for Diagnostic Purposes
Rounding toward ceiling and rounding toward floor are sometimes useful for
diagnostic purposes. For example, after a series of arithmetic operations,
you may not know the exact answer because of word-size limitations, which
introduce rounding. If every operation in the series is performed twice, once
rounding to positive infinity and once rounding to negative infinity, you obtain
an upper limit and a lower limit on the correct answer. You can then decide if
the result is sufficiently accurate or if additional analysis is necessary.

28-4

Precision

Rounding Modes for Fixed-Point Simulink Blocks
Fixed-point Simulink blocks support the rounding modes shown in the
expanded drop-down menu of the following dialog box.

The following table illustrates the differences between these rounding modes:

28-5

28 Arithmetic Operations

Rounding Mode Description Tie Handling

Ceiling Rounds to the nearest
representable number
in the direction of
positive infinity.

N/A

Floor Rounds to the nearest
representable number
in the direction of
negative infinity.

N/A

Zero Rounds to the nearest
representable number
in the direction of zero.

N/A

Convergent Rounds to the nearest
representable number.

Ties are rounded
toward the nearest
even integer.

Nearest Rounds to the nearest
representable number.

Ties are rounded to the
closest representable
number in the direction
of positive infinity.

Round Rounds to the nearest
representable number.

For positive numbers,
ties are rounded
toward the closest
representable number
in the direction of
positive infinity.

For negative numbers,
ties are rounded
toward the closest
representable number
in the direction of
negative infinity.

Simplest Automatically chooses
between Floor and
Zero to produce
generated code that is
as efficient as possible.

N/A

28-6

Precision

Rounding Mode: Ceiling
When you round toward ceiling, both positive and negative numbers are
rounded toward positive infinity. As a result, a positive cumulative bias is
introduced in the number.

In the MATLAB software, you can round to ceiling using the ceil function.
Rounding toward ceiling is shown in the following figure.

3��	�
����	��	�
����
	��%��	��������	��*����#

28-7

28 Arithmetic Operations

Rounding Mode: Convergent
Convergent rounds toward the nearest representable value with ties rounding
toward the nearest even integer. It eliminates bias due to rounding. However,
it introduces the possibility of overflow.

28-8

Precision

In the MATLAB software, you can perform convergent rounding using the
convergent function. Convergent rounding is shown in the following figure.

3��	�
����	��	�
����	��	�)�
������	�����������	�
���

(���	��	�
����	��	�)�
������	����	�
���

28-9

28 Arithmetic Operations

Rounding Mode: Floor
When you round toward floor, both positive and negative numbers are
rounded to negative infinity. As a result, a negative cumulative bias is
introduced in the number.

In the MATLAB software, you can round to floor using the floor function.
Rounding toward floor is shown in the following figure.

3��	�
����	��	�
����
��%��	��������	��*����#

28-10

Precision

Rounding Mode: Nearest
When you round toward nearest, the number is rounded to the nearest
representable value. In the case of a tie, nearest rounds to the closest
representable number in the direction of positive infinity.

In the Fixed-Point Designer software, you can round to nearest using the
nearest function. Rounding toward nearest is shown in the following figure.

3��	�
����	��	�
����	��
�)�	������	�����������	�
���

(���	��	�
����		��	�)�	$������
�����������	�
���	��	�)�
���$����	�*	��������	��*����#

28-11

28 Arithmetic Operations

Rounding Mode: Round
Round rounds to the closest representable number. In the case of a tie, it
rounds:

• Positive numbers to the closest representable number in the direction of
positive infinity.

• Negative numbers to the closest representable number in the direction
of negative infinity.

As a result:

• A small negative bias is introduced for negative samples.

• No bias is introduced for samples with evenly distributed positive and
negative values.

• A small positive bias is introduced for positive samples.

28-12

Precision

In the MATLAB software, you can perform this type of rounding using the
round function. The rounding mode Round is shown in the following figure.

3��	�
����	��	�
����	��	�)�
������	�����������	�
���

��	��������	�
����.	����	��	�
����
��	�)�	$������	�����������	�
���	��
�)�	���$����	�*	��������	��*����#

��	��������	�
����.	����	��
�
����		��	�)�	$������	�����������
�
���	��	�)�	���$����	�*	��������
��*����#

28-13

28 Arithmetic Operations

Rounding Mode: Simplest
The simplest rounding mode attempts to reduce or eliminate the need for
extra rounding code in your generated code using a combination of techniques,
discussed in the following sections:

• “Optimize Rounding for Casts” on page 28-14

• “Optimize Rounding for High-Level Arithmetic Operations” on page 28-15

• “Optimize Rounding for Intermediate Arithmetic Operations” on page 28-16

In nearly all cases, the simplest rounding mode produces the most efficient
generated code. For a very specialized case of division that meets three specific
criteria, round to floor might be more efficient. These three criteria are:

• Fixed-point/integer signed division

• Denominator is an invariant constant

• Denominator is an exact power of two

For this case, set the rounding mode to floor and theModel Configuration
Parameters > Hardware Implementation > Production Hardware >
Signed integer division rounds to parameter to describe the rounding
behavior of your production target.

Optimize Rounding for Casts
The Data Type Conversion block casts a signal with one data type to another
data type. When the block casts the signal to a data type with a shorter word
length than the original data type, precision is lost and rounding occurs. The
simplest rounding mode automatically chooses the best rounding for these
cases based on the following rules:

• When casting from one integer or fixed-point data type to another, the
simplest mode rounds toward floor.

• When casting from a floating-point data type to an integer or fixed-point
data type, the simplest mode rounds toward zero.

28-14

Precision

Optimize Rounding for High-Level Arithmetic Operations
The simplest rounding mode chooses the best rounding for each
high-level arithmetic operation. For example, consider the operation
y = u1 × u2 / u3 implemented using a Product block:

As stated in the C standard, the most efficient rounding mode for
multiplication operations is always floor. However, the C standard does
not specify the rounding mode for division in cases where at least one of
the operands is negative. Therefore, the most efficient rounding mode for a
divide operation with signed data types can be floor or zero, depending on
your production target.

The simplest rounding mode:

• Rounds to floor for all nondivision operations.

• Rounds to zero or floor for division, depending on the setting of the
Model Configuration Parameters > Hardware Implementation
> Production Hardware > Signed integer division rounds to
parameter.

To get the most efficient code, you must set the Signed integer division
rounds to parameter to specify whether your production target rounds
to zero or to floor for integer division. Most production targets round
to zero for integer division operations. Note that Simplest rounding
enables “mixed-mode” rounding for such cases, as it rounds to floor for
multiplication and to zero for division.

If the Signed integer division rounds to parameter is set to Undefined,
the simplest rounding mode might not be able to produce the most efficient
code. The simplest mode rounds to zero for division for this case, but it

28-15

28 Arithmetic Operations

cannot rely on your production target to perform the rounding, because the
parameter is Undefined. Therefore, you need additional rounding code to
ensure rounding to zero behavior.

Note For signed fixed-point division where the denominator is an
invariant constant power of 2, the simplest rounding mode does not
generate the most efficient code. In this case, set the rounding mode to floor.

Optimize Rounding for Intermediate Arithmetic Operations
For fixed-point arithmetic with nonzero slope and bias, the simplest rounding
mode also chooses the best rounding for each intermediate arithmetic
operation. For example, consider the operation y = u1 / u2 implemented using
a Product block, where u1 and u2 are fixed-point quantities:

As discussed in “Fixed-Point Numbers” on page 27-3, each fixed-point quantity
is calculated using its slope, bias, and stored integer. So in this example,
not only is there the high-level divide called for by the block operation, but
intermediate additions and multiplies are performed:

y
u
u

S Q B
S Q B

= =
+
+

1

2

1 1 1

2 2 2

The simplest rounding mode performs the best rounding for each of these
operations, high-level and intermediate, to produce the most efficient code.
The rules used to select the appropriate rounding for intermediate arithmetic
operations are the same as those described in “Optimize Rounding for
High-Level Arithmetic Operations” on page 28-15. Again, this enables

28-16

Precision

mixed-mode rounding, with the most common case being round toward floor
used for additions, subtractions, and multiplies, and round toward zero used
for divides.

Remember that generating the most efficient code using the simplest
rounding mode requires you to set theModel Configuration Parameters >
Hardware Implementation > Production Hardware > Signed integer
division rounds to parameter to describe the rounding behavior of your
production target.

Note For signed fixed-point division where the denominator is an invariant
constant power of 2, the simplest rounding mode does not generate the most
efficient code. In this case, set the rounding mode to floor.

Rounding Mode: Zero
Rounding towards zero is the simplest rounding mode computationally. All
digits beyond the number required are dropped. Rounding towards zero
results in a number whose magnitude is always less than or equal to the
more precise original value. In the MATLAB software, you can round to zero
using the fix function.

Rounding toward zero introduces a cumulative downward bias in the result
for positive numbers and a cumulative upward bias in the result for negative
numbers. That is, all positive numbers are rounded to smaller positive
numbers, while all negative numbers are rounded to smaller negative
numbers. Rounding toward zero is shown in the following figure.

28-17

28 Arithmetic Operations

:�������	�
����	��	�
����
��	������	��������	�
����

;�������	�
����	��	�
����
��	������	��������	�
����

Rounding to Zero Versus Truncation
Rounding to zero and truncation or chopping are sometimes thought to mean
the same thing. However, the results produced by rounding to zero and

28-18

Precision

truncation are different for unsigned and two’s complement numbers. For
this reason, the ambiguous term “truncation” is not used in this guide, and
explicit rounding modes are used instead.

To illustrate this point, consider rounding a 5-bit unsigned number to zero
by dropping (truncating) the two least significant bits. For example, the
unsigned number 100.01 = 4.25 is truncated to 100 = 4. Therefore, truncating
an unsigned number is equivalent to rounding to zero or rounding to floor.

Now consider rounding a 5-bit two’s complement number by dropping the
two least significant bits. At first glance, you may think truncating a two’s
complement number is the same as rounding to zero. For example, dropping
the last two digits of -3.75 yields -3.00. However, digital hardware performing
two’s complement arithmetic yields a different result. Specifically, the
number 100.01 = -3.75 truncates to 100 = -4, which is rounding to floor.

Pad with Trailing Zeros
Padding with trailing zeros involves extending the least significant bit (LSB)
of a number with extra bits. This method involves going from low precision to
higher precision.

For example, suppose two numbers are subtracted from each other. First,
the exponents must be aligned, which typically involves a right shift of the
number with the smaller value. In performing this shift, significant digits
can “fall off” to the right. However, when the appropriate number of extra
bits is appended, the precision of the result is maximized. Consider two 8-bit
fixed-point numbers that are close in value and subtracted from each other:

1 0000000 2 1 1111111 2 1. . ,× − × −q q

where q is an integer. To perform this operation, the exponents must be equal:

1 0000000 2

0 1111111 2

0 0000001 2

.

.

.
.

×

− ×
×

q

q

q

28-19

28 Arithmetic Operations

If the top number is padded by two zeros and the bottom number is padded
with one zero, then the above equation becomes

1 000000000 2

0 111111110 2

0 000000010 2

.

.

.
,

×

− ×
×

q

q

q

which produces a more precise result. An example of padding with trailing
zeros in a Simulink model is illustrated in “Digital Controller Realization” on
page 34-47.

Limitations on Precision and Errors
Fixed-point variables have a limited precision because digital systems
represent numbers with a finite number of bits. For example, suppose you
must represent the real-world number 35.375 with a fixed-point number.
Using the encoding scheme described in “Scaling” on page 27-6, the
representation is

V V SQ B Q≈ = + = +− 2 322 ,

where V = 35.375.

The two closest approximations to the real-world value are Q = 13 and Q = 14:

V

V

= () + =

= () + =

−

−

2 13 32 35 25

2 14 32 35 50

2

2

. ,

. .

In either case, the absolute error is the same:

V V
S F E

− = = =0 125
2

2
2

. .

For fixed-point values within the limited range, this represents the worst-case
error if round-to-nearest is used. If other rounding modes are used, the
worst-case error can be twice as large:

28-20

Precision

V V F E− < 2 .

Maximize Precision
Precision is limited by slope. To achieve maximum precision, you should
make the slope as small as possible while keeping the range adequately large.
The bias is adjusted in coordination with the slope.

Assume the maximum and minimum real-world values are given by max(V)
and min(V), respectively. These limits might be known based on physical
principles or engineering considerations. To maximize the precision, you must
decide upon a rounding scheme and whether overflows saturate or wrap.
To simplify matters, this example assumes the minimum real-world value
corresponds to the minimum encoded value, and the maximum real-world
value corresponds to the maximum encoded value. Using the encoding scheme
described in “Scaling” on page 27-6, these values are given by

max max

min min .

V F Q B

V F Q B

E

E

() = ()() +

() = ()() +

2

2

Solving for the slope, you get

F
V V

Q Q

V VE
ws

2
2 1

=
() − ()
() − () =

() − ()
−

max min

max min

max min
.

This formula is independent of rounding and overflow issues, and depends
only on the word size, ws.

Net Slope and Net Bias Precision

What are Net Slope and Net Bias?
You can represent a fixed-point number by a general slope and bias encoding
scheme

V V SQ B≈ = + ,

28-21

28 Arithmetic Operations

where:

• V is an arbitrarily precise real-world value.

• V is the approximate real-world value.

• Q, the stored value, is an integer that encodes V.

• S = F2E is the slope.

• B is the bias.

For a cast operation,

S Q B S Q Ba a a b b b+ = +

or

Q
S Q

S
B B

Sa
b b

a

b a

a
= +

−⎛

⎝
⎜

⎞

⎠
⎟ ,

where:

•
S
S

b

a is the net slope.

•
B B

S
b a

a

−
is the net bias.

Detecting Net Slope and Net Bias Precision Issues
Precision issues might occur in the fixed-point constants, net slope and net
bias, due to quantization errors when you convert from floating point to fixed
point. These fixed-point constant precision issues can result in numerical
inaccuracy in your model.

You can configure your model to alert you when fixed-point constant precision
issues occur. For more information, see “Detect Net Slope and Bias Precision
Issues” on page 28-24. The Fixed-Point Designer software provides the
following information:

28-22

Precision

• The type of precision issue: underflow, overflow, or precision loss.

• The original value of the fixed-point constant.

• The quantized value of the fixed-point constant.

• The error in the value of the fixed-point constant.

• The block that introduced the error.

This information warns you that the outputs from this block are not accurate.
If possible, change the data types in your model to fix the issue.

Fixed-Point Constant Underflow
Fixed-point constant underflow occurs when the Fixed-Point Designer
software encounters a fixed-point constant whose data type does not have
enough precision to represent the ideal value of the constant, because the
ideal value is too close to zero. Casting the ideal value to the fixed-point data
type causes the value of the fixed-point constant to become zero. Therefore
the value of the fixed-point constant differs from its ideal value.

Fixed-Point Constant Overflow
Fixed-point constant overflow occurs when the Fixed-Point Designer software
converts a fixed-point constant to a data type whose range is not large enough
to accommodate the ideal value of the constant with reasonable precision.
The data type cannot accurately represent the ideal value because the ideal
value is either too large or too small. Casting the ideal value to the fixed-point
data type causes overflow. For example, suppose the ideal value is 200 and
the converted data type is int8. Overflow occurs in this case because the
maximum value that int8 can represent is 127.

The Fixed-Point Designer software reports an overflow error if the quantized
value differs from the ideal value by more than the precision for the data type.
The precision for a data type is approximately equal to the default scaling (for
more information, see “Fixed-Point Data Type Parameters” on page 27-11.)
Therefore, for positive values, the Fixed-Point Designer software treats errors
greater than the slope as overflows. For negative values, it treats errors
greater than or equal to the slope as overflows.

28-23

28 Arithmetic Operations

For example, the maximum value that int8 can represent is 127. The
precision for int8 is 1.0. An ideal value of 127.3 quantizes to 127 with
an absolute error of 0.3. Although the ideal value 127.3 is greater than
the maximum representable value for int8, the quantization error is small
relative to the precision of int8. Therefore the Fixed-Point Designer software
does not report an overflow. However, an ideal value of 128.1 does cause
an overflow because the quantization error is 1.1, which is larger than the
precision for int8.

Note Fixed-point constant overflow differs from fixed-point constant
precision loss. Precision loss occurs when the ideal fixed-point constant value
is within the range of the current data type and scaling, but the software
cannot represent this value exactly.

Fixed-Point Constant Precision Loss
Fixed-point constant precision loss occurs when the Fixed-Point Designer
software converts a fixed-point constant to a data type without enough
precision to represent the exact value of the constant. As a result, the
quantized value differs from the ideal value. For an example of this behavior,
see “Detect Fixed-Point Constant Precision Loss” on page 28-25.

Note Fixed-point constant precision loss differs from fixed-point constant
overflow. Overflow occurs when the range of the parameter data type, that
is, the maximum value that it can represent, is smaller than the ideal value
of the parameter.

Detect Net Slope and Bias Precision Issues
To receive alerts when fixed-point constant precision issues occur, use these
options available in the Simulink Configuration Parameters dialog box, on
the Diagnostics > Type Conversion pane. Set the parameters to warning
or error so that Simulink alerts you when precision issues occur.

28-24

Precision

Configuration
Parameter

Specifies Default

“Detect underflow” Diagnostic action when
a fixed-point constant
underflow occurs
during simulation

Does not generate a
warning or error.

“Detect overflow” Diagnostic action when
a fixed-point constant
overflow occurs during
simulation

Does not generate a
warning or error.

“Detect precision loss” Diagnostic action when
a fixed-point constant
precision loss occurs
during simulation

Does not generate a
warning or error.

Detect Fixed-Point Constant Precision Loss
This example shows how to detect fixed-point constant precision loss. The
example uses the following model.

For the Data Type Conversion block in this model, the:

• Input slope, SU = 1

• Output slope, SY = 1.000001

• Net slope, SU/SY = 1/1.000001

When you simulate the model, a net slope quantization error occurs.

To set up the model and run the simulation:

1 For the Inport block, set the Output data type to int16.

28-25

28 Arithmetic Operations

2 For the Data Type Conversion block, set the Output data type to
fixdt(1,16, 1.000001, 0).

3 Set the Diagnostics > Type Conversion > Detect precision loss
configuration parameter to error.

4 In your Simulink model window, select Simulation > Run.

The Fixed-Point Designer software generates an error informing you that
net scaling quantization caused precision loss. The message provides the
following information:

• The block that introduced the error.

• The original value of the net slope.

• The quantized value of the net slope.

• The error in the value of the net slope.

28-26

Range

Range

In this section...

“Limitations on Range” on page 28-27

“What Are Saturation and Wrapping?” on page 28-28

“Saturation and Wrapping” on page 28-28

“Guard Bits” on page 28-31

“Determine the Range of Fixed-Point Numbers” on page 28-31

Limitations on Range
Limitations on the range of a fixed-point word occur for the same reason as
limitations on its precision. Namely, fixed-point words have limited size. For
a general discussion of range and precision, refer to “Range and Precision” on
page 27-10.

In binary arithmetic, a processor might need to take an n-bit fixed-point
number and store it in m bits, where m n≠ . If m < n, the range of the
number has been reduced and an operation can produce an overflow condition.
Some processors identify this condition as Inf or NaN. For other processors,
especially digital signal processors (DSPs), the value saturates or wraps. If m
> n, the range of the number has been extended. Extending the range of a
word requires the inclusion of guard bits, which act to guard against potential
overflow. In both cases, the range depends on the word’s size and scaling.

The Simulink software supports saturation and wrapping for all fixed-point
data types, while guard bits are supported only for fractional data types.
As shown in the following figure, you can select saturation or wrapping for
fixed-point Simulink blocks with the Saturate on integer overflow check
box. By setting Output data type to sfrac(36,4), you specify a 36–bit
signed fractional data type with 4 guard bits (total word size is 40 bits).

28-27

28 Arithmetic Operations

What Are Saturation and Wrapping?
Saturation and wrapping describe a particular way that some processors deal
with overflow conditions. For example, the ADSP-2100 family of processors
from Analog Devices™ supports either of these modes. If a register has
a saturation mode of operation, then an overflow condition is set to the
maximum positive or negative value allowed. Conversely, if a register has a
wrapping mode of operation, an overflow condition is set to the appropriate
value within the range of the representation.

Saturation and Wrapping
Consider an 8-bit unsigned word with binary-point-only scaling of 2-5. Suppose
this data type must represent a sine wave that ranges from -4 to 4. For values
between 0 and 4, the word can represent these numbers without regard to
overflow. This is not the case with negative numbers. If overflows saturate,

28-28

Range

all negative values are set to zero, which is the smallest number representable
by the data type. The saturation of overflows is shown in the following figure.

0 0.4 0.8 1.2 1.6 2
0

2

4

6

8

Time

Overflows Saturate

Negative values
saturate to zero

Negative values
saturate to zero

If overflows wrap, all negative values are set to the appropriate positive value.
The wrapping of overflows is shown in the following figure.

28-29

28 Arithmetic Operations

0 0.4 0.8 1.2 1.6 2
0

2

4

6

8
Overflows Wrap

Time

Negative values
wrap to positive
values.

Negative values
wrap to positive
values.

Note For most control applications, saturation is the safer way of dealing
with fixed-point overflow. However, some processor architectures allow
automatic saturation by hardware. If hardware saturation is not available,
then extra software is required, resulting in larger, slower programs. This
cost is justified in some designs—perhaps for safety reasons. Other designs
accept wrapping to obtain the smallest, fastest software.

28-30

Range

Guard Bits
You can eliminate the possibility of overflow by appending the appropriate
number of guard bits to a binary word.

For a two’s complement signed value, the guard bits are filled with either 0’s
or 1’s depending on the value of the most significant bit (MSB). This is called
sign extension. For example, consider a 4-bit two’s complement number with
value 1011. If this number is extended in range to 7 bits with sign extension,
then the number becomes 1111101 and the value remains the same.

Guard bits are supported only for fractional data types. For both signed and
unsigned fractionals, the guard bits lie to the left of the default binary point.

Determine the Range of Fixed-Point Numbers
Fixed-point variables have a limited range for the same reason they have
limited precision—because digital systems represent numbers with a finite
number of bits. As a general example, consider the case where an integer
is represented as a fixed-point word of size ws. The range for signed and
unsigned words is given by

max min ,Q Q() − ()

where

min

max

Q

Q

ws

w

() =
−

⎧
⎨
⎪

⎩⎪

() =

−

0 unsigned,

 signed,

2

2

1

ss

ws

−

−

⎧
⎨
⎪

⎩⎪
−

1

2 11

 unsigned,

 signed.

Using the general [Slope Bias] encoding scheme described in “Scaling” on
page 27-6, the approximate real-world value has the range

max min , V V() − ()

where

28-31

28 Arithmetic Operations

min V
F BE ws

() =
− () +−

B unsigned,

2 2 1 signed,

 +B unsigned,

⎧
⎨
⎪

⎩⎪

() =
−()

−
max V

F

F

E ws

E ws

2 2 1

2 2 1 −−()
⎧
⎨
⎪

⎩⎪ 1 +B signed.

If the real-world value exceeds the limited range of the approximate value,
then the accuracy of the representation can become significantly worse.

28-32

Recommendations for Arithmetic and Scaling

Recommendations for Arithmetic and Scaling

In this section...

“Arithmetic Operations and Fixed-Point Scaling” on page 28-33

“Addition” on page 28-34

“Accumulation” on page 28-37

“Multiplication” on page 28-37

“Gain” on page 28-39

“Division” on page 28-41

“Summary” on page 28-43

Arithmetic Operations and Fixed-Point Scaling
The sections that follow describe the relationship between arithmetic
operations and fixed-point scaling, and offer some basic recommendations that
may be appropriate for your fixed-point design. For each arithmetic operation,

• The general [Slope Bias] encoding scheme described in “Scaling” on page
27-6 is used.

• The scaling of the result is automatically selected based on the scaling of
the two inputs. In other words, the scaling is inherited.

• Scaling choices are based on

- Minimizing the number of arithmetic operations of the result

- Maximizing the precision of the result

Additionally, binary-point-only scaling is presented as a special case of the
general encoding scheme.

In embedded systems, the scaling of variables at the hardware interface
(the ADC or DAC) is fixed. However for most other variables, the scaling is
something you can choose to give the best design. When scaling fixed-point
variables, it is important to remember that

• Your scaling choices depend on the particular design you are simulating.

28-33

28 Arithmetic Operations

• There is no best scaling approach. All choices have associated advantages
and disadvantages. It is the goal of this section to expose these advantages
and disadvantages to you.

Addition
Consider the addition of two real-world values:

V V Va b c= + .

These values are represented by the general [Slope Bias] encoding scheme
described in “Scaling” on page 27-6:

V F Q Bi i
E

i i
i= +2 .

In a fixed-point system, the addition of values results in finding the variable
Qa:

Q
F
F

Q
F
F

Q
B B B

Fa
b

a

E E
b

c

a

E E
c

b c a

a

Eb a c a a= + +
+ −− − −2 2 2 .

This formula shows

• In general, Qa is not computed through a simple addition of Qb and Qc.

• In general, there are two multiplications of a constant and a variable, two
additions, and some additional bit shifting.

Inherited Scaling for Speed
In the process of finding the scaling of the sum, one reasonable goal is to
simplify the calculations. Simplifying the calculations should reduce the
number of operations, thereby increasing execution speed. The following
choices can help to minimize the number of arithmetic operations:

• Set Ba = Bb + Bc. This eliminates one addition.

• Set Fa = Fb or Fa = Fc. Either choice eliminates one of the two constant
times variable multiplications.

28-34

Recommendations for Arithmetic and Scaling

The resulting formula is

Q Q
F
F

Qa
E E

b
c

a

E E
c

b a c a= +− −2 2

or

Q
F
F

Q Qa
b

a

E E
b

E E
c

b a c a= +− −2 2 .

These equations appear to be equivalent. However, your choice of rounding
and precision may make one choice stand out over the other. To further
simplify matters, you could choose Ea = Ec or Ea = Eb. This will eliminate
some bit shifting.

Inherited Scaling for Maximum Precision
In the process of finding the scaling of the sum, one reasonable goal is
maximum precision. You can determine the maximum-precision scaling if the
range of the variable is known. “Maximize Precision” on page 28-21 shows
that you can determine the range of a fixed-point operation from max(Va) and
min(Va). For a summation, you can determine the range from

min min min ,

max max max .

V V V

V V V

a b c

a b c

() = () + ()
() = () + ()

You can now derive the maximum-precision slope:

F
V V

F F

a
E a a

ws

a
E ws

c
E ws

a

a

b b c c

2
2 1

2 2 1 2 2 1

2

=
() − ()

−

=
−() + −()

max min

wwsa − 1
.

In most cases the input and output word sizes are much greater than one,
and the slope becomes

28-35

28 Arithmetic Operations

F F Fa
E

b
E ws ws

c
E ws wsa b b a c c a2 2 2≈ ++ − + − ,

which depends only on the size of the input and output words. The
corresponding bias is

B V F Qa a a
E

a
a= () − ()min min . 2

The value of the bias depends on whether the inputs and output are signed
or unsigned numbers.

If the inputs and output are all unsigned, then the minimum values for these
variables are all zero and the bias reduces to a particularly simple form:

B B Ba b c= + .

If the inputs and the output are all signed, then the bias becomes

B B B F F

B B

a b c b
E ws ws

c
E ws ws

a b

b b b c c c≈ + + − +() + − +()
≈

− − − −2 2 2 2 2 21 1 1 1 ,

++ Bc.

Binary-Point-Only Scaling
For binary-point-only scaling, finding Qa results in this simple expression:

Q Q Qa
E E

b
E E

c
b a c a= +− −2 2 .

This scaling choice results in only one addition and some bit shifting. The
avoidance of any multiplications is a big advantage of binary-point-only
scaling.

Note The subtraction of values produces results that are analogous to those
produced by the addition of values.

28-36

Recommendations for Arithmetic and Scaling

Accumulation
The accumulation of values is closely associated with addition:

V V Va new a old b_ _ .= +

Finding Qa_new involves one multiplication of a constant and a variable, two
additions, and some bit shifting:

Q Q
F
F

Q
B
Fa new a old

b

a

E E
b

b

a

Eb a a
_ _ .= + +− −2 2

The important difference for fixed-point implementations is that the scaling of
the output is identical to the scaling of the first input.

Binary-Point-Only Scaling
For binary-point-only scaling, finding Qa_new results in this simple expression:

Q Q Qa new a old
E E

b
b a

_ _ .= + −2

This scaling option only involves one addition and some bit shifting.

Note The negative accumulation of values produces results that are
analogous to those produced by the accumulation of values.

Multiplication
Consider the multiplication of two real-world values:

V V Va b c= .

These values are represented by the general [Slope Bias] encoding scheme
described in “Scaling” on page 27-6:

V F Q Bi i
E

i i
i= +2 .

28-37

28 Arithmetic Operations

In a fixed-point system, the multiplication of values results in finding the
variable Qa:

Q
F F
F

Q Q
F B
F

Q

F B
F

Q
B B

a
b c

a

E E E
b c

b c

a

E E
b

c b

a

E E
c

b c

b c a b a

c a

= +

+ +
−

+ − −

−

2 2

2
BB

F
a

a

Ea2− .

This formula shows

• In general, Qa is not computed through a simple multiplication of Qb and Qc.

• In general, there is one multiplication of a constant and two variables, two
multiplications of a constant and a variable, three additions, and some
additional bit shifting.

Inherited Scaling for Speed
The number of arithmetic operations can be reduced with these choices:

• Set Ba = BbBc. This eliminates one addition operation.

• Set Fa = FbFc. This simplifies the triple multiplication—certainly the most
difficult part of the equation to implement.

• Set Ea = Eb + Ec. This eliminates some of the bit shifting.

The resulting formula is

Q Q Q
B
F

Q
B
F

Qa b c
c

c

E
b

b

b

E
c

c b= + +− −2 2 .

Inherited Scaling for Maximum Precision
You can determine the maximum-precision scaling if the range of the variable
is known. “Maximize Precision” on page 28-21 shows that you can determine
the range of a fixed-point operation from

max Va()

28-38

Recommendations for Arithmetic and Scaling

and

min .Va()

For multiplication, you can determine the range from

min min , , , ,

max max , , ,

V V V V V

V V V V V

a LL LH HL HH

a LL LH HL HH

() = ()
() = ()),

where

V V V

V V V

V V

LL b c

LH b c

HL b

= () ⋅ ()
= () ⋅ ()
= () ⋅

min min ,

min max ,

max m

 iin ,

max max .

V

V V V

c

HH b c

()
= () ⋅ ()

Binary-Point-Only Scaling
For binary-point-only scaling, finding Qa results in this simple expression:

Q Q Qa
E E E

b c
b c a= + −2 .

Gain
Consider the multiplication of a constant and a variable

V K Va b= ,

where K is a constant called the gain. Since Va results from the multiplication
of a constant and a variable, finding Qa is a simplified version of the general
fixed-point multiplication formula:

Q
KF

F
Q

KB B

F
a

b
E

a
E b

b a

a
E

b

a a
=

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+
−⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

2 2
.

28-39

28 Arithmetic Operations

Note that the terms in the parentheses can be calculated offline. Therefore,
there is only one multiplication of a constant and a variable and one addition.

To implement the above equation without changing it to a more complicated
form, the constants need to be encoded using a binary-point-only format. For
each of these constants, the range is the trivial case of only one value. Despite
the trivial range, the binary point formulas for maximum precision are still
valid. The maximum-precision representations are the most useful choices
unless there is an overriding need to avoid any shifting. The encoding of
the constants is

KF

F
Q

KB B

F
Q

b
E

a
E

E
X

b a

a
E

E
Y

b

a

X

a

Y

2

2
2

2
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

−⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

resulting in the formula

Q Q Q Qa
E

X B
E

Y
X Y= +2 2 .

Inherited Scaling for Speed
The number of arithmetic operations can be reduced with these choices:

• Set Ba = KBb. This eliminates one constant term.

• Set Fa = KFb and Ea = Eb. This sets the other constant term to unity.

The resulting formula is simply

Q Qa b= .

If the number of bits is different, then either handling potential overflows or
performing sign extensions is the only possible operation involved.

28-40

Recommendations for Arithmetic and Scaling

Inherited Scaling for Maximum Precision
The scaling for maximum precision does not need to be different from the
scaling for speed unless the output has fewer bits than the input. If this is the
case, then saturation should be avoided by dividing the slope by 2 for each lost
bit. This prevents saturation but causes rounding to occur.

Division
Division of values is an operation that should be avoided in fixed-point
embedded systems, but it can occur in places. Therefore, consider the division
of two real-world values:

V V Va b c= .

These values are represented by the general [Slope Bias] encoding scheme
described in “Scaling” on page 27-6:

V F Q Bi i
E

i i
i= +2 .

In a fixed-point system, the division of values results in finding the variable
Qa:

Q
F Q B

F F Q B F

B
Fa

b
E

b b

c a
E E

c c a
E

a

a

Eb

c a a

a=
+

+
−

+
−2

2 2
2 .

This formula shows

• In general, Qa is not computed through a simple division of Qb by Qc.

• In general, there are two multiplications of a constant and a variable, two
additions, one division of a variable by a variable, one division of a constant
by a variable, and some additional bit shifting.

Inherited Scaling for Speed
The number of arithmetic operations can be reduced with these choices:

• Set Ba = 0. This eliminates one addition operation.

28-41

28 Arithmetic Operations

• If Bc = 0, then set the fractional slope Fa = Fb/Fc. This eliminates one
constant times variable multiplication.

The resulting formula is

Q
Q
Q

B F

Qa
b

c

E E E b b

c

E Eb c a c a= +
()− − − −2 2 .

If Bc ≠ 0, then no clear recommendation can be made.

Inherited Scaling for Maximum Precision
You can determine the maximum-precision scaling if the range of the variable
is known. “Maximize Precision” on page 28-21 shows that you can determine
the range of a fixed-point operation from

max Va()

and

min .Va()

For division, you can determine the range from

min min , , , ,

max max , , ,

V V V V V

V V V V V

a LL LH HL HH

a LL LH HL HH

() = ()
() = ()),

where for nonzero denominators

V V V

V V V

V V

LL b c

LH b c

HL b

= () ()
= () ()
= ()

min min ,

min max ,

max min

 VV

V V V

c

HH b c

()
= () ()

,

max max .

28-42

Recommendations for Arithmetic and Scaling

Binary-Point-Only Scaling
For binary-point-only scaling, finding Qa results in this simple expression:

Q
Q
Qa

b

c

E E Eb c a= − −2 .

Note For the last two formulas involving Qa, a divide by zero and zero
divided by zero are possible. In these cases, the hardware will give some
default behavior but you must make sure that these default responses give
meaningful results for the embedded system.

Summary
From the previous analysis of fixed-point variables scaled within the general
[Slope Bias] encoding scheme, you can conclude

• Addition, subtraction, multiplication, and division can be very involved
unless certain choices are made for the biases and slopes.

• Binary-point-only scaling guarantees simpler math, but generally sacrifices
some precision.

Note that the previous formulas don’t show the following:

• Constants and variables are represented with a finite number of bits.

• Variables are either signed or unsigned.

• Rounding and overflow handling schemes. You must make these decisions
before an actual fixed-point realization is achieved.

28-43

28 Arithmetic Operations

Parameter and Signal Conversions

In this section...

“Introduction” on page 28-44

“Parameter Conversions” on page 28-45

“Signal Conversions” on page 28-46

Introduction
To completely understand the results generated by fixed-point Simulink
blocks, you must be aware of these issues:

• When numerical block parameters are converted from doubles to
Fixed-Point Designer data types

• When input signals are converted from one Fixed-Point Designer data type
to another (if at all)

• When arithmetic operations on input signals and parameters are performed

For example, suppose a fixed-point Simulink block performs an arithmetic
operation on its input signal and a parameter, and then generates output
having characteristics that are specified by the block. The following diagram
illustrates how these issues are related.

28-44

Parameter and Signal Conversions

The sections that follow describe parameter and signal conversions. “Rules
for Arithmetic Operations” on page 28-49 discusses arithmetic operations.

Parameter Conversions
Parameters of fixed-point blocks that accept numerical values are always
converted from double to a fixed-point data type. Parameters can be
converted to the input data type, the output data type, or to a data type
explicitly specified by the block. For example, the Discrete FIR Filter block
converts its Initial states parameter to the input data type, and converts its
Numerator coefficient parameter to a data type you explicitly specify via
the block dialog box.

Parameters are always converted before any arithmetic operations are
performed. Additionally, parameters are always converted offline using
round-to-nearest and saturation. Offline conversions are discussed below.

28-45

28 Arithmetic Operations

Note Because parameters of fixed-point blocks begin as double, they are
never precise to more than 53 bits. Therefore, if the output of your fixed-point
block is longer than 53 bits, your result might be less precise than you
anticipated.

Offline Conversions
An offline conversion is a conversion performed by your development platform
(for example, the processor on your PC), and not by the fixed-point processor
you are targeting. For example, suppose you are using a PC to develop a
program to run on a fixed-point processor, and you need the fixed-point
processor to compute

y
ab
c

u Cu= ⎛
⎝⎜

⎞
⎠⎟

=

over and over again. If a, b, and c are constant parameters, it is inefficient
for the fixed-point processor to compute ab/c every time. Instead, the PC’s
processor should compute ab/c offline one time, and the fixed-point processor
computes only C·u. This eliminates two costly fixed-point arithmetic
operations.

Signal Conversions
Consider the conversion of a real-world value from one fixed-point data type
to another. Ideally, the values before and after the conversion are equal.

V Va b= ,

where Vb is the input value and Va is the output value. To see how the
conversion is implemented, the two ideal values are replaced by the general
[Slope Bias] encoding scheme described in “Scaling” on page 27-6:

V F Q Bi i
E

i i
i= +2 .

Solving for the output data type’s stored integer value, Qa is obtained:

28-46

Parameter and Signal Conversions

Q
F
F

Q
B B

F

F Q B

a
b

a

E E
b

b a

a

E

s
E E

b net

b a a

b a

= +
−

= +

− −

−

2 2

2 ,

where Fs is the adjusted fractional slope and Bnet is the net bias. The offline
conversions and online conversions and operations are discussed below.

Offline Conversions
Both Fs and Bnet are computed offline using round-to-nearest and saturation.
Bnet is then stored using the output data type and Fs is stored using an
automatically selected data type.

Online Conversions and Operations
The remaining conversions and operations are performed online by the
fixed-point processor, and depend on the slopes and biases for the input and
output data types. The conversions and operations are given by these steps:

1 The initial value for Qa is given by the net bias, Bnet:

Q Ba net= .

2 The input integer value, Qb, is multiplied by the adjusted slope, Fs:

Q F QRawProduct s b= .

3 The result of step 2 is converted to the modified output data type where the
slope is one and bias is zero:

Q convert QTemp RawProduct= ().

This conversion includes any necessary bit shifting, rounding, or overflow
handling.

4 The summation operation is performed:

Q Q Qa Temp a= + .

28-47

28 Arithmetic Operations

This summation includes any necessary overflow handling.

Streamlining Simulations and Generated Code
Note that the maximum number of conversions and operations is performed
when the slopes and biases of the input signal and output signal differ
(are mismatched). If the scaling of these signals is identical (matched), the
number of operations is reduced from the worst (most inefficient) case. For
example, when an input has the same fractional slope and bias as the output,
only step 3 is required:

Q convert Qa b= ().

Exclusive use of binary-point-only scaling for both input signals and output
signals is a common way to eliminate mismatched slopes and biases, and
results in the most efficient simulations and generated code.

28-48

Rules for Arithmetic Operations

Rules for Arithmetic Operations

In this section...

“Introduction” on page 28-49

“Computational Units” on page 28-49

“Addition and Subtraction” on page 28-50

“The Summation Process” on page 28-52

“Multiplication” on page 28-55

“The Multiplication Process” on page 28-60

“Division” on page 28-62

“The Division Process” on page 28-63

“Shifts” on page 28-64

Introduction
Fixed-point arithmetic refers to how signed or unsigned binary words are
operated on. The simplicity of fixed-point arithmetic functions such as
addition and subtraction allows for cost-effective hardware implementations.

The sections that follow describe the rules that the Simulink software follows
when arithmetic operations are performed on inputs and parameters. These
rules are organized into four groups based on the operations involved:
addition and subtraction, multiplication, division, and shifts. For each
of these four groups, the rules for performing the specified operation are
presented with an example using the rules.

Computational Units
The core architecture of many processors contains several computational
units including arithmetic logic units (ALUs), multiply and accumulate units
(MACs), and shifters. These computational units process the binary data
directly and provide support for arithmetic computations of varying precision.
The ALU performs a standard set of arithmetic and logic operations as well as
division. The MAC performs multiply, multiply/add, and multiply/subtract

28-49

28 Arithmetic Operations

operations. The shifter performs logical and arithmetic shifts, normalization,
denormalization, and other operations.

Addition and Subtraction
Addition is the most common arithmetic operation a processor performs.
When two n-bit numbers are added together, it is always possible to produce a
result with n + 1 nonzero digits due to a carry from the leftmost digit. For
two’s complement addition of two numbers, there are three cases to consider:

• If both numbers are positive and the result of their addition has a sign bit
of 1, then overflow has occurred; otherwise the result is correct.

• If both numbers are negative and the sign of the result is 0, then overflow
has occurred; otherwise the result is correct.

• If the numbers are of unlike sign, overflow cannot occur and the result is
always correct.

Fixed-Point Simulink Blocks Summation Process
Consider the summation of two numbers. Ideally, the real-world values obey
the equation

V V Va b c= ± ± ,

where Vb and Vc are the input values and Va is the output value. To see how
the summation is actually implemented, the three ideal values should be
replaced by the general [Slope Bias] encoding scheme described in “Scaling”
on page 27-6:

V F Q Bi i
E

i i
i= +2 .

The equation in “Addition” on page 28-34 gives the solution of the resulting
equation for the stored integer, Qa. Using shorthand notation, that equation
becomes

Q F Q F Q Ba sb
E E

b sc
E E

c net
b a c a= ± ± +− −2 2 ,

28-50

Rules for Arithmetic Operations

where Fsb and Fsc are the adjusted fractional slopes and Bnet is the net bias.
The offline conversions and online conversions and operations are discussed
below.

Offline Conversions. Fsb, Fsc, and Bnet are computed offline using
round-to-nearest and saturation. Furthermore, Bnet is stored using the output
data type.

Online Conversions and Operations. The remaining operations are
performed online by the fixed-point processor, and depend on the slopes and
biases for the input and output data types. The worst (most inefficient)
case occurs when the slopes and biases are mismatched. The worst-case
conversions and operations are given by these steps:

1 The initial value for Qa is given by the net bias, Bnet:

Q Ba net= .

2 The first input integer value, Qb, is multiplied by the adjusted slope, Fsb:

Q F QRawProduct sb b= .

3 The previous product is converted to the modified output data type where
the slope is one and the bias is zero:

Q convert QTemp RawProduct= ().

This conversion includes any necessary bit shifting, rounding, or overflow
handling.

4 The summation operation is performed:

Q Q Qa a Temp= ± .

This summation includes any necessary overflow handling.

5 Steps 2 to 4 are repeated for every number to be summed.

28-51

28 Arithmetic Operations

It is important to note that bit shifting, rounding, and overflow handling are
applied to the intermediate steps (3 and 4) and not to the overall sum.

Streamlining Simulations and Generated Code
If the scaling of the input and output signals is matched, the number of
summation operations is reduced from the worst (most inefficient) case. For
example, when an input has the same fractional slope as the output, step 2
reduces to multiplication by one and can be eliminated. Trivial steps in the
summation process are eliminated for both simulation and code generation.
Exclusive use of binary-point-only scaling for both input signals and output
signals is a common way to eliminate mismatched slopes and biases, and
results in the most efficient simulations and generated code.

The Summation Process
Suppose you want to sum three numbers. Each of these numbers is
represented by an 8-bit word, and each has a different binary-point-only
scaling. Additionally, the output is restricted to an 8-bit word with
binary-point-only scaling of 2-3.

The summation is shown in the following model for the input values 19.875,
5.4375, and 4.84375.

Applying the rules from the previous section, the sum follows these steps:

28-52

Rules for Arithmetic Operations

1 Because the biases are matched, the initial value of Qa is trivial:

Qa = 00000 000. .

2 The first number to be summed (19.875) has a fractional slope that matches
the output fractional slope. Furthermore, the binary points and storage
types are identical, so the conversion is trivial:

Q

Q Q
b

Temp b

=
=

10011 111. ,

.

3 The summation operation is performed:

Q Q Qa a Temp= + = 10011 111. .

4 The second number to be summed (5.4375) has a fractional slope that
matches the output fractional slope, so a slope adjustment is not needed.
The storage data types also match, but the difference in binary points
requires that both the bits and the binary point be shifted one place to
the right:

Q

Q convert Q

Q

c

Temp c

Temp

=
= ()
=

0101 0111

00101 011

. ,

. .

Note that a loss in precision of one bit occurs, with the resulting value of
QTemp determined by the rounding mode. For this example, round-to-floor
is used. Overflow cannot occur in this case because the bits and binary
point are both shifted to the right.

5 The summation operation is performed:

Q Q Qa a Temp= +

= +
=

 10011 111

00101 011
11001 010 25 250

.

.

. . .

28-53

28 Arithmetic Operations

Note that overflow did not occur, but it is possible for this operation.

6 The third number to be summed (4.84375) has a fractional slope that
matches the output fractional slope, so a slope adjustment is not needed.
The storage data types also match, but the difference in binary points
requires that both the bits and the binary point be shifted two places
to the right:

Q

Q convert Q

Q

d

Temp d

Temp

=
= ()
=

100 11011

00100 110

. ,

. .

Note that a loss in precision of two bit occurs, with the resulting value of
QTemp determined by the rounding mode. For this example, round-to-floor
is used. Overflow cannot occur in this case because the bits and binary
point are both shifted to the right.

7 The summation operation is performed:

Q Q Qa a Temp= +

= +
=

 11001 010

00100 110
11110 000 30 000

.

.

. . .

Note that overflow did not occur, but it is possible for this operation.

As shown here, the result of step 7 differs from the ideal sum:

 0
10011 111

101 0111

100 11011
11110 001 30 125

.

.

.
. . .

= +
=

Blocks that perform addition and subtraction include the Sum, Gain, and
Discrete FIR Filter blocks.

28-54

Rules for Arithmetic Operations

Multiplication
The multiplication of an n-bit binary number with an m-bit binary number
results in a product that is up to m + n bits in length for both signed and
unsigned words. Most processors perform n-bit by n-bit multiplication and
produce a 2n-bit result (double bits) assuming there is no overflow condition.

Fixed-Point Simulink Blocks Multiplication Process
Consider the multiplication of two numbers. Ideally, the real-world values
obey the equation

V V Va b c= .

where Vb and Vc are the input values and Va is the output value. To see how
the multiplication is actually implemented, the three ideal values should be
replaced by the general [Slope Bias] encoding scheme described in “Scaling”
on page 27-6:

V F Q Bi i
E

i i
i= +2 .

The solution of the resulting equation for the output stored integer, Qa, is
given below:

Q
F F
F

Q Q
F B
F

Q

F B
F

Q
B B

a
b c

a

E E E
b c

b c

a

E E
b

c b

a

E E
c

b c

b c a b a

c a

= +

+ +
−

+ − −

−

2 2

2
BB

F
a

a

Ea2− .

Multiplication with Nonzero Biases and Mismatched Fractional
Slopes. The worst-case implementation of the above equation occurs when
the slopes and biases of the input and output signals are mismatched. In
such cases, several low-level integer operations are required to carry out the
high-level multiplication (or division). Implementation choices made about
these low-level computations can affect the computational efficiency, rounding
errors, and overflow.

28-55

28 Arithmetic Operations

In Simulink blocks, the actual multiplication or division operation is always
performed on fixed-point variables that have zero biases. If an input has
nonzero bias, it is converted to a representation that has binary-point-only
scaling before the operation. If the result is to have nonzero bias, the operation
is first performed with temporary variables that have binary-point-only
scaling. The result is then converted to the data type and scaling of the final
output.

If both the inputs and the output have nonzero biases, then the operation is
broken down as follows:

V V

V V

V V V

V V

Temp

Temp

Temp Temp Temp

Temp

1 1

2 2

3 1 2

3 3

=

=

=

=

,

,

,

,

where

V Q

V Q

V Q

Temp
E

Temp

Temp
E

Temp

Temp
E

Temp

Temp

Temp

1 1

2 2

3 3

2

2

2

1

2

3

=

=

=

,

,

TTemp.

These equations show that the temporary variables have binary-point-only
scaling. However, the equations do not indicate the signedness, word lengths,
or values of the fixed exponent of these variables. The Simulink software
assigns these properties to the temporary variables based on the following
goals:

• Represent the original value without overflow.

The data type and scaling of the original value define a maximum and
minimum real-world value:

V F Q BMax
E

MaxInteger= +2 ,

28-56

Rules for Arithmetic Operations

V F Q BMin
E

MinInteger= +2 .

The data type and scaling of the temporary value must be able to represent
this range without overflow. Precision loss is possible, but overflow is never
allowed.

• Use a data type that leads to efficient operations.

This goal is relative to the target that you will use for production
deployment of your design. For example, suppose that you will implement
the design on a 16-bit fixed-point processor that provides a 32-bit long,
16-bit int, and 8-bit short or char. For such a target, preserving efficiency
means that no more than 32 bits are used, and the smaller sizes of 8 or 16
bits are used if they are sufficient to maintain precision.

• Maintain precision.

Ideally, every possible value defined by the original data type and scaling
is represented perfectly by the temporary variable. However, this can
require more bits than is efficient. Bits are discarded, resulting in a loss of
precision, to the extent required to preserve efficiency.

For example, consider the following, assuming a 16-bit microprocessor target:

V QOriginal Original= + -43 25. ,

where QOriginal is an 8-bit, unsigned data type. For this data type,

Q

Q
MaxInteger

MinInteger

=

=

225

0

,

,

so

V

V
Max

Min

=
= −

211 75

43 25

. ,

. .

The minimum possible value is negative, so the temporary variable must be a
signed integer data type. The original variable has a slope of 1, but the bias is
expressed with greater precision with two digits after the binary point. To

28-57

28 Arithmetic Operations

get full precision, the fixed exponent of the temporary variable has to be -2
or less. The Simulink software selects the least possible precision, which is
generally the most efficient, unless overflow issues arise. For a scaling of 2-2,
selecting signed 16-bit or signed 32-bit avoids overflow. For efficiency, the
Simulink software selects the smaller choice of 16 bits. If the original variable
is an input, then the equations to convert to the temporary variable are

uint8_T

uint16_T

uint16_T

Q

Q

Q Q

Original

Temp

Temp Origi

,

,

= () nnal 2 173() − .

Multiplication with Zero Biases and Mismatched Fractional Slopes.
When the biases are zero and the fractional slopes are mismatched, the
implementation reduces to

Q
F F
F

Q Qa
b c

a

E E E
b c

b c a= + −2 .

Offline Conversions

The quantity

F
F F
FNet
b c

a
=

is calculated offline using round-to-nearest and saturation. FNet is stored
using a fixed-point data type of the form

2E
Net

Net Q ,

where ENet and QNet are selected automatically to best represent FNet.

Online Conversions and Operations

1 The integer values Qb and Qc are multiplied:

28-58

Rules for Arithmetic Operations

Q Q QRawProduct b c= .

To maintain the full precision of the product, the binary point of QRawProduct
is given by the sum of the binary points of Qb and Qc.

2 The previous product is converted to the output data type:

Q convert QTemp RawProduct= ().

This conversion includes any necessary bit shifting, rounding, or overflow
handling. “Signal Conversions” on page 28-46 discusses conversions.

3 The multiplication

Q Q QRawProduct Temp Net2 =

is performed.

4 The previous product is converted to the output data type:

Q convert Qa RawProduct= ()2 .

This conversion includes any necessary bit shifting, rounding, or overflow
handling. “Signal Conversions” on page 28-46 discusses conversions.

5 Steps 1 through 4 are repeated for each additional number to be multiplied.

Multiplication with Zero Biases and Matching Fractional Slopes.
When the biases are zero and the fractional slopes match, the implementation
reduces to

Q Q Qa
E E E

b c
b c a= + −2 .

Offline Conversions

No offline conversions are performed.

Online Conversions and Operations

28-59

28 Arithmetic Operations

1 The integer values Qb and Qc are multiplied:

Q Q QRawProduct b c= .

To maintain the full precision of the product, the binary point of QRawProduct
is given by the sum of the binary points of Qb and Qc.

2 The previous product is converted to the output data type:

Q convert Qa RawProduct= ().

This conversion includes any necessary bit shifting, rounding, or overflow
handling. “Signal Conversions” on page 28-46 discusses conversions.

3 Steps 1 and 2 are repeated for each additional number to be multiplied.

The Multiplication Process
Suppose you want to multiply three numbers. Each of these numbers is
represented by a 5-bit word, and each has a different binary-point-only
scaling. Additionally, the output is restricted to a 10-bit word with
binary-point-only scaling of 2-4. The multiplication is shown in the following
model for the input values 5.75, 2.375, and 1.8125.

Applying the rules from the previous section, the multiplication follows these
steps:

28-60

Rules for Arithmetic Operations

1 The first two numbers (5.75 and 2.375) are multiplied:

QRawProduct =
×

⋅

⋅

+

−

−

 1

1

 1

1

01 11

10 011

01 11 2

01 11 2

0

3

2

.

.

.

.

11 11 2
01 10101 13 65625

1.
. . .

⋅
=011

Note that the binary point of the product is given by the sum of the binary
points of the multiplied numbers.

2 The result of step 1 is converted to the output data type:

Q convert QTemp RawProduct= ()
= =001101 1010 13 6250. . .

“Signal Conversions” on page 28-46 discusses conversions. Note that
a loss in precision of one bit occurs, with the resulting value of QTemp
determined by the rounding mode. For this example, round-to-floor is used.
Furthermore, overflow did not occur but is possible for this operation.

3 The result of step 2 and the third number (1.8125) are multiplied:

QRawProduct =
×

⋅ −

 011

 11

01 1010

1 1101

01 1010 2

.

.

. 44

2

1

0

01 1010 2

01 1010 2

01 1010 2

 11

 11

11
0011000

.

.

.
.

⋅

⋅

+ ⋅

−

−

110110010 24 6953125= . .

Note that the binary point of the product is given by the sum of the binary
points of the multiplied numbers.

28-61

28 Arithmetic Operations

4 The product is converted to the output data type:

Q convert Qa RawProduct= ()
= =011000 1011 24 6875. . .

“Signal Conversions” on page 28-46 discusses conversions. Note that
a loss in precision of 4 bits occurred, with the resulting value of QTemp
determined by the rounding mode. For this example, round-to-floor is used.
Furthermore, overflow did not occur but is possible for this operation.

Blocks that perform multiplication include the Product, Discrete FIR Filter,
and Gain blocks.

Division
This section discusses the division of quantities with zero bias.

Note When any input to a division calculation has nonzero bias, the
operations performed exactly match those for multiplication described in
“Multiplication with Nonzero Biases and Mismatched Fractional Slopes” on
page 28-55.

Fixed-Point Simulink Blocks Division Process
Consider the division of two numbers. Ideally, the real-world values obey
the equation

V V Va b c= ,

where Vb and Vc are the input values and Va is the output value. To see
how the division is actually implemented, the three ideal values should be
replaced by the general [Slope Bias] encoding scheme described in “Scaling”
on page 27-6:

V F Q Bi i
E

i i
i= +2 .

28-62

Rules for Arithmetic Operations

For the case where the slope adjustment factors are one and the biases are
zero for all signals, the solution of the resulting equation for the output stored
integer, Qa, is given by the following equation:

Q Q Qa
E E E

b c
b c a= ()− −2 .

This equation involves an integer division and some bit shifts. If Ea > Eb–Ec,
then any bit shifts are to the right and the implementation is simple. However,
if Ea < Eb–Ec, then the bit shifts are to the left and the implementation can be
more complicated. The essential issue is that the output has more precision
than the integer division provides. To get full precision, a fractional division
is needed. The C programming language provides access to integer division
only for fixed-point data types. Depending on the size of the numerator,
you can obtain some of the fractional bits by performing a shift prior to the
integer division. In the worst case, it might be necessary to resort to repeated
subtractions in software.

In general, division of values is an operation that should be avoided in
fixed-point embedded systems. Division where the output has more precision
than the integer division (i.e., Ea < Eb–Ec) should be used with even greater
reluctance.

The Division Process
Suppose you want to divide two numbers. Each of these numbers is
represented by an 8-bit word, and each has a binary-point-only scaling of 2-4.
Additionally, the output is restricted to an 8-bit word with binary-point-only
scaling of 2-4.

The division of 9.1875 by 1.5000 is shown in the following model.

28-63

28 Arithmetic Operations

For this example,

Q Q Q

Q Q

a b c

b c

= ()
= ()

− − −()− −()2

2

4 4 4

4 .

Assuming a large data type was available, this could be implemented as

Q
Q

Qa
b

c
=

()24

,

where the numerator uses the larger data type. If a larger data type was not
available, integer division combined with four repeated subtractions would
be used. Both approaches produce the same result, with the former being
more efficient.

Shifts
Nearly all microprocessors and digital signal processors support well-defined
bit-shift (or simply shift) operations for integers. For example, consider the
8-bit unsigned integer 00110101. The results of a 2-bit shift to the left and a
2-bit shift to the right are shown in the following table.

28-64

Rules for Arithmetic Operations

Shift Operation Binary Value Decimal Value

No shift (original number) 00110101 53

Shift left by 2 bits 11010100 212

Shift right by 2 bits 00001101 13

You can perform a shift using the Simulink Shift Arithmetic block. Use this
block to perform a bit shift, a binary point shift, or both

Shifting Bits to the Right
The special case of shifting bits to the right requires consideration of the
treatment of the leftmost bit, which can contain sign information. A shift to
the right can be classified either as a logical shift right or an arithmetic shift
right. For a logical shift right, a 0 is incorporated into the most significant
bit for each bit shift. For an arithmetic shift right, the most significant bit
is recycled for each bit shift.

The Shift Arithmetic block performs an arithmetic shift right and, therefore,
recycles the most significant bit for each bit shift right. For example, given
the fixed-point number 11001.011 (-6.625), a bit shift two places to the right
with the binary point unmoved yields the number 11110.010 (-1.75), as shown
in the model below:

To perform a logical shift right on a signed number using the Shift Arithmetic
block, use the Data Type Conversion block to cast the number as an unsigned
number of equivalent length and scaling, as shown in the following model.
The model shows that the fixed-point signed number 11001.001 (-6.625)
becomes 00110.010 (6.25).

28-65

28 Arithmetic Operations

28-66

Conversions and Arithmetic Operations

Conversions and Arithmetic Operations
This example uses the Discrete FIR Filter block to illustrate when parameters
are converted from a double to a fixed-point number, when the input data
type is converted to the output data type, and when the rules for addition,
subtraction, and multiplication are applied. For details about conversions and
operations, refer to “Parameter and Signal Conversions” on page 28-44 and
“Rules for Arithmetic Operations” on page 28-49.

Note If a block can perform all four arithmetic operations, then the rules for
multiplication and division are applied first. The Discrete FIR Filter block
is an example of this.

Suppose you configure the Discrete FIR Filter block for two outputs, where
the first output is given by

y k u k u k u k1 13 11 1 7 2() = ⋅ () + ⋅ −() − ⋅ −(),

and the second output is given by

y k u k u k2 6 5 1() = ⋅ () − ⋅ −().

Additionally, the initial values of u(k–1) and u(k–2) are given by 0.8 and 1.1,
respectively, and all inputs, parameters, and outputs have binary-point-only
scaling.

To configure the Discrete FIR Filter block for this situation, on theMain pane
of its dialog box, you must specify the Coefficients parameter as [13 11 -7;
6 -5 0] and the Initial states parameter as [0.8 1.1], as shown here.

28-67

28 Arithmetic Operations

Similarly, configure the options on the Data Types pane of the block dialog
box to appear as follows:

28-68

Conversions and Arithmetic Operations

The Discrete FIR Filter block performs parameter conversions and block
operations in the following order:

1 The Coefficients parameter is converted offline from doubles to the
Coefficients data type using round-to-nearest and saturation.

The Initial states parameter is converted offline from doubles to the input
data type using round-to-nearest and saturation.

2 The coefficients and inputs are multiplied together for the initial time step
for both outputs. For y1(0), the operations 13·u(0), 11·0.8, and –7·1.1 are
performed, while for y2(0), the operations 6·u(0) and –5·0.8 are performed.

28-69

28 Arithmetic Operations

The results of these operations are stored as Product output.

3 The sum is carried out in Accumulator. The final summation result is
then converted to Output.

4 Steps 2 and 3 repeat for subsequent time steps.

28-70

29

Realization Structures

• “Realizing Fixed-Point Digital Filters” on page 29-2

• “Targeting an Embedded Processor” on page 29-4

• “Canonical Forms” on page 29-7

29 Realization Structures

Realizing Fixed-Point Digital Filters

In this section...

“Introduction” on page 29-2

“Realizations and Data Types” on page 29-2

Introduction
This chapter investigates how you can realize fixed-point digital filters using
Simulink blocks and the Fixed-Point Designer software.

The Fixed-Point Designer software addresses the needs of the control system,
signal processing, and other fields where algorithms are implemented on
fixed-point hardware. In signal processing, a digital filter is a computational
algorithm that converts a sequence of input numbers to a sequence of
output numbers. The algorithm is designed such that the output signal
meets frequency-domain or time-domain constraints (desirable frequency
components are passed, undesirable components are rejected).

In general terms, a discrete transfer function controller is a form of a digital
filter. However, a digital controller can contain nonlinear functions such as
lookup tables in addition to a discrete transfer function. This guide uses the
term digital filter when referring to discrete transfer functions.

Note To design and implement a wide variety of floating-point and
fixed-point filters suitable for use in signal processing applications and for
deployment on DSP chips, use the DSP System Toolbox software.

Realizations and Data Types
In an ideal world, where numbers, calculations, and storage of states have
infinite precision and range, there are virtually an infinite number of
realizations for the same system. In theory, these realizations are all identical.

In the more realistic world of double-precision numbers, calculations, and
storage of states, small nonlinearities are introduced by the finite precision
and range of floating-point data types. Therefore, each realization of a given

29-2

Realizing Fixed-Point Digital Filters

system produces different results. In most cases however, these differences
are small.

In the world of fixed-point numbers, where precision and range are limited,
the differences in the realization results can be very large. Therefore, you
must carefully select the data type, word size, and scaling for each realization
element such that results are accurately represented. To assist you with this
selection, design rules for modeling dynamic systems with fixed-point math
are provided in “Targeting an Embedded Processor” on page 29-4.

29-3

29 Realization Structures

Targeting an Embedded Processor

In this section...

“Introduction” on page 29-4

“Size Assumptions” on page 29-4

“Operation Assumptions” on page 29-4

“Design Rules” on page 29-5

Introduction
The sections that follow describe issues that often arise when targeting a
fixed-point design for use on an embedded processor, such as some general
assumptions about integer sizes and operations available on embedded
processors. These assumptions lead to design issues and design rules that
might be useful for your specific fixed-point design.

Size Assumptions
Embedded processors are typically characterized by a particular bit size. For
example, the terms “8-bit micro,” “32-bit micro,” or “16-bit DSP” are common.
It is generally safe to assume that the processor is predominantly geared to
processing integers of the specified bit size. Integers of the specified bit size
are referred to as the base data type. Additionally, the processor typically
provides some support for integers that are twice as wide as the base data
type. Integers consisting of double bits are referred to as the accumulator
data type. For example a 16-bit micro has a 16-bit base data type and a 32-bit
accumulator data type.

Although other data types may be supported by the embedded processor, this
section describes only the base and accumulator data types.

Operation Assumptions
The embedded processor operations discussed in this section are limited to the
needs of a basic simulation diagram. Basic simulations use multiplication,
addition, subtraction, and delays. Fixed-point models also need shifts to
do scaling conversions. For all these operations, the embedded processor

29-4

Targeting an Embedded Processor

should have native instructions that allow the base data type as inputs.
For accumulator-type inputs, the processor typically supports addition,
subtraction, and delay (storage/retrieval frommemory), but not multiplication.

Multiplication is typically not supported for accumulator-type inputs because
of complexity and size issues. A difficulty with multiplication is that the
output needs to be twice as big as the inputs for full precision. For example,
multiplying two 16-bit numbers requires a 32-bit output for full precision.
The need to handle the outputs from a multiplication operation is one of the
reasons embedded processors include accumulator-type support. However, if
multiplication of accumulator-type inputs is also supported, then there is a
need to support a data type that is twice as big as the accumulator type. To
restrict this additional complexity, multiplication is typically not supported
for inputs of the accumulator type.

Design Rules
The important design rules that you should be aware of when modeling
dynamic systems with fixed-point math follow.

Design Rule 1: Only Multiply Base Data Types
It is best to multiply only inputs of the base data type. Embedded processors
typically provide an instruction for the multiplication of base-type inputs, but
not for the multiplication of accumulator-type inputs. If necessary, you can
combine several instructions to handle multiplication of accumulator-type
inputs. However, this can lead to large, slow embedded code.

You can insert blocks to convert inputs from the accumulator type to the base
type prior to Product or Gain blocks, if necessary.

Design Rule 2: Delays Should Use the Base Data Type
There are two general reasons why a Unit Delay should use only base-type
numbers:

• The Unit Delay essentially stores a variable’s value to RAM and, one time
step later, retrieves that value from RAM. Because the value must be in
memory from one time step to the next, the RAM must be exclusively
dedicated to the variable and can’t be shared or used for another purpose.

29-5

29 Realization Structures

Using accumulator-type numbers instead of the base data type doubles
the RAM requirements, which can significantly increase the cost of the
embedded system.

• The Unit Delay typically feeds into a Gain block. The multiplication design
rule requires that the input (the unit delay signal) use the base data type.

Design Rule 3: Temporary Variables Can Use the Accumulator
Data Type
Except for unit delay signals, most signals are not needed from one time step
to the next. This means that the signal values can be temporarily stored in
shared and reused memory. This shared and reused memory can be RAM or
it can simply be registers in the CPU. In either case, storing the value as
an accumulator data type is not much more costly than storing it as a base
data type.

Design Rule 4: Summation Can Use the Accumulator Data Type
Addition and subtraction can use the accumulator data type if there is
justification. The typical justification is reducing the buildup of errors due to
roundoff or overflow.

For example, a common filter operation is a weighted sum of several variables.
Multiplying a variable by a weight naturally produces a product of the
accumulator type. Before summing, each product can be converted back to
the base data type. This approach introduces round-off error into each part
of the sum.

Alternatively, the products can be summed using the accumulator data type,
and the final sum can be converted to the base data type. Round-off error is
introduced in just one point and the precision is generally better. The cost of
doing an addition or subtraction using accumulator-type numbers is slightly
more expensive, but if there is justification, it is usually worth the cost.

29-6

Canonical Forms

Canonical Forms

In this section...

“Canonical Forms” on page 29-7

“Direct Form II” on page 29-8

“Series Cascade Form” on page 29-13

“Parallel Form” on page 29-15

Canonical Forms
The Fixed-Point Designer software does not attempt to standardize on
one particular fixed-point digital filter design method. For example, you
can produce a design in continuous time and then obtain an “equivalent”
discrete-time digital filter using one of many transformation methods.
Alternatively, you can design digital filters directly in discrete time. After you
obtain a digital filter, it can be realized for fixed-point hardware using any
number of canonical forms. Typical canonical forms are the direct form, series
form, and parallel form, each of which is outlined in the sections that follow.

For a given digital filter, the canonical forms describe a set of fundamental
operations for the processor. Because there are an infinite number of ways
to realize a given digital filter, you must make the best realization on a
per-system basis. The canonical forms presented in this chapter optimize the
implementation with respect to some factor, such as minimum number of
delay elements.

In general, when choosing a realization method, you must take these factors
into consideration:

• Cost

The cost of the realization might rely on minimal code and data size.

• Timing constraints

Real-time systems must complete their compute cycle within a fixed
amount of time. Some realizations might yield faster execution speed on
different processors.

29-7

29 Realization Structures

• Output signal quality

The limited range and precision of the binary words used to represent
real-world numbers will introduce errors. Some realizations are more
sensitive to these errors than others.

The Fixed-Point Designer software allows you to evaluate various digital filter
realization methods in a simulation environment. Following the development
cycle outlined in “Developing and Testing Fixed-Point Systems” on page
26-17, you can fine-tune the realizations with the goal of reducing the cost
(code and data size) or increasing signal quality. After you have achieved the
desired performance, you can use the Simulink Coder product to generate
rapid prototyping C code and evaluate its performance with respect to your
system’s real-time timing constraints. You can then modify the model based
upon feedback from the rapid prototyping system.

The presentation of the various realization structures takes into account that
a summing junction is a fundamental operator, thus you may find that the
structures presented here look different from those in the fixed-point filter
design literature. For each realization form, an example is provided using the
transfer function shown here:

H z
z z z

z z z
ex () = + + +

− + +

= +

− − −

− − −
1 2 2 1 85 0 5

1 0 5 0 84 0 09

1 0

1 2 3

1 2 3
. . .

. . .

.. .

. . .

.

5 1 1 7

1 0 1 1 0 6 0 9

5 5556
3

1 1 2

1 1 2

z z z

z z z

− − −

− − −

() + +()
+() − +()

= − ..

.

. .

. .
.

4639

1 0 1

1 0916 3 0086

1 0 6 0 91

1

1 2+
+ − +

− +−

−

− −z

z

z z

Direct Form II
In general, a direct form realization refers to a structure where the coefficients
of the transfer function appear directly as Gain blocks. The direct form
II realization method is presented as using the minimal number of delay
elements, which is equal to n, the order of the transfer function denominator.

The canonical direct form II is presented as “Standard Programming”
in Discrete-Time Control Systems by Ogata. It is known as the “Control

29-8

Canonical Forms

Canonical Form” in Digital Control of Dynamic Systems by Franklin, Powell,
and Workman.

You can derive the canonical direct form II realization by writing the
discrete-time transfer function with input e(z) and output u(z) as

u z

e z

u z

h z

h z

e z

b b z b zm
m

u z
h z

()
() =

()
() ⋅

()
()

= + + +()− −

()
()

0 1
1

1

1 1
1

2
2+ + +− − −

()
()

a z a z a zn
n

h z
e z

.

The block diagram for u(z)/h(z) follows.

The block diagrams for h(z)/e(z) follow.

29-9

29 Realization Structures

Combining these two block diagrams yields the direct form II diagram shown
in the following figure. Notice that the feedforward part (top of block diagram)
contains the numerator coefficients and the feedback part (bottom of block
diagram) contains the denominator coefficients.

29-10

Canonical Forms

The direct form II example transfer function is given by

H z
z z z

z z z
ex () = + + +

− + +

− − −

− − −
1 2 2 1 85 0 5

1 0 5 0 84 0 09

1 2 3

1 2 3
. . .

. . .
.

The realization of Hex(z) using fixed-point Simulink blocks is shown in the
following figure. You can display this model by typing

fxpdemo_direct_form2

at the MATLAB command line.

29-11

29 Realization Structures

29-12

Canonical Forms

Series Cascade Form
In the canonical series cascade form, the transfer function H(z) is written as a
product of first-order and second-order transfer functions:

H z
u z

e z
H z H z H z H zi p() =

()
() = () ⋅ () ⋅ () ()1 2 3 .

This equation yields the canonical series cascade form.

Factoring H(z) into Hi(z) where i = 1,2,3,...,p can be done in a number of ways.
Using the poles and zeros of H(z), you can obtain Hi(z) by grouping pairs
of conjugate complex poles and pairs of conjugate complex zeros to produce
second-order transfer functions, or by grouping real poles and real zeros to
produce either first-order or second-order transfer functions. You could also
group two real zeros with a pair of conjugate complex poles or vice versa.
Since there are many ways to obtain Hi(z), you should compare the various
groupings to see which produces the best results for the transfer function
under consideration.

For example, one factorization of H(z) might be

H z H z H z H z

b z

a z

e z f z

c

p

i

ii

j
i i

i

() = () () ()

=
+

+

+ +

+

−

−
=

− −

∏

1 2

1

1
1

1 21

1

1

1

zz d zii j

p

− −
= + +
∏ 1 2

1

.

You must also take into consideration that the ordering of the individual
Hi(z)’s will lead to systems with different numerical characteristics. You
might want to try various orderings for a given set of Hi(z)’s to determine
which gives the best numerical characteristics.

29-13

29 Realization Structures

The first-order diagram for H(z) follows.

The second-order diagram for H(z) follows.

The series cascade form example transfer function is given by

29-14

Canonical Forms

H z
z z z

z z z
ex () = +() + +()

+() − +()
− − −

− − −
1 0 5 1 1 7

1 0 1 1 0 6 0 9

1 1 2

1 1 2

. .

. . .
..

The realization of Hex(z) using fixed-point Simulink blocks is shown in the
following figure. You can display this model by typing

fxpdemo_series_cascade_form

at the MATLAB command line.

Parallel Form
In the canonical parallel form, the transfer function H(z) is expanded into
partial fractions. H(z) is then realized as a sum of a constant, first-order, and
second-order transfer functions, as shown:

29-15

29 Realization Structures

H z
u z

e z
K H z H z H zi p() =

()
() = + () + () + + ()1 2 .

This expansion, where K is a constant and the Hi(z) are the first- and
second-order transfer functions, follows.

As in the series canonical form, there is no unique description for the
first-order and second-order transfer function. Because of the nature of the
Sum block, the ordering of the individual filters doesn’t matter. However,
because of the constant K, you can choose the first-order and second-order
transfer functions such that their forms are simpler than those for the series
cascade form described in the preceding section. This is done by expanding
H(z) as

H z K H z H z

K
b

a z

e f z

i
i

j

i
i j

p

i

ii

j
i i

() = + () + ()

= +
+

+
+

+

= = +

−
=

−

∑ ∑

∑

1 1

1
1

1

1 1 cc z d zi ii j

p

− −
= + +
∑ 1 2

1
.

29-16

Canonical Forms

The first-order diagram for H(z) follows.

The second-order diagram for H(z) follows.

The parallel form example transfer function is given by

29-17

29 Realization Structures

H z
z

z

z
ex () = −

+
+ − +

− +−

−

−
5 5556

3 4639

1 0 1

1 0916 3 0086

1 0 6 0 91

1

1
.

.

.

. .

. . zz−2
.

The realization of Hex(z) using fixed-point Simulink blocks is shown in the
following figure. You can display this model by typing

fxpdemo_parallel_form

at the MATLAB command line.

29-18

Canonical Forms

29-19

29 Realization Structures

29-20

30

Fixed-Point Advisor

• “Preparation for Fixed-Point Conversion” on page 30-2

• “Converting a Model from Floating- to Fixed-Point Using Simulation Data”
on page 30-11

30 Fixed-Point Advisor

Preparation for Fixed-Point Conversion

In this section...

“Introduction” on page 30-2

“Best Practices” on page 30-2

“Run the Fixed-Point Advisor” on page 30-4

“Fix a Task Failure” on page 30-5

“Manually Fixing Failures” on page 30-6

“Automatically Fixing Failures” on page 30-6

“Batch Fixing Failures” on page 30-7

“Restore Points” on page 30-7

“Save a Restore Point” on page 30-8

“Load a Restore Point” on page 30-9

Introduction
Using the Fixed-Point Advisor, you can prepare a model for conversion from a
floating-point model or subsystem to an equivalent fixed-point representation.
After preparing the model for conversion, use the Fixed-Point Tool to obtain
initial fixed-point data types and then refine these data types.

Best Practices

Use a Known Working Model
Before using the Fixed-Point Advisor, verify that update diagram succeeds
for your model. To update diagram, press Ctrl+D. If update diagram fails,
before you start converting your model, fix the failure in your model.

Back Up Your Model
Back up your Simulink model first.

30-2

Preparation for Fixed-Point Conversion

This practice provides you with a back up in case of error and a baseline for
testing and validation.

Convert Small Models
The Fixed-Point Advisor is intended to assist in converting small models.
Using larger models can result in long processing times.

Convert Subsystems
Convert subsystems within your model, rather than the entire model. This
practice saves time and unnecessary conversions.

Specify Short Simulation Run Times
Specifying small simulation run times reduces task processing times. You
can change the simulation run time in the Configuration Parameters dialog
box. For more information, see “Start time” and “Stop time” in the Simulink
Reference.

Make Small Changes to Your Model
Make small changes to your model so that you can identify where errors are
accidentally introduced.

Isolate the System Under Conversion
If you encounter data type propagation issues with a particular subsystem,
isolate this subsystem by placing Data Type Conversion blocks on the inputs
and outputs of the system. The Data Type Conversion block converts an input
signal of any Simulink software data type to the data type and scaling you
specify for its Output data type parameter. This practice enables you to
continue converting the rest of your model.

The ultimate goal is to replace all blocks that do not support fixed-point data
types. You must eventually replace blocks that you isolate with Data Type
Conversion blocks with blocks that do support fixed-point data types.

30-3

30 Fixed-Point Advisor

Use Lock Output Data Type Setting
You can prevent the Fixed-Point Advisor from replacing the current data
type. Use the Lock output data type setting against changes by the
fixed-point tools parameter available on many blocks. The default setting
allows replacement. Use this setting when:

• You already know the fixed-point data types that you want to use for a
particular block.

For example, the block is modeling a real-world component. Set up the
block to allow for known hardware limitations, such as restricting outputs
to integer values.

Specify the output data type of the block explicitly and select Lock output
data type setting against changes by the fixed-point tools.

• You are debugging a model and know that a particular block accepts only
certain data types.

Specify the output data type of upstream blocks explicitly and select Lock
output data type setting against changes by the fixed-point tools.

Save Simulink Signal Objects
The Fixed-Point Advisor proposes data types for Simulink signal objects in
your model. However, it does not automatically save Simulink signal objects.
To preserve changes, before closing the model, save the Simulink signal
objects in your workspace and model before closing the model.

Save Restore Point
Before making changes to your model that might cause subsequent update
diagram failure, consider saving a restore point. For example, before applying
proposed data types in task 3.1. For more information, see “Save a Restore
Point” on page 30-8.

Run the Fixed-Point Advisor

1 Open a model.

2 Start the Fixed-Point Advisor by:

30-4

Preparation for Fixed-Point Conversion

• Typing fpcadvisor('model_name/subsystem_name') at the MATLAB
command line

• Selecting a subsystem and, from the menu, selecting
Analysis > Fixed-Point Tool to open the Fixed-Point Tool. On the
Fixed-Point Tool Fixed-point preparation for selected system pane,
click Fixed-Point Advisor.

• Right-clicking a subsystem block and, from the subsystem context
menu, selecting Fixed-Point Tool to open the Fixed-Point Tool. On
the Fixed-Point Tool Fixed-point preparation for selected system
pane, click Fixed-Point Advisor.

3 In the Fixed-Point Advisor window, on the left pane, select the Fixed-Point
Advisor folder.

4 Run the advisor by:

• Selecting Run to Failure from the Run menu.

• Right-clicking the Fixed-Point Advisor folder and selecting Run to
Failure from the folder context menu.

The Fixed-Point Advisor runs the tasks in order until a task fails. A
waitbar is displayed while each task runs.

5 Review the results. If a task fails because input parameters are not
specified, select an Input Parameter. Then continue running to failure
by right-clicking the task and selecting Continue from the context menu.
If the task fails for a different reason, fix the task as described in “Fix a
Task Failure” on page 30-5.

If your model contains referenced models, the Fixed-Point Advisor provides
results for each referenced model instance.

Fix a Task Failure
Tasks fail when there is a step for you to take to convert your model from
floating-point to fixed-point. The Fixed-Point Advisor provides guidance on
how to fix the issues.

You can fix a failure using three different methods:

30-5

30 Fixed-Point Advisor

• Follow the instructions in the Analysis Result box. Use this method to fix
failures individually. See “Manually Fixing Failures” on page 30-6.

• Use the Action box. Use this method to automatically fix all failures. See
“Automatically Fixing Failures” on page 30-6.

• Use the Model Advisor Results Explorer. Use this method to batch fix
failures. See “Batch Fixing Failures” on page 30-7

Note A warning result is meant for your information. You can choose to fix
the reported issue or move on to the next task.

Manually Fixing Failures
All checks have an Analysis Result box that describes the recommended
actions to manually fix failures.

To manually fix warnings or failures within a task:

1 Optionally, save a restore point so you can undo the changes that you
make. For more information, see “Save a Restore Point” on page 30-8.

2 In the Analysis Result box, review the recommended actions. Use the
information to make changes to your model.

3 To verify that the task now passes, in the Analysis box, click Run This
Task.

Automatically Fixing Failures
You can automatically fix failures using the Action box. The Action box
applies all of the recommended actions listed in the Analysis Result box.

Caution Prior to automatically fixing failures, review the Analysis Result
box to ensure that you want to apply all of the recommended actions.

Automatically fix all failures within a task using the following steps:

30-6

Preparation for Fixed-Point Conversion

1 Optionally, save a restore point so you can undo the changes that you
make. For more information, see “Save a Restore Point” on page 30-8.

2 In the Action box, click Modify All.

The Action Result box displays a table of changes.

3 To verify that the task now passes, in the Analysis box, click Run This
Task.

Batch Fixing Failures
If a task fails and you want to explore the results and make batch changes,
use the following steps.

1 Optionally, save a restore point so you can undo the changes that you
make. For more information, see “Save a Restore Point” on page 30-8.

2 In the Analysis box, click Explore Result.

3 Use the Model Advisor Result Explorer to modify block parameters.

4 When you finish making changes, in the Fixed-Point Advisor window, click
Run This Task to see if the changes you made result in the task passing.
Continue fixing failures and rerunning the task until the task passes.

Restore Points
The Fixed-Point Advisor provides a model and data restore point capability for
reverting changes that you made in response to advice from the Fixed-Point
Advisor. A restore point is a snapshot in time of the model, base workspace,
and Fixed-Point Advisor.

Caution A restore point saves only the current working model, base
workspace variables, and Fixed-Point Advisor tree. It does not save other
items, such as libraries and referenced submodels.

To learn how to save a restore point, see “Save a Restore Point” on page 30-8.

To learn how to load a restore point, see “Load a Restore Point” on page 30-9.

30-7

30 Fixed-Point Advisor

Save a Restore Point

When to Save a Restore Point
Consider saving a restore point:

• Before applying changes to your model that might cause update diagram
failure. For example, before applying proposed data types in task 3.1.

• Before attempting to fix failures.

How to Save a Restore Point
You can save a restore point and give it a name and optional description, or
allow the Fixed Point Advisor to automatically name the restore point for you.

To save a restore point with a name and optional description:

1 From the main menu, select File > Save Restore Point As.

30-8

Preparation for Fixed-Point Conversion

2 In the Save Model and Data Restore Point dialog box, in the Name
field, enter a name for the restore point.

3 In the Description field, you can optionally add a description to help you
identify the restore point.

4 Click Save.

The Fixed Point Advisor saves a restore point of the current model, base
workspace, and Fixed Point Advisor status.

Note To quickly save a restore point, go to File > Save Restore Point.
The Fixed Advisor saves a restore point with the name autosaven. n is the
sequential number of the restore point. If you use this method, you cannot
change the name of, or add a description to, the restore point.

Load a Restore Point

When to Load a Restore Point
Load a restore point when:

• A task fails and you cannot continue the conversion. In this case, load a
restore point saved earlier in the run to avoid rerunning all the previous
tasks.

• You want to revert changes you made in response to advice from the
Fixed-Point Advisor.

How to Load a Restore Point
To load a restore point:

1 Go to File > Load Restore Point.

30-9

30 Fixed-Point Advisor

2 In the Load Model and Data Restore Point dialog box, select the restore
point that you want.

3 Click Load.

The Model Advisor issues a warning that the restoration will overwrite
the current model and workspace.

4 Click Load to load the restore point that you selected.

The Fixed Point Advisor reverts the model, base workspace, and Fixed
Point Advisor status.

30-10

Converting a Model from Floating- to Fixed-Point Using Simulation Data

Converting a Model from Floating- to Fixed-Point Using
Simulation Data

In this section...

“About This Example” on page 30-11

“Starting the Preparation” on page 30-11

“Preparing Model for Conversion” on page 30-12

“Prepare for Data Typing and Scaling” on page 30-17

“Propose Data Types Based on the Simulation Reference Run” on page 30-20

“Apply the New Fixed-Point Data Types” on page 30-20

“Simulate the Model Using New Fixed-Point Settings” on page 30-21

About This Example
This example steps you through using the Fixed-Point Advisor to prepare the
fxpdemo_fpa model for conversion from using floating-point data types to
using fixed-point data types. This example shows you how to:

• Set model-wide configuration options.

• Set block-specific parameters.

• Obtain an initial fixed-point data types for the model.

• Validate the fixed-point data types against the floating-point model.

Starting the Preparation

1 Open the model. At the command line, enter: fxpdemo_fpa.

30-11

30 Fixed-Point Advisor

2 To start the conversion:

a Right-click Controller System and, from the subsystem context menu,
select Fixed-Point Tool.

b On the Fixed-Point Tool Fixed-point preparation for selected
system pane, click the Fixed-Point Advisor button.

The Fixed-Point Advisor opens for the subsystem Controller System.

Preparing Model for Conversion
First, validate model-wide settings and create reference simulation data.

1 For the purpose of this tutorial, run the tasks in the Fixed-Point Advisor
Prepare Model for Conversion folder one at a time. In the left pane,

30-12

Converting a Model from Floating- to Fixed-Point Using Simulation Data

select Verify model simulation settings and, in the right pane, click
Run This Task.

This task validates that model simulation settings allow signal logging and
disable data type override to facilitate conversion to fixed point. These
settings ensure that fixed-point data can be logged in downstream tasks.

The task passes.

2 Select and run Verify update diagram status.

Your model must be able to successfully complete an update diagram action
to run the checks in the Fixed-Point Advisor.

The task passes.

3 Select and run Address unsupported blocks.

This task identifies blocks that do not support fixed-point data types.
The Fixed-Point Advisor cannot convert these blocks. To complete the
conversion of your model, replace these blocks with Simulink built-in
blocks that do support fixed-point data types. If a replacement block is not
available, you can temporarily isolate the unsupported block with Data
Type Conversion blocks.

The task fails because the model contains a block that does not support
fixed-point data types.

4 Fix the failure by replacing the TrigFcn block with the provided
replacement:

a Click the Preview link to view the replacement block.

b Click the link to the original block and view its settings.

c Double-click the replacement block and verify its settings match the
settings of the original block.

Note If the settings on the replacement block differ from the settings
on the original block, set up the replacement block to match the original
block.

30-13

30 Fixed-Point Advisor

d In the Controller System subsystem, right-click the original TrigFcn
block. From the context menu, select Replace with Lookup Table.

The Fixed-Point Advisor replaces the original block.

e In the Fixed-Point Advisor, rerun the task. The task passes.

5 Select and run Set up signal logging. Because you are using simulation
minimum and maximum data, you must specify at least one signal to use
in analysis and comparison in downstream checks. At a minimum, you
should log the unique input and output signals.

The task runs and the Fixed-Point Advisor warns that signal logging is
not specified for any signals.

6 Because you want to propose data types based on simulation data, fix the
warning:

a Click the Explore Result button.

b In the Model Advisor Result Explorer, select the signals that you want to
log and select the EnableLogging check box.

For this tutorial, log the signals connected to the Inport and Outport
blocks:

• Ctr_in

• Ctr_out

c Close the Model Advisor Result Explorer.

d In the Fixed-Point Advisor, rerun the task.

The task passes because signal logging is enabled for at least one signal.

7 Select and run Create simulation reference data. The Fixed-Point
Advisor simulates the model using the current solver settings, and creates
and archives reference signal data to use for analysis and comparison in
later conversion tasks.

The task runs and the Fixed-Point Advisor warns that logging is not
enabled.

30-14

Converting a Model from Floating- to Fixed-Point Using Simulation Data

If the simulation is set up to have a long simulation time, after starting
this task, you can stop the simulation by selecting the waitbar and then
pressing Ctrl+C. This allows you to change the simulation time and
continue without waiting for the long simulation.

8 To fix the failure, in the Action box click Modify All.

The Modify All action configures the model to the settings recommended
in the Analysis Result. The Action Result box displays a table of changes.

Note Prior to automatically fixing failures, you should review the
Analysis Result box to ensure that you want to apply all the recommended
actions.

9 Click the Run This Task button.

The task passes and the tool stores the results in a run named
FPA_Reference. You can view these results in the Fixed-Point Tool
Contents pane.

10 Open the Verify Fixed-Point Conversion Guidelines folder. Select and
run Check model configuration data validity diagnostic parameters
settings. This task verifies that theModel Configuration Parameters
> Diagnostics > Data Validity > Parameters options are all set to
warning. If these options are set to error, the model update diagram
action fails in later tasks.

The task passes.

11 Select and run Implement logic signals as Boolean data. This task
verifies that Model Configuration Parameters > Optimization >
Implement logic signals as Boolean data is selected. If it is cleared, the
code generated in downstream checks is not optimized.

The task passes.

30-15

30 Fixed-Point Advisor

12 Select and run Check bus usage. This task identifies:

• Mux blocks that are bus creators

• Bus signals that the top-level model treats as vectors

Note This is a Simulink check. For more information, see “Check bus
usage” in the Simulink documentation.

The task passes.

13 Select and run Simulation range checking. This tasks verifies that
the Model Configuration Parameters > Diagnostics > Simulation
range checking option is not set to none. A warning is displayed because
Simulation range checking is currently set to none. The recommended
setting is warning so that warnings are generated when signals exceed the
specified minimum or maximum values.

14 Fix the warning by applying the recommended setting using the Modify
All button. Rerun the task.

The task passes.

15 Select and run Check for implicit signal resolution. This task checks
for models that use implicit signal resolution. To use the Fixed-Point
Advisor for Simulink signal object scaling, turn off implicit signal resolution
by setting the Diagnostics > Data Validity > Signal resolution
property in the Configuration Parameters dialog box to Explicit only.
Enforce resolution for each of the signals and states that currently resolve
successfully. For more information, see “Signal resolution” in the Simulink
documentation.

The task passes because the model contains no Simulink signal objects.

The run to failure action has completed for the Prepare Model for
Conversion folder. At this point, you can review the results report found at
the folder level, or continue to the next folder.

30-16

Converting a Model from Floating- to Fixed-Point Using Simulation Data

Prepare for Data Typing and Scaling
The tasks in this folder prepare the model for automatic data typing by the
Fixed-Point Tool. This folder contains tasks that set the block configuration
options and output minimum and maximum values for blocks. The block
settings from this task simplify the initial data typing and scaling. The
optimal block configuration is achieved in later stages.

1 Right-click Prepare for Data Typing and Scaling and select Run to
Failure.

The Fixed-Point Advisor runs the Review locked data type settings
task. This task identifies blocks that have their data type settings locked
down, which excludes them from automatic data typing.

The task passes because it finds no blocks with locked data types.

2 The Fixed-Point Advisor runs theRemove output data type inheritance
task. This task identifies blocks with the Output data type property set to
Inherit. Inherited data types might lead to data type propagation errors.

The task fails because some blocks in the model have inherited output
data types.

3 Fix the failure using the Modify All button to explicitly configure the
output data types to the recommended values. Rerun the task.

The task passes.

4 Continue running to failure. Relax input data type settings runs. This
task identifies blocks with input data type constraints that might lead to
data type propagation errors.

The task passes because all blocks have flexible input data types.

5 Verify Stateflow charts that have strong data typing with Simulink
runs. This task verifies that all Stateflow charts are configured to have
strong data typing with Simulink I/O.

The task passes because the model does not have any Stateflow charts.

30-17

30 Fixed-Point Advisor

6 Remove redundant specification between signal objects and blocks
runs. This task identifies and removes redundant data type specification
originating from blocks and Simulink signal objects.

The task passes because the model contains no resolved Simulink signal
objects.

7 Verify hardware selection runs. This task identifies the hardware
device information on the Hardware Implementation pane of the
Configuration Parameters dialog box.

The task fails because the Model Configuration Parameters >
Hardware Implementation option does not provide values for the
Device vendor and Device type parameters.

8 Fix the failure:

a Click the Hardware Implementation Device settings link.

b In the Configuration Parameters dialog box Hardware
Implementation pane, change:

• Device vendor to Generic

• Device type to 32-bit Embedded Processor

c Click OK to apply the settings.

9 In the Fixed-Point Advisor window, rerun the task.

The task fails because you must specify a default data type for floating-point
data types that is suitable for the chosen hardware.

10 Fix the failure by setting Default data type for all floating-point
signals to int16.

The software uses this default data type for all output signals. The
Fixed-Point Advisor proposes the Same as embedded hardware integer
setting, which is int32. However, use int16 because the model performs
many multiplications and you want the product to fit into int32.

11 Rerun the task.

The task passes.

30-18

Converting a Model from Floating- to Fixed-Point Using Simulation Data

12 Select and run Specify block minimum and maximum values.

The Fixed-Point Advisor warns you that you have not specified any
minimum and maximum values. Optimally, specify block output and
parameter minimum and maximum values for, at minimum, the Inport
blocks in the system. You can specify the minimum and maximum values
for any block in this step. Typically, these values are determined during
the design process based on the system that you are creating.

13 Fix the warning by specifying minimum and maximum values for Inport
blocks:

a Click the Explore Result button.

The Model Advisor Result Explorer opens, displaying the Inport blocks
that do not have an output minimum and maximum specified.

b On the Model Advisor Result Explorer center pane, select Ctr_in. For
the purpose of this tutorial, specify the output minimum and maximum
values for this block. Set OutMin to -5 and set OutMax to 5.

c Close the Model Advisor Result Explorer.

d In the Fixed-Point Advisor, rerun the task.

The task passes because minimum and maximum values are specified
for all Inport blocks.

e For the purpose of this tutorial, do not specify other minimum and
maximum values for other blocks.

f Review the results report found at the folder level.

14 Select and run Return to the Fixed-Point Tool to perform data
typing and scaling.

15 On the Fixed-Point Tool Contents pane, examine the results for the
simulation reference run. One of the TrigFcn block outputs overflowed
multiple times, indicating that the fixed-point settings on this block are
not suitable for the input range. To refine the fixed-point data types,
first run the model with a global override of the fixed-point data types
using double-precision numbers to avoid quantization effects. This action
provides a floating-point benchmark that represents the ideal output.
Then, propose new data types based on these “ideal” results.

30-19

30 Fixed-Point Advisor

Propose Data Types Based on the Simulation
Reference Run
Use the Fixed-Point Tool to propose fixed-point data types based on the
simulation reference (FPA_Reference) run.

1 In the Fixed-Point Tool:

a Click the Propose fraction lengths button .

b Because you are proposing data types based on fixed-point results, the
tool issues a warning. In the warning dialog box, click Yes.

The Fixed-Point Tool proposes new data types for objects in the model
and updates the results on the Contents pane.

2 In the Fixed-Point Tool, set the Column View to Automatic Data Typing
with Simulation Min/Max View to display information relevant to the
proposal. The tool displays the proposed scaling in the ProposedDT
column in the Contents pane.

To accommodate the full simulation range, the Fixed-Point Tool proposes
new data types for some blocks in the model. Because the TrigFcn block is
a linked library, the tool does not propose new data types for this block.

3 Examine the results to resolve any conflicts and to ensure that you want
to accept the proposed data type for each result.

In the Fixed-Point Tool toolbar, select Show > Conflicts with proposed
data types.

The Fixed-Point Tool detects no conflicts, so you are ready to apply the new
data types as described in “Apply the New Fixed-Point Data Types” on
page 32-25.

Apply the New Fixed-Point Data Types

1 Click Apply accepted fraction lengths to write the proposed data types
to the model.

30-20

Converting a Model from Floating- to Fixed-Point Using Simulation Data

2 In the Fixed-Point Tool toolbar, select Show > All results.

The tool has set all the specified data types to the proposed types.

Simulate the Model Using New Fixed-Point Settings

1 On the Shortcuts to set up runs pane, click the Model-wide no
override and full instrumentation button to use the locally specified
data type settings.

2 On the Fixed-Point Tool Model Hierarchy pane, select the Controller
Subsystem.

3 Click Simulate to run the simulation.

The Simulink software simulates the model using the new fixed-point
settings that you applied in the previous step and stores the results in
the NoOverride run.

4 Examine the results. Because the tool did not propose new data types for
the TrigFcn block, this block still overflows.

30-21

30 Fixed-Point Advisor

30-22

31

Fixed-Point Tool

• “Fixed-Point Tool” on page 31-2

• “Run Management” on page 31-5

• “Debug a Fixed-Point Model” on page 31-12

• “Logging Simulation Ranges for Referenced Models” on page 31-20

• “Log Simulation Ranges for Referenced Models” on page 31-24

• “Propose Data Types for a Referenced Model” on page 31-30

• “Logging Simulation Ranges for MATLAB Function Block” on page 31-34

• “Log Simulation Ranges for MATLAB Function Block” on page 31-35

• “View Signal Names in Fixed-Point Tool” on page 31-39

31 Fixed-Point Tool

Fixed-Point Tool

In this section...

“Introduction to the Fixed-Point Tool” on page 31-2

“Using the Fixed-Point Tool” on page 31-2

Introduction to the Fixed-Point Tool
The Fixed-Point Tool is a graphical user interface that automates specifying
fixed-point data types in a model. The tool collects range data for model
objects. The range data comes from either design minimum and maximum
values that objects specify explicitly, from logged minimum and maximum
values that occur during simulation, or from minimum and maximum values
derived using range analysis. Based on these values, the tool proposes
fixed-point data types that maximize precision and cover the range. With this
too, you can review the data type proposals and then apply them selectively to
objects in your model.

Fixed-Point Tool Capability More Information

Deriving range information based on
specified design range

“Derive Ranges”

Proposing data types based on
simulation data

“Conversion Using Simulation Data”

Proposing data types based on
derived ranges

“Conversion Using Range Analysis”

Proposing data types based on
simulation data from multiple runs

“Propose Data Types Using Multiple
Simulations” on page 34-71

Debugging fixed-point models “Debug a Fixed-Point Model” on
page 31-12

Using the Fixed-Point Tool
To open the Fixed-Point Tool, use any of the following methods:

• From the Simulink Analysis menu, select Fixed-Point Tool.

31-2

Fixed-Point Tool

• From the model context menu, select Fixed-Point Tool.

• From a subsystem context menu, select Fixed-Point Tool.

If you want to open the tool programmatically, use the fxptdlg function.
For more information, see fxptdlg.

The Fixed-Point Tool contains the following components:

• Model Hierarchy pane — Displays a tree-structured view of the Simulink
model hierarchy.

• Contents pane — Displays a tabular view of objects that log fixed-point
data in a system or subsystem.

• Dialog pane — Displays parameters for specifying particular attributes
of a system or subsystem, such as its data type override and fixed-point
instrumentation mode.

• Toolbar — Provides buttons for commonly used Fixed-Point Tool commands.

• Shortcut Editor— To open the Shortcut Editor, on the far right-hand
pane, click the Add/Edit shortcuts link. This editor provides the ability
to configure shortcuts that set up the run name as well as model-wide
data type override and instrumentation settings prior to simulation or
range derivation. For more information, see “Run Management with the
Shortcut Editor” on page 31-5.

For more information about each of these components, see fxptdlg.

31-3

31 Fixed-Point Tool

31-4

Run Management

Run Management

In this section...

“Run Management” on page 31-5

“Why Use Shortcuts to Manage Runs” on page 31-7

“When to Use Shortcuts to Manage Runs” on page 31-7

“Add Shortcuts” on page 31-8

“Edit Shortcuts” on page 31-9

“Delete Shortcuts” on page 31-10

“Capture Model Settings Using the Shortcut Editor” on page 31-10

Run Management
The Fixed-Point Tool supports multiple runs. Each run uses one set of model
settings to simulate the model or to derive or propose data types. You can:

• Store multiple runs.

• Specify custom run names.

• Propose data types based on the results in any run.

• Apply data type proposals based on any run.

• Compare the results of any two runs.

• Rename runs directly in the Fixed-Point Tool Contents pane.

You can easily switch between different run setups using shortcuts.
Alternatively, you can manually manage runs.

Run Management with the Shortcut Editor
You can use shortcuts prior to simulation to configure the run name as well
as to configure model-wide data type override and instrumentation settings.
The Fixed-Point Tool provides:

31-5

31 Fixed-Point Tool

• Frequently used factory default shortcuts, such as Model-wide double
override and full instrumentation, which sets up your model so that
you can override all fixed-point data types with double-precision numbers
and logs the simulation minimum and maximum values and overflows.

Note You can set up user-defined shortcuts across referenced model
boundaries. The factory default shortcuts apply only to the top-level model
and so do not affect the settings of any referenced model.

• The ability to add and edit custom shortcuts. The shortcuts are saved with
the model so that you define them once and then reuse them multiple times.
Use the Shortcut Editor to create or edit shortcuts and to add and organize
shortcut buttons in the Fixed-Point Tool Shortcuts to set up runs pane.

Note You can use user-defined shortcuts across referenced model
boundaries.

Manual Run Management
You can also manually manage runs using the following settings:

• In the Data collection pane, Store results in run.

Provide a new run name before a simulation or collecting derived minimum
and maximum values so that you do not overwrite existing runs.

• In the Settings for selected system pane:

- Fixed-point instrumentation mode

- Data type override

- Data type override applies to

31-6

Run Management

Why Use Shortcuts to Manage Runs
Shortcuts provide a quick and easy way to set up data type override and
fixed-point instrumentation settings run prior to simulation or range
derivation. You can associate a run name with each shortcut. When you apply
a shortcut, you change the data type override and fixed-point instrumentation
settings of multiple systems in your hierarchy simultaneously.

Shortcuts:

• Simplify the workflow. For example, you can collect a floating-point
baseline in a clearly named run.

• Provide the ability to configure data type override and instrumentation
settings on multiple subsystems in the model hierarchy at the same time.
This capability is useful for models that have a complicated hierarchy.

• Are a convenient way to store frequently used settings and reuse them.
This capability is useful when switching between different settings during
debugging.

• Provide a way to store the original fixed-point instrumentation and
data type override settings for the model. Preserving these settings in a
shortcut provides a backup in case of failure and a baseline for testing
and validation.

When to Use Shortcuts to Manage Runs

To ... Use...

Autoscale your entire model The factory default shortcuts.
These defaults provide an efficient
way to override the model with
floating-point data types or remove
existing data type overrides. For
more information, see “Propose

31-7

31 Fixed-Point Tool

To ... Use...

Fraction Lengths Using Simulation
Range Data” on page 34-50.

Debug a model Shortcuts to switch between different
data type override and fixed-point
instrumentation modes. For
more information, see “Debug a
Fixed-Point Model” on page 31-12.

Manage the settings on multiple
systems in a model. For example,
if you are converting your model to
fixed point one subsystem at a time.

The Shortcut Editor to define your
own shortcuts so that you can switch
between different settings without
manually changing individual
settings each time.

Capture the initial settings of the
model before making any changes
to it.

The Shortcut Editor to capture the
model settings and save them in a
named run. For more information,
see “Capture Model Settings Using
the Shortcut Editor” on page 31-10.

Add Shortcuts

1 On the Fixed-Point Tool Shortcuts to set up runs pane, click Add/Edit
shortcuts.

2 For each subsystem that you want to specify a shortcut for, on the Shortcut
Editor Model Hierarchy pane, select the subsystem:

a In the Name of shortcut field, enter the shortcut name.

By default, if Allow modification of run name is selected, the
software sets the Run name to the shortcut name. You can manually
override the name.

b Edit the shortcut properties. See “Edit Shortcuts” on page 31-9.

31-8

Run Management

Edit Shortcuts

1 On the Fixed-Point Tool Shortcuts to set up runs pane, click Add/Edit
shortcuts.

2 In the Shortcut Editor, from the Name of shortcut list, select the shortcut
that you want to edit.

The editor displays the run name, fixed-point instrumentation settings,
and data type override settings defined by the shortcut.

Note You cannot modify the factory default shortcuts.

3 If you do not want this shortcut to modify the existing fixed-point
instrumentation settings on the model, clear Allow modification of
fixed-point instrumentation settings.

4 If you do not want this shortcut to modify the existing data type override
settings on the model, clear Allow modification of data type override
settings.

5 If you do not want this shortcut to modify the run name on the model, clear
Allow modification of run name.

6 If you want to modify the shortcut for a subsystem:

a Select the subsystem.

b If applicable, set the Fixed-point instrumentation mode to use when
you apply this shortcut.

c If applicable, set the Data type override mode to use when you apply
this shortcut.

d If applicable, set the Run name to use when you apply this shortcut.

e Click Apply.

7 Repeat step 6 to modify any subsystem shortcuts that you want.

31-9

31 Fixed-Point Tool

8 Optionally, if you want the Fixed-Point Tool to display a button for this new
shortcut, use the right arrow to move the shortcut to the list of shortcuts to
display. Use the up and down arrows to change the order of the shortcut
buttons.

9 Save the model to store the shortcut with the model.

Delete Shortcuts
To delete a shortcut from a model:

1 On the Fixed-Point Tool Shortcuts to set up runs pane, click Add/Edit
shortcuts.

2 On the Shortcut Editor Manage shortcuts pane, in the Shortcuts table,
select the shortcut that you want to delete.

3 Click the Delete selected shortcut button, .

Capture Model Settings Using the Shortcut Editor

1 On the Fixed-Point Tool Shortcuts to set up runs pane, click Add/Edit
shortcuts.

2 In the Shortcut Editor, create a new shortcut, for example, Initial
subsystem settings.

By default, if Allow modification of run name is selected, the software
sets the Run name to the shortcut name. You can manually override
the name.

3 Verify that Allow modification of fixed-point instrumentation
settings and Allow modification of data type override settings are
selected.

4 Click Capture system settings.

The software sets the Fixed-point instrumentation mode, Data type
override, and, if appropriate, Data type override applies to for the
systems in the model hierarchy.

31-10

Run Management

5 Click Apply.

6 Save the model to store the shortcut with the model.

31-11

31 Fixed-Point Tool

Debug a Fixed-Point Model

In this section...

“Simulating the Model to See the Initial Behavior” on page 31-12

“Debugging the Model” on page 31-14

“Simulating the Model Using a Different Input Stimulus” on page 31-16

“Debugging the Model with the New Input” on page 31-17

“Proposing Fraction Lengths for Math2 Based on Simulation Results” on
page 31-18

“Verifying the New Settings” on page 31-18

This example shows how to:

• Identify which parts of a model cause numeric problems.

The current fixed-point settings on this model cause overflows. You debug
the model by overriding the fixed-point settings on one subsystem at a
time and simulating the model to determine how these fixed-point settings
affect the model behavior.

• Create and use shortcuts to set up fixed-point instrumentation and data
type override settings for different runs.

To optimize the model for two different inputs, you switch several times
between different data type override and fixed-point instrumentation
settings. Using shortcuts facilitates changing these settings.

• Autoscale the model over the complete simulation range for both inputs.

Simulating the Model to See the Initial Behavior
Initially, the input to the Gain block is a sine wave of amplitude 7. Simulate
the model using local system settings with logging enabled to see if any
overflows or saturations occur.

1 Open the ex_fixedpoint_debug model. At the MATLAB command line,
enter:

31-12

Debug a Fixed-Point Model

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_fixedpoint_debug

2 From the model Analysis menu, select Fixed-Point Tool.

3 In the Fixed-Point Tool, set up a shortcut for the initial system settings:

On the Shortcuts to set up runs pane, click Add/Edit shortcuts.

4 In the Shortcut Editor:

31-13

31 Fixed-Point Tool

a On the Model Hierarchy pane, select subsysA>Math1.

b In the Name of shortcut field, enter Setting A.

The editor sets the Run name for this shortcut to Setting A.

c Set Fixed-point instrumentation mode to Minimums, maximums and
overflows.

d Set Data type override to Use local settings.

e Click Apply.

f On theModel Hierarchy pane, select subsysA>Math2 and repeat steps
(c) to (f).

g On the Manage shortcuts pane, under Shortcuts, select Setting A
then click the right arrow to move this shortcut to the list of shortcuts
displayed in the Fixed-Point Tool.

5 Use this shortcut to set up a run. Use the settings to simulate the model.

a On the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug.

b On the Shortcuts to set up runs pane, click Setting A.

c Click the Simulate button,

The Simulink software simulates the model using the fixed-point
instrumentation and data type settings specified in Setting A.
Afterward, on the Contents pane, the Fixed-Point Tool displays the
simulation results for each block that logged fixed-point data. The tool
stores the results in the run named Setting A. The Fixed-Point tool
highlights subsysB/Math2/Add1:Output in red to indicate that there
is an issue with this result. The OverflowWraps column for this
result shows that the block overflowed 51 times, which indicates a poor
estimate for its scaling.

Debugging the Model
To debug the model, first simulate the model using local settings on
the subsystem Math1 while overriding the fixed-point settings on Math2
with doubles. Simulating subsystem Math2 with doubles override avoids

31-14

Debug a Fixed-Point Model

quantization effects for this subsystem. If overflows occur, you can deduce
that there are issues with the fixed-point settings in subsystem Math1.

Next, simulate the model using local settings on Math2 and doubles override
on Math1. If overflows occur for this simulation, there are problems with the
fixed-point settings for subsystem Math2.

Setting Up Shortcuts

1 Use the Shortcut Editor to create the following new shortcuts.

Shortcut
Name

Subsystem Fixed-point
instrumentation mode

Data type
override

Data type
override applies
to

Math1 MinMaxAndOverflow Use local
settings

N/ASetting B

Math2 MinMaxAndOverflow Double All numeric types

Math1 MinMaxAndOverflow Double All numeric typesSetting C

Math2 MinMaxAndOverflow Use local
settings

N/A

2 On theManage shortcuts pane, add Setting B and Setting C to the list
of buttons to display in the Fixed-Point Tool.

Testing Subsystem Math1 Settings
Simulate the model with original fixed-point settings on Math1 while
overriding the fixed-point settings with doubles on Math2.

1 On the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug.

2 On the Shortcuts to set up runs pane, click Setting B to override
fixed-point settings on Math2.

3 Click the Simulate button.

31-15

31 Fixed-Point Tool

The Simulink software simulates the model using the fixed-point
instrumentation and data type settings specified in Setting B, using
fixed-point settings for Math1 and overriding the fixed-point settings for
Math2. No overflows occur, which indicates that the settings on Math1 are
not causing the overflows.

Testing Subsystem Math2 Settings
Simulate with original fixed-point settings on Math2 while overriding the
fixed-point settings with doubles on Math1.

1 On the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug.

2 On the Shortcuts to set up runs pane, click Setting C to override the
fixed-point settings on Math1.

3 Click the Simulate button.

The Simulink software simulates the model using the fixed-point
instrumentation and data type settings specified in Setting C, using
fixed-point settings for Math2 and overriding the fixed-point settings for
Math1. Overflows occur in run Setting C, indicating that the settings
on Math2 are causing the overflows.

Simulating the Model Using a Different Input Stimulus
Simulate the model with a different input using the original fixed-point
settings on subsystems Math1 and Math2. Because you set up a shortcut for
this initial set up, before rerunning the simulation, you can easily configure
the model. Before simulating, select to merge the simulation results so that
the tool gathers the simulation range for both inputs.

1 On the Data collection pane, select Merge instrumentation results
from multiple simulations.

2 In the ex_fixedpoint_debug model, double-click the Manual Switch block
to select Chirp Signal1 as the input to the Gain block.

31-16

Debug a Fixed-Point Model

3 On the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug and simulate using the original fixed-point settings
for Math1 and Math2.

a On the Shortcuts to set up runs pane, click Setting A.

b Click the Simulate button.

The Simulink software simulates the model using the fixed-point
instrumentation and data type settings specified in Setting A.
Afterward, in the Contents pane, the Fixed-Point Tool displays the
simulation results for each block that logged fixed-point data. The tool
stores the results in the run named Setting A.

Tip In the Fixed-Point Tool Contents pane, click Run to sort the
results in this column.

Debugging the Model with the New Input

1 Simulate the model with original fixed-point settings on Math1 while
overriding the fixed-point settings with doubles on Math2.

a On the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug.

b On the Shortcuts to set up runs pane, click Setting B.

c Click the Start button.

No overflows occur, which indicates that the settings on Math1 are not
causing the overflows.

2 Simulate with original fixed-point settings on Math2 while overriding the
fixed-point settings with doubles on Math1.

a On the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug.

b On the Shortcuts to set up runs pane, click Setting C.

c Click the Start button.

31-17

31 Fixed-Point Tool

Overflows occur, which indicates that the fixed-point settings on Math2
are causing the overflows. Next, use the Fixed-Point Tool to propose
new data types for this subsystem.

Proposing Fraction Lengths for Math2 Based on
Simulation Results

1 On the Fixed-Point Tool Model Hierarchy pane, select Math2.

2 On the Automatic data typing for selected system pane, click the
Propose fraction lengths button.

3 In the Propose Data Types dialog box, select Setting B as the run to use
for proposing data types and click OK. This run simulated Math2 with
double override to obtain the ’ideal’ behavior of the subsystem based on the
simulation results for both input stimuli.

The Fixed-Point Tool proposes new fixed-point data types for the objects in
subsystem Math2 to avoid numerical issues such as overflows.

4 On the Contents pane ProposedDT column, examine the proposed data
types for the objects in Math2. The tool proposed new fixed-point data types
with reduced precision for the Add1 block Output and Accumulator.

5 Because the Fixed-Point Tool marked all the proposed results with a green
icon to indicate that the proposed data types pose no issues for these
objects, accept the proposals.

In the Automatic data typing for selected system pane, click the
Apply accepted fraction lengths button.

Verifying the New Settings
Verify that the new settings do not cause any numerical problems by
simulating the model using local settings for subsystems Math1 and Math2 and
logging the results. Use shortcut Setting A that you set up for these settings.

1 On the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug.

2 On the Shortcuts to set up runs pane, click Setting A.

31-18

Debug a Fixed-Point Model

3 On the Data collection pane, set Store results in run to Setting
A2 and click Apply so that the Fixed-Point Tool does not overwrite the
previous results for this shortcut.

4 Click the Simulate button.

The Simulink software simulates the model using the new fixed-point
settings. Afterward, the Fixed-Point Tool displays the simulation results
in run Setting A2. No overflows or saturations occur indicating that the
model can now handle the full input range.

31-19

31 Fixed-Point Tool

Logging Simulation Ranges for Referenced Models

In this section...

“Viewing Simulation Ranges for Referenced Models” on page 31-20

“Fixed-Point Instrumentation and Data Type Override Settings” on page
31-22

“See Also” on page 31-23

Viewing Simulation Ranges for Referenced Models
The Fixed-Point Tool logs simulation minimum and maximum values
(ranges) for referenced models. The tool logs these values only for instances
of the referenced model that are in Normal mode. It does not log simulation
minimum and maximum values for instances of the referenced model that
are in non-Normal modes. If your model contains multiple instances of a
referenced model and some are instances are in Normal mode and some are
not, the tool logs and displays data for those that are in Normal mode.

If a model contains a referenced model, the Fixed-Point Tool Model
Hierarchy pane displays a subnode for the instance of the referenced
model as well as a node for the referenced model. For example, the
ex_mdlref_controller model contains a Model block that references the
ex_controller model. The Fixed-Point Tool shows both models in the model
hierarchy.

31-20

Logging Simulation Ranges for Referenced Models

If a model contains multiple instances of a referenced model, the tool displays
each instance of the referenced model in this model as well as a node for the
referenced model. For example, the ex_multi_instance model contains two
instances of the referenced model ex_sum. The Fixed-Point Tool displays both
models and both instances of the referenced model in the model hierarchy.

The tool logs and displays the results for each instance of the referenced
model. For example, here are the results for the first instance of the
referenced model ex_sum1 in ex_multi_instance.

31-21

31 Fixed-Point Tool

Here are the results for the second instance of ex_sum1.

In the referenced model node, the tool displays the union of the results for
each instance of the referenced model.

Fixed-Point Instrumentation and Data Type Override
Settings
When you simulate a model that contains referenced models, the data type
override and fixed-point instrumentation settings for the top-level model do
not control the settings for the referenced models. You must specify these
settings separately for the referenced model. If the settings are inconsistent,
for example, if you set the top-level model data type override setting to double
and the referenced model to use local settings and the referenced model uses
fixed-point data types, data type propagation issues might occur.

You can set up user-defined shortcuts across referenced model boundaries.
The factory default shortcuts apply only to the top-level model and so do not
affect the settings of any referenced model.

31-22

Logging Simulation Ranges for Referenced Models

When you change the fixed-point instrumentation and data type override
settings for any instance of a referenced model, the settings change on all
instances of the model and on the referenced model itself.

See Also

• “Log Simulation Ranges for Referenced Models” on page 31-24

31-23

31 Fixed-Point Tool

Log Simulation Ranges for Referenced Models
This example shows how to log simulation minimum and maximum values for
a model that contains multiple instances of the same referenced model.

Simulate the Model Using Local Settings

1 Open the ex_mdlref_controller model. At the MATLAB command line,
enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_mdlref_controller

The model contains a Model block that references the ex_controller
model. Using a referenced model isolates the controller from the rest of the
system. This method is useful to help you configure a model to determine
the effect of fixed-point data types on a system. Using this approach, you
convert only the referenced model because this is the system of interest.

31-24

Log Simulation Ranges for Referenced Models

2 In the ex_mdlref_controllermodel menu, selectAnalysis > Fixed-Point
Tool.

The Fixed-Point Tool opens. In its Model Hierarchy pane, the tool
displays two model nodes, one for the ex_mdlref_controller model

31-25

31 Fixed-Point Tool

showing that this model contains a Model block that refers to the
ex_controller model, and another for the ex_controller model itself.

3 In the Fixed-Point Tool Model Hierarchy pane, select the
ex_mdlref_controller model.

4 On the Settings for selected system pane, verify that:

• Fixed-point instrumentation mode is set to Minimums, maximums
and overflows.

• Data type override is set to Use local settings so the model will log
simulation data using the data types set up on the model.

5 In the Fixed-Point Tool Data collection pane, set Store results in run to
initial_run and then click Apply.

31-26

Log Simulation Ranges for Referenced Models

Providing a unique name for the run avoids accidentally overwriting results
from previous runs and enables you to identify the run more easily.

6 The fixed-point instrumentation and data type override settings for the
top-level model do not affect the settings in the referenced model. In the
Fixed-Point ToolModel Hierarchy pane, select the ex_controller model
and verify that:

• Fixed-point instrumentation mode is set to Minimums, maximums
and overflows

• Data type override is set to Use local settings

7 In the Fixed-Point Tool, click Simulate.

The Simulink software simulates the model. Afterward, the Fixed-Point
Tool displays in its Contents pane the simulation results for each block
that logged fixed-point data. By default, it displays the Simulation View
of these results.

The Simulation Data Inspector tool opens. You can use this tool to inspect
and compare signals in your model.

8 In the Fixed-Point ToolModel Hierarchy pane, select the ex_controller
model.

The Fixed-Point tool displays the results for the referenced model and
highlights the Up Cast block in red to indicate that there is an issue with
this result. The Saturations column for this result shows that the block
saturated 23 times, which indicates poor scaling.

31-27

31 Fixed-Point Tool

Next, use data type override mode to perform a global override of the
fixed-point data types and scaling using double-precision numbers to
avoid quantization effects. Later, you use these simulation results when
performing automatic data typing.

Gather a Floating-Point Benchmark

1 In the Settings for selected system pane, set Data type override to
Double.

2 In the Data collection pane, set Store results in run to double_run
and then click Apply.

3 In the Model Hierarchy pane, select the ex_mdlref_controller model,
set Data type override to Double and then click Apply.

Setting data type override for the top-level model avoids data type
propagation issues when you simulate the model.

4 In the Fixed-Point Tool, click Simulate.

The Simulink software simulates the ex_mdlref_controllermodel in data
type override mode and stores the results in the run named double_run.
Afterward, the Fixed-Point Tool displays in its Contents pane the results
along with those of the run that you generated previously.

5 Use the Simulation Data Inspector to view the initial_run and
double_run versions of the signal associated with the Analog Plant output
(upper axes), and the difference between the signals (lower axes).

31-28

Log Simulation Ranges for Referenced Models

Now you are ready to propose data types based on the simulation results
from the doubles override run.

31-29

31 Fixed-Point Tool

Propose Data Types for a Referenced Model
This example shows how to propose data types for a referenced model. To
run this example, you must first run the “Log Simulation Minimum and
Maximum Values for Referenced Models” example.

1 In the Model Hierarchy pane of the Fixed-Point Tool, select the
ex_controller model.

2 In the Automatic data typing for selected system pane, click the
Configure link and verify that Propose fraction lengths for specified
word lengths is selected.

3 In the same pane, specify the Safety margin for simulation min/max
(%) parameter as 20 and click Apply.

4 In the Fixed-Point Tool, click Propose fraction lengths, .

Because no design minimum and maximum information is supplied, the
simulation minimum and maximum data that was collected during the
simulation run is used to propose data types. The Percent safety margin
for simulation min/max parameter value multiplies the “raw” simulation
values by a factor of 1.2. Setting this parameter to a value greater than
1 decreases the likelihood that an overflow will occur when fixed-point
data types are being used.

Because of the nonlinear effects of quantization, a fixed-point simulation
will produce results that are different from an idealized, doubles-based
simulation. Signals in a fixed-point simulation can cover a larger or
smaller range than in a doubles-based simulation. If the range increases
enough, overflows or saturations could occur. A safety margin decreases
the likelihood of this happening, but it might also decrease the precision of
the simulation.

5 In the Propose Data Types dialog box, select double_run and click OK.

The Fixed-Point Tool analyzes the scaling of all fixed-point blocks whose:

• Lock output data type setting against changes by the fixed-point
tools parameter is not selected.

31-30

Propose Data Types for a Referenced Model

• Output data type parameter specifies a generalized fixed-point
number.

The Fixed-Point Tool uses the minimum and maximum values stored in
the selected run to propose each block’s scaling such that the precision is
maximized while the full range of simulation values is spanned. The tool
displays the proposed scaling in its Contents pane. Now, it displays the
Automatic Data Typing View to provide information, such as ProposedDT,
ProposedMin, ProposedMax, which are relevant at this stage of the
fixed-point conversion.

6 Review the scaling that the Fixed-Point Tool proposes. You can choose to
accept the scaling proposal for each block by selecting the corresponding
Accept check box in the Contents pane. By default, the Fixed-Point Tool
accepts all scaling proposals that differ from the current scaling. For this
example, verify that the Accept check box associated with the active run is
selected for each of the Controller subsystem’s blocks.

The Fixed-Point Tool does not propose a data type for Combine
Terms:Accumulator and displays n/a in the ProposedDT column. The
tool does not propose a data type because the SpecifiedDT is Inherit:
Inherit via internal rule. To view more information about a proposal,

click the Show details for selected result button .

31-31

31 Fixed-Point Tool

7 In the Fixed-Point Tool, click the Apply accepted fraction lengths

button .

The Fixed-Point Tool applies to the scaling proposals that you accepted
in the previous step.

8 In the Model Hierarchy pane of the Fixed-Point Tool, select the
ex_mdlref_controller model.

a In the Settings for selected system pane, set Data type override
to Use local settings. This option enables each of the model’s
subsystems to use its locally specified data type settings, however, it
does not apply to the referenced model.

b In the Data collection pane, set Store results in run to
scaled_fixed_run and then click Apply.

9 In theModel Hierarchy pane, select the ex_controller model and set its
Data type override parameter as Use local settings and click Apply.

10 In the Fixed-Point Tool, click Simulate.

The Simulink software simulates the ex_mdlref_controller model using
the new scaling that you applied. Afterward, the Fixed-Point Tool displays
in its Contents pane information about blocks that logged fixed-point data.

11 Use the Simulation Data Inspector to plot the Analog Plant output for the
floating-point and fixed-point runs and the difference between them.

The difference plot shows that the difference between the floating-point
signal and the fixed-point signal is within the specified tolerance of 0.04.

31-32

Propose Data Types for a Referenced Model

31-33

31 Fixed-Point Tool

Logging Simulation Ranges for MATLAB Function Block
You can log simulation minimum and maximum values for MATLAB Function
blocks using the Mininums, maximumx and overflows logging control in the
Fixed-Point Tool. The logged minimum and maximum values are displayed
in the MATLAB Function Report. For fixed-point data types, the report
also displays the percent of current range. You can use the simulation
minimum/maximum data to help you determine the optimal word length
and fraction length of fixed-point data types for signals in your model. After
modifying your model to use fixed-point data types, simulate again to verify
that the data types cover the full intended operating range.

Note The software does not log simulation minimum and maximum values
for MATLAB Function blocks used as a reference (library) block or in a
referenced model.

See Also

• “Log Simulation Ranges for MATLAB Function Block” on page 31-35

31-34

Log Simulation Ranges for MATLAB Function Block

Log Simulation Ranges for MATLAB Function Block
This example shows how to log simulation minimum and maximum values for
a MATLAB Function block and view these values in the MATLAB Function
Report.

1 Open the ex_matlab_function_block_logging model. At the MATLAB
command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_matlab_function_block_logging

31-35

31 Fixed-Point Tool

2 From the model Analysis menu, select Fixed-Point Tool.

3 In the Fixed-Point Tool, under Settings for selected system,
Fixed-point instrumentation mode is set to Minimums, maximums and
overflows so that the Fixed-Point Tool logs the simulation minimum and
maximum values. Data type override is set to Use local settings so
that the Fixed-Point Tool logs data using the data types specified in the
model.

4 On the Fixed-Point Tool Model Hierarchy pane, select
ex_matlab_function_block_logging.

31-36

Log Simulation Ranges for MATLAB Function Block

5 Click the Simulate button, .

The Simulink software simulates the model using the specified fixed-point
instrumentation and local data type settings.

6 In the ex_matlab_function_block_logging model, double-click the
MATLAB Function block.

The MATLAB Function block code is displayed in the MATLAB editor
window.

7 In MATLAB, on the Editor tab, click View Report.

8 In the MATLAB Function Report, click the Variables tab.

The Variables tab displays the simulation minimum and maximum values
for the MATLAB Function block input, output, and variables.

31-37

31 Fixed-Point Tool

31-38

View Signal Names in Fixed-Point Tool

View Signal Names in Fixed-Point Tool
To view signal names in the Fixed-Point Tool:

1 In the Fixed-Point Tool Contents pane, click Show Details.

2 In the list box of available columns, select SignalName.

3 Click .

The Fixed-Point Tool includes SignalName in the list box of columns to
display.

4 Optionally, use the up and down arrow buttons to change the display order
for the columns.

5 Click Hide Details.

31-39

31 Fixed-Point Tool

6 If a signal has a name, the Fixed-Point Tool displays the name in the
Contents pane.

31-40

32

Convert Floating-Point
Model to Fixed Point

• “Learning Objectives” on page 32-2

• “Model Description” on page 32-4

• “Before You Begin” on page 32-7

• “Convert Floating-Point Model to Fixed Point” on page 32-9

• “Key Points to Remember” on page 32-28

• “Where to Learn More” on page 32-29

32 Convert Floating-Point Model to Fixed Point

Learning Objectives
In this example, you learn how to:

• Convert a floating-point system to an equivalent fixed-point representation.

This example shows the recommended workflow for conversion when using
proposing fraction lengths based on simulation data.

• Use the Fixed-Point Advisor to prepare your model for conversion.

The Fixed-Point Advisor provides a set of tasks to help you convert a
floating-point system to fixed point.

You use the Fixed-Point Advisor to:

- Set model-wide configuration options

- Set block-specific dialog parameters

- Check the model against fixed-point guidelines.

- Identify unsupported blocks.

- Remove output data type inheritance from blocks that use floating-point
inheritance.

- Promote simulation minimum and maximum values to design minimum
and maximum values. This capability is useful if you want to derive
ranges for objects in the model and you have not specified design
ranges but you have simulated the model with inputs that cover the
full intended operating range. For more information, see “Specify block
minimum and maximum values” on page 38-37.

• Use the Fixed-Point Tool to propose fixed-point data types.

The Fixed-Point Tool automates the task of specifying fixed-point data
types in a system. In this example, the tool collects range data for model
objects, either from design minimum and maximum values that you
specify explicitly for signals and parameters, or from logged minimum and
maximum values that occur during simulation. Based on these values, the
tool proposes fixed-point data types that maximize precision and covers the
range. The tool allows you to review the data type proposals and then
apply them selectively to objects in your model.

• Handle floating-point inheritance blocks during conversion.

32-2

Learning Objectives

For floating-point inheritance blocks when inputs are floating point, all
internal and output data types are floating point. The model in this
example uses a Discrete Filter block, which is a floating-point inheritance
block.

32-3

32 Convert Floating-Point Model to Fixed Point

Model Description

In this section...

“Model Overview” on page 32-4

“Model Set Up” on page 32-5

Model Overview
This example uses the ex_fixed_point_workflow model.

The model consists of a Source, a Controller Subsystem that you want to
convert to fixed point, and a Scope to visualize the subsystem outputs. This
method is how you configure a model to determine the effect of fixed-point
data types on a system. Using this approach, you convert only the subsystem
because this is the system of interest. There is no need to convert the Source
or Scope to fixed point.

This configuration allows you to modify the inputs and collect simulation data
for multiple stimuli. You can then examine the behavior of the subsystem

32-4

Model Description

with different input ranges and scale your fixed-point data types to provide
maximum precision while accommodating the full simulation range.

Model Set Up
The model consists of the following blocks and subsystem.

Source

• Repeating table Source

A Repeating Sequence (Repeating Table) block provides the first input to
the Controller Subsystem and periodically repeats the sequence of data
specified in the mask.

• Rate Transition

A Rate Transition block outputs data from the Repeating table Source
block at a different rate to the input.

• Sine Wave Source

A Sine Wave block provides the second input to the Controller Subsystem.

Initially, the amplitude of the Sine Wave block is 1. Later, you modify the
amplitude to change the input range of the system.

• Conversion1 and Conversion2

These two Conversion blocks are set up so that the real-world values of
their input and output are equal.

Controller Subsystem
The Controller Subsystem consists of:

• Discrete Filter

The Discrete Filter block filters the Repeating table Source signal. The
Discrete Filter is a floating-point inheritance block. For floating-point
inheritance blocks, when inputs are floating-point, all internal and output
data types are floating point.

• Chart

32-5

32 Convert Floating-Point Model to Fixed Point

The Chart consists of aStateflow Chart block which converts the Sine Wave
input to a positive output and multiplies it by 3.

• Lookup Table for Chart

The Lookup Table for Chart block is the first of two identical n-D Lookup
Table blocks. This block receives the output from the Chart and, at each
breakpoint, outputs the input multiplied by 10.

• Gain

The Gain block multiplies the Sine Wave input by -3.

• Lookup Table for Gain

The Lookup Table for Gain block is a n-D Lookup Table block. It receives
the output from the Gain block and, at each breakpoint, outputs its input
multiplied by 10.

• Sum for Chart

This Sum block adds the outputs from the Discrete Filter and Lookup Table
for Chart blocks and outputs the result to the Scope block.

• Sum for Gain

This Sum block adds the outputs from the Discrete Filter and Lookup Table
for Gain blocks and outputs the result to the Scope block.

Scope

• Scope

The model includes a Scope block that displays the Controller Subsystem
output signals.

32-6

Before You Begin

Before You Begin
This example shows the recommended workflow for converting a floating-point
system to fixed point using design and simulation data. It shows you how
to use the Fixed-Point Advisor to prepare a floating-point subsystem for
conversion to an equivalent fixed-point representation, and then how to use
the Fixed-Point Tool to propose the fixed-point data types in the subsystem.

The example uses the following recommended workflow:

1 “Prepare Floating-Point Model for Conversion to Fixed Point” on page 32-9.

Step through the Fixed-Point Advisor tasks that prepare the floating-point
subsystem for conversion to an equivalent fixed-point representation.

Note If your model contains referenced models, you must run the
Fixed-Point Advisor on each instance of the referenced model as well as
the parent model.

2 “Propose Data Types” on page 32-18.

Propose data types based on the simulation results. Examine the results
to resolve any conflicts and to verify that you want to accept the proposed
data type for each result.

3 “Apply Fixed-Point Data Types” on page 32-19.

Write the proposed data types to the model. Perform the automatic data
typing procedure, which uses the double-precision simulation results to
propose fixed-point data types for appropriately configured blocks. The
Fixed-Point Tool allows you to accept and apply the proposals selectively.

4 “Verify Fixed-Point Settings” on page 32-19.

Simulate the model again using the fixed-point settings. Compare the ideal
results for the double-precision run with the fixed-point results.

32-7

32 Convert Floating-Point Model to Fixed Point

5 Test the fixed-point settings with a different input stimulus and, if
necessary, propose new data types to accommodate the simulation range
for this input.

32-8

Convert Floating-Point Model to Fixed Point

Convert Floating-Point Model to Fixed Point

In this section...

“Open the Model” on page 32-9

“Prepare Floating-Point Model for Conversion to Fixed Point” on page 32-9

“Propose Data Types” on page 32-18

“Apply Fixed-Point Data Types” on page 32-19

“Verify Fixed-Point Settings” on page 32-19

“Test Fixed-Point Settings With New Input Data” on page 32-22

“Gather a Floating-Point Benchmark” on page 32-23

“Propose Data Types for the New Input” on page 32-24

“Apply the New Fixed-Point Data Types” on page 32-25

“Verify New Fixed-Point Settings” on page 32-25

“Prepare for Code Generation” on page 32-26

Open the Model
Open the ex_fixed_point_workflow model. At the MATLAB command line,
enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_fixed_point_workflow

Prepare Floating-Point Model for Conversion to Fixed
Point
The Fixed-Point Advisor provides a set of tasks that help you prepare a
floating-point model or subsystem for conversion to an equivalent fixed-point
representation. After preparing your model, you use the Fixed-Point Tool to
perform the fixed-point conversion.

In this part of the example, you use the Fixed-Point Advisor to prepare the
Controller Subsystem in the ex_fixed_point_workflowmodel for conversion.

32-9

32 Convert Floating-Point Model to Fixed Point

Open the Fixed-Point Advisor

1 In the ex_fixed_point_workflow model menu, select
Analysis > Fixed-Point Tool.

2 In the Fixed-Point Tool:

a In theModel Hierarchy pane, select the Controller Subsystem.

b In the Fixed-point preparation for selected system pane, click the
Fixed-Point Advisor button.

You run the Fixed-Point Advisor on the ex_fixed_point_workflow
Controller Subsystem because this is the system of interest. There is no
need to convert the system inputs or the display to fixed point.

Prepare Model for Conversion

1 In the Fixed-Point Advisor left pane, expand the Prepare Model for
Conversion folder to view the tasks. For the purpose of this example, run
the tasks in the this folder one at a time. Select Verify model simulation
settings and, in the right pane, select Run this task.

This task validates that model simulation settings allow signal logging and
disables data type override in the model and for fi objects or embedded
numeric data types in your model or workspace. These settings facilitate
conversion to fixed point in later tasks.

A waitbar appears while the task runs. When the run is complete, the
result shows that the task passed.

2 Select and run Verify update diagram status.

Verify update diagram status runs. Your model must be able to
successfully update diagram to run the checks in the Fixed-Point Advisor.

The task passes.

3 Select and run Address unsupported blocks. This task identifies blocks
that do not support fixed-point data types.

32-10

Convert Floating-Point Model to Fixed Point

The task passes because the subsystem contains no blocks that do not
support fixed-point data.

4 Select and run Set up signal logging. Prior to simulation, you must
specify at least one signal for the Fixed-Point Advisor to use for analysis
and comparison in downstream checks. You should log, at minimum, the
unique input and output signals.

The task generates a warning because signal logging is not specified for
any signals.

5 Fix the warning using the Model Advisor Result Explorer:

a Click the Explore Result button.

The Model Advisor Result Explorer opens.

b In the middle pane, select each signal you want to log and, next to the
signal, select the corresponding EnableLogging check box.

For this example, log these signals:

• Lookup Table for Gain

• Lookup Table for Chart

• Chart

• Discrete Filter

c Close the Model Advisor Result Explorer.

d In the Fixed-Point Advisor window, click Run This Task.

The task passes because signal logging is now enabled for at least one
signal.

6 Select and run Create simulation reference data.

The Fixed-Point Advisor simulates the model using the current solver
settings, and creates and archives reference signal data in a run named
FPA_Reference to use for analysis and comparison in later conversion
tasks. This task also validates that model simulation settings allow signal
logging and that the Fixed-point instrumentation mode is set to
Minimums, maximums and overflows.

32-11

32 Convert Floating-Point Model to Fixed Point

The Fixed-Point Advisor issues a warning and provides information in
the Analysis Result box that logging simulation minimum and maximum
values failed.

Logging failed because the Fixed-point instrumentation mode is Use
local settings, but the recommended setting is Minimums, maximums
and overflows.

7 To fix the failure, in the Action pane, click Modify All.

The Fixed-Point Advisor configures the model to the settings recommended
in the Analysis Result pane. The Action pane displays a table of changes
showing that the Fixed-point instrumentation mode is now Minimums,
maximums and overflows

8 Click Run This Task.

Running the task after using the Modify All action verifies that you made
the necessary changes. The Analysis Result pane updates to display a
passed result and information about why the task passed.

Tip You can view the reference run data in the Fixed-Point Tool
Contents pane in the run named FPA_Reference or in the Simulation
Data Inspector. Because you ran the simulation twice, the Simulation
Data Inspector displays data for both runs using the same name
(FPA_Reference).

9 In the Verify Fixed-Point Conversion Guidelines folder, select and run
Check model configuration data validity diagnostic parameters
settings. This task verifies that theModel Configuration Parameters
> Diagnostics > Data Validity > Parameters options are all set to
warning. If these options are set to error, the model update diagram
action fails in downstream checks.

The task passes because none of these options are set to error.

10 Select and run Implement logic signals as Boolean data. This task
verifies that Model Configuration Parameters > Optimization >

32-12

Convert Floating-Point Model to Fixed Point

Implement logic signals as Boolean data is selected. If it is cleared, the
code generated in downstream checks is not optimized.

The task passes.

11 Select and run Check bus usage. This task identifies:

• Mux blocks that are bus creators

• Bus signals that the top-level model treats as vectors

Note This is a Simulink check. For more information, see “Check bus
usage”.

The task runs and generates a warning because this check works only
from top-level models and you are running from the subsystem. Because
this model uses no buses, ignore this warning. For models containing
buses, you must run the Fixed-Point Advisor from the top-level model to
perform this check.

12 Select and run Simulation range checking. This tasks verifies that the
Model Configuration Parameters > Diagnostics > Simulation range
checking option is not set to none.

The task generates a warning because the Simulation range checking
option is none.

13 To fix the warning, in the Action box, click Modify All.

The Fixed-Point Advisor sets the Simulation range checking option to
warning.

14 Rerun the task.

The task now passes because the Simulation range checking option is
correct.

15 Select and run Check for implicit signal resolution. This task checks
for models that use implicit signal resolution.

The task fails because implicit signal resolution is enabled.

32-13

32 Convert Floating-Point Model to Fixed Point

16 To fix the failure, in the Action box, click Modify All.

The Fixed-Point Advisor sets the Signal resolution option to Explicit
only.

17 Rerun the task.

The task now passes.

You have completed all the tasks for the Prepare Model for Conversion
folder. At this point, you can review the results report found at the folder
level, or continue to the next folder.

Prepare for Data Typing and Scaling
This folder contains tasks that set the block configuration options and set
output minimum and maximum values for blocks. The block settings from
this task simplify the initial data typing and scaling. Later tasks set optimal
block configuration. The tasks in this folder prepare the model for automatic
data typing in the Fixed-Point Tool.

1 For the purpose of this example, run the tasks in the Prepare for Data
Typing and Scaling folder one at a time.

Open the Prepare for Data Typing and Scaling folder then select
and run Review locked data type settings. This task identifies blocks
that have their data type settings locked down which excludes them for
automatic data typing.

This task passes because the model contains no blocks with locked data
types.

2 Select and run Remove output data type inheritance. This task
identifies blocks that have an inherited output signal data type that might
lead to data type propagation errors.

This task fails because there are floating-point inheritance blocks in
the model. For floating-point inheritance blocks, when inputs are
floating-point, all internal and output data types are floating point.
Therefore, you must specify an input parameter data type for these blocks.

32-14

Convert Floating-Point Model to Fixed Point

3 In the Fixed-Point Advisor Input Parameters pane, set Data type for
blocks with floating-point inheritance to int16, and rerun the task.

The task fails and the Fixed-Point Advisor provides information about the
failure in the Analysis Result box. The Fixed-Point Advisor recommends
that you set:

• The input data type of the Discrete Filter block, which is a floating-point
inheritance block, to a fixed-point data type to avoid floating-point
inheritance.

• The output data type of all the other blocks that currently have their
output data type set by inheritance rules to the compiled (current
propagated) data type.

Tip Review the recommended data types prior to accepting them.

4 Fix the failure using the Modify All button to configure the output data
types to the recommended values.

The Action Result box displays:

• A table showing the previous and current data types for all the
floating-point inheritance blocks.

• A table showing the previous and current data types for blocks that use
other types of inheritance.

5 Rerun the task.

The task passes.

6 Select and run Relax input data type settings. This task identifies
blocks with input data type constraints that might cause data type
propagation issues.

The task passes because the model contains no blocks that have inherited
input data types.

32-15

32 Convert Floating-Point Model to Fixed Point

7 Select and run Verify Stateflow charts have strong data typing with
Simulink. This task verifies that the configuration of all Stateflow charts
ensures strong data typing with Simulink I/O.

The task passes because the configuration of the Stateflow chart in the
subsystem is correct.

8 Select and run Remove redundant specification between signal
objects and blocks. This task identifies and removes redundant data
type specification originating from blocks and Simulink signal objects.

The task passes because the model contains no resolved Simulink signal
objects.

9 Select and run Verify hardware selection. This task identifies the
hardware device information in the Hardware Implementation pane of
the Configuration Parameters dialog box. It also checks the default data
type selected for floating-point signals in the model.

The task fails because the default data type for all floating-point signals
is set to Remain floating-point. Because the target hardware is an
embedded processor, the Fixed-Point Advisor recommends that you set this
value to the hardware integer used by the embedded hardware.

10 To fix the failure, in the Input Parameters pane, set Default data type
of all floating-point signals to Same as embedded hardware integer.

11 Rerun the task.

The task passes.

12 Select and run Specify block minimum and maximum values. Ideally,
you should specify block output and parameter minimum and maximum
values for, at minimum, the Inport blocks in the system. You can specify
the minimum and maximum values for any block in this step. Typically,
you determine these values during the design process based on the system
you are creating.

The Fixed-Point Advisor warns you that you have not specified any
minimum and maximum values.

32-16

Convert Floating-Point Model to Fixed Point

13 Fix the warning by specifying minimum and maximum values for Inport
blocks:

a Click the Explore Result button.

The Model Advisor Result Explorer opens, showing that the Inport
blocks, In1 and In2, do not have output minimum and maximum values
specified.

b In the center pane, select In1. This block receives the output from
Repeating table Source, which has a minimum value of 10 and a
maximum value of 20. Therefore, set OutMin to 10 and set OutMax
to 20 as follows:

i In the OutMin column for In1, select [] and replace with 10.

ii In the OutMax column for In1, select [] and replace with 20.

c Select In2. This block receives the output from Sine Wave block, which
has a minimum value of -1 and a maximum value of 1. Therefore, set
OutMin to -1 and set OutMax to 1.

d Close the Model Advisor Result Explorer.

e In the Fixed-Point Advisor, rerun the task.

The task passes because you specified minimum and maximum values
for all Inport blocks.

The tool advises you to specify minimum and maximum values for all
blocks if possible. For the purpose of this example, do not specify other
minimum and maximum values for other blocks.

You have completed all tasks in the Prepare for Data Typing and Scaling
folder. At this point, you can review the results report found at the folder
level, or continue to the next folder.

Return to Fixed-Point Tool to Perform Data Typing and Scaling
Select and run this task to close the Fixed-Point Advisor and return to the
Fixed-Point Tool.

32-17

32 Convert Floating-Point Model to Fixed Point

Propose Data Types
Use the Fixed-Point Tool to propose fixed-point data types for appropriately
configured blocks based on the double-precision simulation results stored in
the simulation reference run that the Fixed-Point Advisor created. These
results are stored in the run named FPA_Reference. You can view the
results in the Fixed-Point Tool Contents pane.

The tool proposes fixed-point data types and scaling based on the ranges of
the Repeating table Source and Sine Wave inputs. You can then use the tool
to accept and apply the proposed data types selectively. In this example, you
propose fraction lengths for the specified word lengths.

1 In the Fixed-Point Tool, click the Propose fraction lengths button .

The Fixed-Point Tool analyzes the scaling of all fixed-point blocks whose:

• Lock output data type setting against changes by the fixed-point
tools parameter is not selected.

• Output data type parameter specifies a generalized fixed-point
number.

• Data types are not inherited.

The Fixed-Point Tool updates the results in the Contents pane.

2 In the Fixed-Point Tool, set the Column View to Automatic Data Typing
with Simulation Min/Max View to display information relevant to the
proposal. The tool displays the proposed data types in the ProposedDT
column in the Contents pane. The tool does not propose data types for
objects with inherited data types.

To accommodate the full simulation range, the Fixed-Point Tool proposes
data types for blocks that do not have inherited data types. By default,
it selects the Accept check box for these signals because the proposed
data type differs from the object’s current data type. If you apply data
types, the tool will apply the proposed data types to these signals. For more
information, see “Apply Proposed Data Types” on page 34-24.

3 Examine the results to resolve any conflicts and to ensure that you want
to accept the proposed data type for each result.

32-18

Convert Floating-Point Model to Fixed Point

In the Fixed-Point Tool toolbar, select Show > Conflicts with proposed
data types.

The Fixed-Point Tool detected no conflicts.

Tip If the tool does detect conflicts, you must resolve these before applying
data types. For more information, see “Examine Results to Resolve
Conflicts” on page 34-20.

Now that you have reviewed the results and ensured that there are no issues,
you are ready to apply the proposed data types to the model, as described in
“Apply Fixed-Point Data Types” on page 32-19.

Apply Fixed-Point Data Types

1 Click the Apply accepted fraction lengths button to write the proposed

data types to the model.

The Fixed-Point Tool applies the data type proposals to the subsystem
blocks.

2 In the Fixed-Point Tool toolbar, select Show > All results.

The tool has set all the specified data types to the proposed types.

You are now ready to check that the new data types are acceptable, as
described in “Verify Fixed-Point Settings” on page 32-19.

Verify Fixed-Point Settings
Next, you simulate again using the new fixed-point settings. You then use
the Fixed-Point Tool plotting capabilities to compare the results from the
floating-point FPA_Reference run with the fixed-point results.

1 In the Fixed-Point Tool Model Hierarchy pane, select the Controller
Subsystem.

32-19

32 Convert Floating-Point Model to Fixed Point

2 In the Data collection pane, set Store results in run to
Initial_fixed_point. You specify a new run name to prevent the tool
from overwriting the results that you want to retain in the FPA_Reference
run.

3 Click the Fixed-Point Tool Simulate button to run the simulation.

The Simulink software simulates using the new data types that you
applied in the previous step. Afterward, the Fixed-Point Tool displays
in its Contents pane information about blocks that logged fixed-point
data. The CompiledDT (compiled data type) column for the run shows
that the Controller Subsystem blocks use fixed-point data types with the
new data types.

Tip In the Contents pane, click the Run column heading to sort the runs.

4 Examine the results to verify that there are no overflows or saturations.

5 In the Fixed-Point Tool Model Hierarchy pane, select the Controller
Subsystem. In the Contents pane, select the Discrete Filter: Output
that corresponds to the FPA_Reference run, and then click the Compare
Signals button.

The Fixed-Point Tool plots the signal for the FPA_Reference and
Initial_fixed_point runs, as well as their difference. The difference plot
shows that the floating-point signal and the fixed-point signal are almost
identical, the difference is on the order of 10^-5.

32-20

Convert Floating-Point Model to Fixed Point

Now you are ready to test the fixed-point settings with new the input
data, as described in “Test Fixed-Point Settings With New Input Data” on
page 32-22.

32-21

32 Convert Floating-Point Model to Fixed Point

Test Fixed-Point Settings With New Input Data
You have successfully used the Fixed-Point Tool to propose fixed-point data
types for your model. In the previous step, you saw that the numerical results
for the double-precision system and the fixed-point system are very close.
These results indicate that the fixed-point data types are suitable for the
range of input data that you used. In practice, you might need to run multiple
simulations to cover the entire design range of your system and use the
results of these simulations to refine the fixed-point data types in your model.

In this part of the example, you continue working on the model. First, you
modify the range of the Sine Wave input and obtain simulation data based
on this new range. Then, you use the Fixed-Point Tool to refine the model
fixed-point settings based on the new simulation data. The Fixed-Point Tool
proposes new data types that can accommodate the new input range.

To change the range of the input data and test the fixed-point settings:

1 In the ex_fixed_point_workflow model, double-click the Sine Wave
Source block.

The Source Block Parameters dialog box opens.

2 In this dialog box, change the Amplitude to 2 and click OK.

3 In the Fixed-Point Tool Model Hierarchy pane , select the Controller
Subsystem.

4 In the Data collection pane, set Store results in run to Input2.

5 Click the Fixed-Point Tool Simulate button to run the simulation.

The Simulink software simulates the ex_fixed_point_workflow model.
The Stateflow debugger reports a data overflow error in the Stateflow chart.

6 In the Stateflow Debugging window, under Error checking options,
clear the Data Range option and close the debugger and the Chart.

This action disables data range error detection and allows the simulation
to run to completion.

32-22

Convert Floating-Point Model to Fixed Point

7 In the Fixed-Point Tool Model Hierarchy pane, select the Controller
Subsystem.

The Fixed-Point Tool Contents pane displays the simulation results for
each block in the subsystem that logged fixed-point data. The tool stores
the results in the Input2 run.

In the Input2 run, the tool highlights in red the result for the Gain block,
indicating that there are issues.

8 Examine the result for the Gain block.

The result shows that the Gain block output saturated, which indicates
that the fixed-point data settings for this block are not suitable for the
new input range.

Next, override the fixed-point data types with doubles and simulate the
model again to obtain the ideal behavior of the subsystem, as described in
“Gather a Floating-Point Benchmark” on page 32-23.

Gather a Floating-Point Benchmark
Run the model with a global override of the fixed-point data types using
double-precision numbers to avoid quantization effects. This provides a
floating-point benchmark that represents the ideal output. The Simulink
software logs the signal logging results to the MATLAB workspace. The
Fixed-Point Tool displays the simulation results including minimum and
maximum values that occur during the run.

1 In the Fixed-Point Tool Model Hierarchy pane, select the Controller
Subsystem.

2 In the Settings for selected system pane, set Data type override to
Double.

Using this setting, the Fixed-Point Tool performs a global override of the
fixed-point data types and scaling using double-precision numbers, thus
avoiding quantization effects.

3 In the Data collection pane, set Store results in run to DTO_Input2.

32-23

32 Convert Floating-Point Model to Fixed Point

4 Click the Fixed-Point Tool Simulate button to run the simulation.

The Fixed-Point Tool highlights any simulation results that have issues,
such as overflows or saturations.

5 In the Contents pane, click the Run column to sort the runs. Verify that
there were no overflows or saturations in the DTO_Input2 run.

Propose Data Types for the New Input
Now, use the Fixed-Point Tool to propose fixed-point data types based on
the double-precision simulation results for the new input stored in the
DTO_Input2 run.

1 In the Fixed-Point Tool, click the Propose fraction lengths button .

2 In the Propose Data Types dialog box, select DTO_Input2 as the run to
use for proposing data types, and then click OK.

The Fixed-Point Tool proposes new data types for all objects in the model
and updates the results in the Contents pane.

3 In the Fixed-Point Tool, set the Column View to Automatic Data Typing
with Simulation Min/Max View to display information relevant to the
proposal. The tool displays the proposed data types in the ProposedDT
column in the Contents pane. The tool does not propose data types for
objects with inherited data types.

To accommodate the full simulation range, the Fixed-Point Tool proposes
new data types with reduced precision for the Chart/output and Gain block
output.

4 Examine the results to resolve any conflicts and to ensure that you want
to accept the proposed data type for each result.

In the Fixed-Point Tool toolbar, select Show > Conflicts with proposed
data types.

The Fixed-Point Tool detected no conflicts, so you are ready to apply the
new data types as described in “Apply the New Fixed-Point Data Types” on
page 32-25.

32-24

Convert Floating-Point Model to Fixed Point

Apply the New Fixed-Point Data Types

1 Click Apply accepted fraction lengths to write the proposed data
types to the model.

2 In the Apply Data Types dialog box, select DTO_Input2 as the run to use
for applying proposed data types and then click OK.

3 In the Fixed-Point Tool toolbar, select Show > All results.

The tool has set all the specified data types to the proposed types.

Verify New Fixed-Point Settings
Finally, you simulate again using the new fixed-point settings. You then
use the Fixed-Point Tool plotting capabilities to compare the results for the
initial and final fixed-point settings.

1 In the Fixed-Point Tool Model Hierarchy pane, select the Controller
Subsystem.

2 In the Settings for selected system pane, set Data type override to
Use local settings.

3 In the Data collection pane, set Store results in run to
Final_fixed_point.

4 Click Simulate to run the simulation.

The Simulink software simulates using the new data types that you applied
in the previous step and stores the results in the Final_fixed_point run.

5 Examine the results to verify that there are no overflows or saturations.

6 In the Fixed-Point Tool Model Hierarchy pane , select the Controller
Subsystem. In the Contents pane, select the Discrete Filter: Output
that corresponds to the Initial_fixed_point run, and then click the
Compare Signals button.

32-25

32 Convert Floating-Point Model to Fixed Point

7 In the Compare Runs Selector dialog box, select Final_fixed_point,
and then click OK.

The Fixed-Point Tool plots the signal for both runs, as well as their
difference. The difference plot shows that the floating-point signal and
the fixed-point signal are identical.

8 Optionally, you can zoom in to view the steady-state region with greater
detail. From the Tools menu of the figure window, select Zoom In and
then drag the pointer to draw a box around the area you want to view
more closely.

Prepare for Code Generation
Optionally, use the Simulink Model Advisor to identify model settings that
might lead to nonoptimal results in code generation.

1 From the Simulink Analysis menu, select Model Advisor>Model
Advisor.

2 In the System Selector dialog box, select Controller Subsystem, and
then click OK.

3 In the Model Advisor left pane, expand the By Task node.

4 Expand the Code Generation Efficiency node.

5 Select and run Identify blocks that generate expensive rounding
code. This task optimizes the code to eliminate unnecessary rounding code.

The Model Advisor warns that your model contains expensive rounding
code.

6 Change the Integer rounding mode of the Look-Up Table1, Conversion1,
and Conversion2 blocks from Floor to Simplest, and rerun the check.

The task passes.

7 Select and run Identify questionable fixed-point operations. This
task identifies fixed-point operations that can lead to nonoptimal results.

32-26

Convert Floating-Point Model to Fixed Point

The Model Advisor warns that your model generates cumbersome
multiplication code, and contains inefficient lookup blocks.

8 The Discrete Filter and Gain blocks contain expensive multiplication code.

Under Configuration Parameters>Hardware Implementation
change the Device Type to 64 bit Embedded Processor (LLP64), and
select Enable long long.

9 The Model Advisor recommends that you change the breakpoints data of
your lookup tables to have even power of 2 spacing, and use Evenly-spaced
points index search method.

Using the function fixpt_look1_func_approx, and following the steps
outlined in “Fixed-Point Function Approximation”, adjust the breakpoints
data of the lookup table blocks.

10 Rerun the task.

The task passes.

11 Select and run Identify blocks that generate expensive fixed-point
and saturation code. This task identifies blocks that can lead to
unnecessary saturation code.

The Model Advisor warns that the model contains expensive saturation
code.

12 Clear the Gain block’s Function Block Parameters > Signal Attributes
> Saturate on integer overflow parameter. Click apply, and close the
window.

13 Rerun the task.

The task passes.

Your model is now optimized for code generation.

32-27

32 Convert Floating-Point Model to Fixed Point

Key Points to Remember
• Convert subsystems within your model, rather than the entire model. This
practice saves time and avoids unnecessary conversions.

• Use the Fixed-Point Advisor to prepare your model for conversion to fixed
point.

• Use the Fixed-Point Tool to propose fixed-point data types for your model
or subsystem.

• When using the Fixed-Point Advisor, consider saving a restore point before
applying recommendations.

A restore point provides a fallback in case the recommended data types
causes subsequent update diagram failure. If you do not save a restore
point and you encounter an update diagram failure, you must start the
conversion from the beginning.

• Provide as much design minimum and maximum information as possible
before starting the conversion to fixed point.

Providing this information enables the fixed-point tools to choose
fixed-point data types that maximize precision and cover the range.

Specify minimum and maximum values for signals and parameters in the
model for:

- Inport and Outport blocks

- Block outputs

- The interface between MATLAB Function and C Chart blocks and the
Simulink model to ensure strong data typing

- Simulink.Signal objects

• Ensure that you simulate the system using the full range of inputs.

If you use simulation minimum and maximum values to scale fixed-point
data types, the tools provide meaningful results when exercising the full
range of values over which your design is meant to run.

32-28

Where to Learn More

Where to Learn More

To learn more about... See...

Fixed-Point Advisor capabilities “Preparation for Fixed-Point Conversion” on
page 30-2

Best practices for using the Fixed-Point Advisor “Best Practices” on page 30-2

Using restore points in the Fixed-Point Advisor “Restore Points” on page 30-7

Fixed-Point Tool capabilities “Fixed-Point Tool” on page 31-2

fxptdlg

Best practices for using the Fixed-Point Tool “Best Practices for Fixed-Point Workflow” on
page 34-5

Using the Fixed-Point Tool to merge multiple
simulation results

“Propose Data Types Using Multiple
Simulations” on page 34-71

32-29

32 Convert Floating-Point Model to Fixed Point

32-30

33

Producing Lookup Table
Data

• “Producing Lookup Table Data” on page 33-2

• “Worst-Case Error for a Lookup Table” on page 33-3

• “Create Lookup Tables for a Sine Function” on page 33-6

• “Use Lookup Table Approximation Functions” on page 33-23

• “Effects of Spacing on Speed, Error, and Memory Usage” on page 33-24

33 Producing Lookup Table Data

Producing Lookup Table Data
A function lookup table is a method by which you can approximate a function
by a table with a finite number of points (X,Y). Function lookup tables
are essential to many fixed-point applications. The function you want to
approximate is called the ideal function. The X values of the lookup table
are called the breakpoints. You approximate the value of the ideal function
at a point by linearly interpolating between the two breakpoints closest
to the point.

In creating the points for a function lookup table, you generally want to
achieve one or both of the following goals:

• Minimize the worst-case error for a specified maximum number of
breakpoints

• Minimize the number of breakpoints for a specified maximum allowed error

“Create Lookup Tables for a Sine Function” on page 33-6 shows you how to
create function lookup tables using the function fixpt_look1_func_approx.
You can optimize the lookup table to minimize the number of data points, the
error, or both. You can also restrict the spacing of the breakpoints to be even
or even powers of two to speed up computations using the table.

“Worst-Case Error for a Lookup Table” on page 33-3 explains how to use the
function fixpt_look1_func_plot to find the worst-case error of a lookup
table and plot the errors at all points.

33-2

Worst-Case Error for a Lookup Table

Worst-Case Error for a Lookup Table

In this section...

“What Is the Worst-Case Error?” on page 33-3

“Approximate the Square Root Function” on page 33-3

What Is the Worst-Case Error?
The error at any point of a function lookup table is the absolute value of the
difference between the ideal function at the point and the corresponding Y
value found by linearly interpolating between the adjacent breakpoints. The
worst-case error, ormaximum absolute error, of a lookup table is the maximum
absolute value of all errors in the interval containing the breakpoints.

For example, if the ideal function is the square root, and the breakpoints of
the lookup table are 0, 0.25, and 1, then in a perfect implementation of the
lookup table, the worst-case error is 1/8 = 0.125, which occurs at the point 1/16
= 0.0625. In practice, the error could be greater, depending on the fixed-point
quantization and other factors.

The section that follows shows how to use the function
fixpt_look1_func_plot to find the worst-case error of a lookup
table for the square root function.

Approximate the Square Root Function
This example shows how to use the function fixpt_look1_func_plot to find
the maximum absolute error for the simple lookup table whose breakpoints
are 0, 0.25, and 1. The corresponding Y data points of the lookup table, which
you find by taking the square roots of the breakpoints, are 0, 0.5, and 1.

To use the function fixpt_look1_func_plot , you need to define its
parameters first. To do so, type the following at the MATLAB prompt:

funcstr = 'sqrt(x)'; %Define the square root function
xdata = [0;.25;1]; %Set the breakpoints
ydata = sqrt(xdata); %Find the square root of the breakpoints
xmin = 0; %Set the minimum breakpoint

33-3

33 Producing Lookup Table Data

xmax = 1; %Set the maximum breakpoint
xdt = ufix(16); %Set the x data type
xscale = 2^-16; %Set the x data scaling
ydt = sfix(16); %Set the y data type
yscale = 2^-14; %Set the y data scaling
rndmeth = 'Floor'; %Set the rounding method

To get the worst-case error of the lookup table and a plot of the error, type:

errworst = fixpt_look1_func_plot(xdata,ydata,funcstr, ...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth)

errworst =

0.1250

33-4

Worst-Case Error for a Lookup Table

The upper box (Outputs) displays a plot of the square root function with a
plot of the fixed-point lookup approximation underneath. The approximation
is found by linear interpolation between the breakpoints. The lower box
(Absolute Error) displays the errors at all points in the interval from 0 to 1.
Notice that the maximum absolute error occurs at 0.0625. The error at the
breakpoints is 0.

33-5

33 Producing Lookup Table Data

Create Lookup Tables for a Sine Function

In this section...

“Introduction” on page 33-6

“Parameters for fixpt_look1_func_approx” on page 33-6

“Setting Function Parameters for the Lookup Table” on page 33-8

“Using errmax with Unrestricted Spacing” on page 33-8

“Using nptsmax with Unrestricted Spacing” on page 33-11

“Using errmax with Even Spacing” on page 33-14

“Using nptsmax with Even Spacing” on page 33-15

“Using errmax with Power of Two Spacing” on page 33-17

“Using nptsmax with Power of Two Spacing” on page 33-19

“Specifying Both errmax and nptsmax” on page 33-20

“Comparison of Example Results” on page 33-21

Introduction
The sections that follow explain how to use the function
fixpt_look1_func_approx to create lookup tables. It gives
examples that show how to create lookup tables for the function sin(2πx) on
the interval from 0 to 0.25.

Parameters for fixpt_look1_func_approx
To use the function fixpt_look1_func_approx, you must first define its
parameters. The required parameters for the function are

• funcstr — Ideal function

• xmin — Minimum input of interest

• xmax — Maximum input of interest

• xdt — x data type

• xscale — x data scaling

33-6

Create Lookup Tables for a Sine Function

• ydt — y data type

• yscale — y data scaling

• rndmeth — Rounding method

In addition there are three optional parameters:

• errmax — Maximum allowed error of the lookup table

• nptsmax — Maximum number of points of the lookup table

• spacing — Spacing allowed between breakpoints

You must use at least one of the parameters errmax and nptsmax. The next
section, “Setting Function Parameters for the Lookup Table” on page 33-8,
gives typical settings for these parameters.

Using Only errmax
If you use only the errmax parameter, without nptsmax, the function creates a
lookup table with the fewest points, for which the worst-case error is at most
errmax. See “Using errmax with Unrestricted Spacing” on page 33-8.

Using Only nptsmax
If you use only the nptsmax parameter without errmax, the function creates a
lookup table with at most nptsmax points, which has the smallest worse case
error. See “Using nptsmax with Unrestricted Spacing” on page 33-11.

The section “Specifying Both errmax and nptsmax” on page 33-20 describes
how the function behaves when you specify both errmax and nptsmax.

Spacing
You can use the optional spacing parameter to restrict the spacing between
breakpoints of the lookup table. The options are

• 'unrestricted' — Default.

• 'even'— Distance between any two adjacent breakpoints is the same.

• 'pow2' — Distance between any two adjacent breakpoints is the same
and the distance is a power of two.

33-7

33 Producing Lookup Table Data

The section “Restricting the Spacing” on page 33-13 and the examples that
follow it explain how to use the spacing parameter.

Setting Function Parameters for the Lookup Table
To do the examples in this section, you must first set parameter values for
the fixpt_look1_func_approx function. To do so, type the following at the
MATLAB prompt:

funcstr = 'sin(2*pi*x)'; %Define the sine function
xmin = 0; %Set the minimum input of interest
xmax = 0.25; %Set the maximum input of interest
xdt = ufix(16); %Set the x data type
xscale = 2^-16; %Set the x data scaling
ydt = sfix(16); %Set the y data type
yscale = 2^-14; %Set the y data scaling
rndmeth = 'Floor'; %Set the rounding method
errmax = 2^-10; %Set the maximum allowed error
nptsmax = 21; %Specify the maximum number of points

If you exit the MATLAB software after typing these commands, you must
retype them before trying any of the other examples in this section.

Using errmax with Unrestricted Spacing
The first example shows how to create a lookup table that has the fewest
data points for a specified worst-case error, with unrestricted spacing. Before
trying the example, enter the same parameter values given in the section
“Setting Function Parameters for the Lookup Table” on page 33-8, if you have
not already done so in this MATLAB session.

You specify the maximum allowed error by typing

errmax = 2^-10;

Creating the Lookup Table
To create the lookup table, type

[xdata ydata errworst] = fixpt_look1_func_approx(funcstr, ...

33-8

Create Lookup Tables for a Sine Function

xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[]);

Note that the nptsmax and spacing parameters are not specified.

The function returns three variables:

• xdata, the vector of breakpoints of the lookup table

• ydata, the vector found by applying ideal function sin(2πx) to xdata

• errworst, which specifies the maximum possible error in the lookup table

The value of errworst is less than or equal to the value of errmax.

You can find the number of X data points by typing

length(xdata)

ans =

16

This means that 16 points are required to approximate sin(2πx) to within the
tolerance specified by errmax.

You can display the maximum error by typing errworst. This returns

errworst

errworst =

9.7656e-04

Plotting the Results
You can plot the output of the function fixpt_look1_func_plot by typing

33-9

33 Producing Lookup Table Data

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...
xscale,ydt,yscale,rndmeth);

The upper plot shows the ideal function sin(2πx) and the fixed-point lookup
approximation between the breakpoints. In this example, the ideal function
and the approximation are so close together that the two graphs appear to
coincide. The lower plot displays the errors.

In this example, the Y data points, returned by the function
fixpt_look1_func_approx as ydata, are equal to the ideal function applied

33-10

Create Lookup Tables for a Sine Function

to the points in xdata. However, you can define a different set of values for
ydata after running fixpt_look1_func_plot. This can sometimes reduce
the maximum error.

You can also change the values of xmin and xmax in order to evaluate the
lookup table on a subset of the original interval.

To find the new maximum error after changing ydata, xmin or xmax, type

errworst = fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax, ...

xdt,xscale,ydt,yscale,rndmeth)

Using nptsmax with Unrestricted Spacing
The next example shows how to create a lookup table that minimizes the
worst-case error for a specified maximum number of data points, with
unrestricted spacing. Before starting the example, enter the same parameter
values given in the section “Setting Function Parameters for the Lookup
Table” on page 33-8, if you have not already done so in this MATLAB session.

Setting the Number of Breakpoints
You specify the number of breakpoints in the lookup table by typing

nptsmax = 21;

Creating the Lookup Table
Next, type

[xdata ydata errworst] = fixpt_look1_func_approx(funcstr, ...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax);

The empty brackets, [], tell the function to ignore the parameter errmax,
which is not used in this example. Omitting errmax causes the function
fixpt_look1_func_approx to return a lookup table of size specified by
nptsmax, with the smallest worst-case error.

The function returns a vector xdata with 21 points. You can find the
maximum error for this set of points by typing errworst at the MATLAB
prompt.

33-11

33 Producing Lookup Table Data

errworst

errworst =

5.1139e-04

Plotting the Results
To plot the lookup table along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...
xscale,ydt,yscale,rndmeth);

33-12

Create Lookup Tables for a Sine Function

Restricting the Spacing
In the previous two examples, the function fixpt_look1_func_approx
creates lookup tables with unrestricted spacing between the breakpoints. You
can restrict the spacing to improve the computational efficiency of the lookup
table, using the spacing parameter.

The options for spacing are

• 'unrestricted' — Default.

33-13

33 Producing Lookup Table Data

• 'even'— Distance between any two adjacent breakpoints is the same.

• 'pow2' — Distance between any two adjacent breakpoints is the same
and is a power of two.

Both power of two and even spacing increase the computational speed of
the lookup table and use less command read-only memory (ROM). However,
specifying either of the spacing restrictions along with errmax usually
requires more data points in the lookup table than does unrestricted spacing
to achieve the same degree of accuracy. The section “Effects of Spacing on
Speed, Error, and Memory Usage” on page 33-24 discusses the tradeoffs
between different spacing options.

Using errmax with Even Spacing
The next example shows how to create a lookup table that has evenly spaced
breakpoints and a specified worst-case error. To try the example, you must
first enter the parameter values given in the section “Setting Function
Parameters for the Lookup Table” on page 33-8, if you have not already done
so in this MATLAB session.

Next, at the MATLAB prompt type

spacing = 'even';
[xdata ydata errworst] = fixpt_look1_func_approx(funcstr, ...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

You can find the number of points in the lookup table by typing:

length(xdata)

ans =

20

To plot the lookup table along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...
xscale,ydt,yscale,rndmeth);

33-14

Create Lookup Tables for a Sine Function

Using nptsmax with Even Spacing
The next example shows how to create a lookup table that has evenly spaced
breakpoints and minimizes the worst-case error for a specified maximum
number of points. To try the example, you must first enter the parameter
values given in the section “Setting Function Parameters for the Lookup
Table” on page 33-8, if you have not already done so in this MATLAB session.

Next, at the MATLAB prompt type

33-15

33 Producing Lookup Table Data

spacing = 'even';
[xdata ydata errworst] = fixpt_look1_func_approx(funcstr, ...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax,spacing);

The result requires 21 evenly spaced points to achieve a maximum absolute
error of 2^-10.2209.

To plot the lookup table along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...
xscale,ydt,yscale,rndmeth);

33-16

Create Lookup Tables for a Sine Function

Using errmax with Power of Two Spacing
The next example shows how to construct a lookup table that has power of two
spacing and a specified worst-case error. To try the example, you must first
enter the parameter values given in the section “Setting Function Parameters
for the Lookup Table” on page 33-8, if you have not already done so in this
MATLAB session.

Next, at the MATLAB prompt type

spacing = 'pow2';
[xdata ydata errworst] = ...
fixpt_look1_func_approx(funcstr,xmin, ...
xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

To find out how many points are in the lookup table, type

length(xdata)

ans =

33

This means that 33 points are required to achieve the worst-case error
specified by errmax. To verify that these points are evenly spaced, type

widths = diff(xdata)

This generates a vector whose entries are the differences between consecutive
points in xdata. Every entry of widths is 2-7.

To find the maximum error for the lookup table, type

errworst

errworst =

3.7209e-04

33-17

33 Producing Lookup Table Data

This is less than the value of errmax.

To plot the lookup table data along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...
xscale,ydt,yscale,rndmeth);

33-18

Create Lookup Tables for a Sine Function

Using nptsmax with Power of Two Spacing
The next example shows how to create a lookup table that has power of two
spacing and minimizes the worst-case error for a specified maximum number
of points. To try the example, you must first enter the parameter values given
in the section “Setting Function Parameters for the Lookup Table” on page
33-8, if you have not already done so in this MATLAB session:

spacing = 'pow2';
[xdata ydata errworst] = ...
fixpt_look1_func_approx(funcstr,xmin, ...
xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

The result requires 17 points to achieve a maximum absolute error of
2^-9.6267.

To plot the lookup table along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...
xscale,ydt,yscale,rndmeth);

33-19

33 Producing Lookup Table Data

Specifying Both errmax and nptsmax
If you include both the errmax and the nptsmax parameters, the function
fixpt_look1_func_approx tries to find a lookup table with at most nptsmax
data points, whose worst-case error is at most errmax. If it can find a lookup
table meeting both conditions, it uses the following order of priority for
spacing:

1 Power of two

33-20

Create Lookup Tables for a Sine Function

2 Even

3 Unrestricted

If the function cannot find any lookup table satisfying both conditions, it
ignores nptsmax and returns a lookup table with unrestricted spacing, whose
worst-case error is at most errmax. In this case, the function behaves the
same as if the nptsmax parameter were omitted.

Using the parameters described in the section “Setting Function Parameters
for the Lookup Table” on page 33-8, the following examples illustrate the
results of using different values for nptsmax when you enter

[xdata ydata errworst] = fixpt_look1_func_approx(funcstr, ...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax);

The results for three different settings for nptsmax are as follows:

• nptsmax = 33; — The function creates the lookup table with 33 points
having power of two spacing, as in Example 3.

• nptsmax = 21; — Because the errmax and nptsmax conditions cannot be
met with power of two spacing, the function creates the lookup table with
20 points having even spacing, as in Example 5.

• nptsmax = 16; — Because the errmax and nptsmax conditions cannot be
met with either power of two or even spacing, the function creates the
lookup table with 16 points having unrestricted spacing, as in Example 1.

Comparison of Example Results
The following table summarizes the results for the examples. Note that when
you specify errmax, even spacing requires more data points than unrestricted,
and power of two spacing requires more points than even spacing.

Example Options Spacing
Worst-Case
Error

Number of
Points in Table

1 errmax=2^-10 'unrestricted' 2^-10 16

2 nptsmax=21 'unrestricted' 2^-10.933 21

3 errmax=2^-10 'even' 2^-10.0844 20

33-21

33 Producing Lookup Table Data

Example Options Spacing
Worst-Case
Error

Number of
Points in Table

4 nptsmax=21 'even' 2^-10.2209 21

5 errmax=2^-10 'pow2' 2^-11.3921 33

6 nptsmax=21 'pow2' 2^-9.627 17

33-22

Use Lookup Table Approximation Functions

Use Lookup Table Approximation Functions
The following steps summarize how to use the lookup table approximation
functions:

1 Define:

a The ideal function to approximate

b The range, xmin to xmax, over which to find X and Y data

c The fixed-point implementation: data type, scaling, and rounding
method

d The maximum acceptable error, the maximum number of points, and
the spacing

2 Run the fixpt_look1_func_approx function to generate X and Y data.

3 Use the fixpt_look1_func_plot function to plot the function and error
between the ideal and approximated functions using the selected X and Y
data, and to calculate the error and the number of points used.

4 Vary input criteria, such as errmax, nptsmax, and spacing, to produce sets
of X and Y data that generate functions with varying worst-case error,
number of points required, and spacing.

5 Compare results of the number of points required and maximum absolute
error from various runs to choose the best set of X and Y data.

33-23

33 Producing Lookup Table Data

Effects of Spacing on Speed, Error, and Memory Usage

In this section...

“Criteria for Comparing Types of Breakpoint Spacing” on page 33-24

“Model That Illustrates Effects of Breakpoint Spacing” on page 33-24

“Data ROM Required for Each Lookup Table” on page 33-25

“Determination of Out-of-Range Inputs” on page 33-26

“How the Lookup Tables Determine Input Location” on page 33-26

“Interpolation for Each Lookup Table” on page 33-28

“Summary of the Effects of Breakpoint Spacing” on page 33-31

Criteria for Comparing Types of Breakpoint Spacing
The sections that follow compare implementations of lookup tables that
use breakpoints whose spacing is uneven, even, and power of two. The
comparison focuses on:

• Execution speed of commands

• Rounding error during interpolation

• The amount of read-only memory (ROM) for data

• The amount of ROM for commands

This comparison is valid only when the breakpoints are not tunable. If the
breakpoints are tunable in the generated code, all three cases generate the
same code. For a summary of the effects of breakpoint spacing on execution
speed, error, and memory usage, see “Summary of the Effects of Breakpoint
Spacing” on page 33-31.

Model That Illustrates Effects of Breakpoint Spacing
This comparison uses the model fxpdemo_approx_sin. Three fixed-point
lookup tables appear in this model. All three tables approximate the function
sin(2*pi*u) over the first quadrant and achieve a worst-case error of less

33-24

Effects of Spacing on Speed, Error, and Memory Usage

than 2^-8. However, they have different restrictions on their breakpoint
spacing.

You can use the model fxpdemo_approx, which fxpdemo_approx_sin opens,
to generate Simulink Coder code (Simulink Coder software license required).
The sections that follow present several segments of generated code to
emphasize key differences.

To open the model, type at the MATLAB prompt:

fxpdemo_approx_sin

Data ROM Required for Each Lookup Table
This section looks at the data ROM required by each of the three spacing
options.

Uneven Case
Uneven spacing requires both Y data points and breakpoints:

int16_T yuneven[8];
uint16_T xuneven[8];

The total bytes used is 32.

Even Case
Even spacing requires only Y data points:

int16_T yeven[10];

The total bytes used is 20. The breakpoints are not explicitly required. The
code uses the spacing between the breakpoints, and might use the smallest
and largest breakpoints. At most, three values related to the breakpoints
are necessary.

Power of Two Case
Power of two spacing requires only Y data points:

int16_T ypow2[17];

33-25

33 Producing Lookup Table Data

The total bytes used is 34. The breakpoints are not explicitly required. The
code uses the spacing between the breakpoints, and might use the smallest
and largest breakpoints. At most, three values related to the breakpoints
are necessary.

Determination of Out-of-Range Inputs
In all three cases, you must guard against the chance that the input is less
than the smallest breakpoint or greater than the biggest breakpoint. There
can be differences in how occurrences of these possibilities are handled.
However, the differences are generally minor and are normally not a key factor
in deciding to use one spacing method over another. The subsequent sections
assume that out-of-range inputs are impossible or have already been handled.

How the Lookup Tables Determine Input Location
This section describes how the three fixed-point lookup tables determine
where the current input is relative to the breakpoints.

Uneven Case
Unevenly-spaced breakpoints require a general-purpose algorithm such as a
binary search to determine where the input lies in relation to the breakpoints.
The following code provides an example:

iLeft = 0;
iRght = 7; /* number of breakpoints minus 1 */

while ((iRght - iLeft) > 1)
{

i = (iLeft + iRght) >> 1;

if (uAngle < xuneven[i])
{

iRght = i;
}
else
{

iLeft = i;
}

33-26

Effects of Spacing on Speed, Error, and Memory Usage

}

The while loop executes up to log2(N) times, where N is the number of
breakpoints.

Even Case
Evenly-spaced breakpoints require only one step to determine where the
input lies in relation to the breakpoints:

iLeft = uAngle / 455U;

The divisor 455U represents the spacing between breakpoints. In general, the
dividend would be (uAngle - SmallestBreakPoint). In this example, the
smallest breakpoint is zero, so the code optimizes out the subtraction.

Power of Two Case
Power of two spaced breakpoints require only one step to determine where the
input lies in relation to the breakpoints:

iLeft = uAngle >> 8;

The number of shifts is 8 because the breakpoints have spacing 2^8. The
smallest breakpoint is zero, so uAngle replaces the general case of (uAngle -
SmallestBreakPoint).

Comparison
To determine where the input lies with respect to the breakpoints, the
unevenly-spaced case requires much more code than the other two cases.
This code requires additional command ROM. If many lookup tables share
the binary search algorithm as a function, you can reduce this ROM penalty.
Even if the code is shared, the number of clock cycles required to determine
the location of the input is much higher for the unevenly-spaced cases than
the other two cases. If the code is shared, function-call overhead decreases
the speed of execution a little more.

In the evenly-spaced case and the power of two spaced case, you can determine
the location of the input with a single line of code. The evenly-spaced case
uses a general integer division. The power of two case uses a shift instead
of general division because the divisor is an exact power of two. Without

33-27

33 Producing Lookup Table Data

knowing the specific processor, you cannot be certain that a shift is better
than division.

Many processors can implement division with a single assembly language
instruction, so the code will be small. However, this instruction often
takes many clock cycles to complete. Many processors do not provide a
division instruction. Division on these processors occurs through repeated
subtractions. This process is slow and requires a lot of machine code, but
this code can be shared.

Most processors provide a way to do logical and arithmetic shifts left and
right. A key difference is whether the processor can do N shifts in one
instruction (barrel shift) or requires N instructions that shift one bit at a time.
The barrel shift requires less code. Whether the barrel shift also increases
speed depends on the hardware that supports the operation.

The compiler can also complicate the comparison. In the previous example,
the command uAngle >> 8 essentially takes the upper 8 bits in a 16-bit word.
The compiler can detect this situation and replace the bit shifts with an
instruction that takes the bits directly. If the number of shifts is some other
value, such as 7, this optimization would not occur.

Interpolation for Each Lookup Table
In theory, you can calculate the interpolation with the following code:

y = (yData[iRght] - yData[iLeft]) * (u - xData[iLeft]) ...
/ (xData[iRght] - xData[iLeft]) + yData[iLeft]

The term (xData[iRght] - xData[iLeft]) is the spacing between
neighboring breakpoints. If this value is constant, due to even spacing, some
simplification is possible. If spacing is not just even but also a power of two,
significant simplifications are possible for fixed-point implementations.

Uneven Case
For the uneven case, one possible implementation of the ideal interpolation
in fixed point is as follows:

xNum = uAngle - xuneven[iLeft];
xDen = xuneven[iRght] - xuneven[iLeft];

33-28

Effects of Spacing on Speed, Error, and Memory Usage

yDiff = yuneven[iRght] - yuneven[iLeft];

MUL_S32_S16_U16(bigProd, yDiff, xNum);

DIV_NZP_S16_S32_U16_FLOOR(yDiff, bigProd, xDen);

yUneven = yuneven[iLeft] + yDiff;

The multiplication and division routines are not shown here. These routines
can be complex and depend on the target processor. For example, these
routines look different for a 16-bit processor than for a 32-bit processor.

Even Case
Evenly-spaced breakpoints implement interpolation using slightly different
calculations than the uneven case. The key difference is that the calculations
do not directly use the breakpoints. When the breakpoints are not required in
ROM, you can save a lot of memory:

xNum = uAngle - (iLeft * 455U);

yDiff = yeven[iLeft+1] - yeven[iLeft];

MUL_S32_S16_U16(bigProd, yDiff, xNum);

DIV_NZP_S16_S32_U16_FLOOR(yDiff, bigProd, 455U);

yEven = yeven[iLeft] + yDiff;

Power of Two Case
Power of two spaced breakpoints implement interpolation using very different
calculations than the other two cases. As in the even case, breakpoints are
not used in the generated code and therefore not required in ROM:

lambda = uAngle & 0x00FFU;

yPow2 = ypow2[iLeft)+1] - ypow2[iLeft];

MUL_S16_U16_S16_SR8(yPow2,lambda,yPow2);

33-29

33 Producing Lookup Table Data

yPow2 += ypow2[iLeft];

This implementation has significant advantages over the uneven and even
implementations:

• A bitwise AND combined with a shift right at the end of the multiplication
replaces a subtraction and a division.

• The term (u - xData[iLeft]) / (xData[iRght] - xData[iLeft])
results in no loss of precision, because the spacing is a power of two.

In contrast, the uneven and even cases usually introduce rounding error in
this calculation.

33-30

Effects of Spacing on Speed, Error, and Memory Usage

Summary of the Effects of Breakpoint Spacing
The following table summarizes the effects of breakpoint spacing on execution
speed, error, and memory usage.

Parameter
Even Power of 2
Spaced Data Evenly Spaced Data

Unevenly Spaced
Data

Execution speed The execution speed
is the fastest. The
position search and
interpolation are
the same as for
evenly-spaced data.
However, to increase
the speed more, a
bit shift replaces the
position search, and a
bit mask replaces the
interpolation.

The execution speed
is faster than that for
unevenly-spaced data,
because the position
search is faster and
the interpolation
requires a simple
division.

The execution speed
is the slowest of the
different spacings
because the position
search is slower, and
the interpolation
requires more
operations.

Error The error can be
larger than that for
unevenly-spaced
data because
approximating
a function with
nonuniform curvature
requires more points
to achieve the same
accuracy.

The error can be
larger than that for
unevenly-spaced
data because
approximating
a function with
nonuniform curvature
requires more points
to achieve the same
accuracy.

The error can be
smaller because
approximating
a function with
nonuniform curvature
requires fewer points
to achieve the same
accuracy.

ROM usage Uses less command
ROM, but more data
ROM.

Uses less command
ROM, but more data
ROM.

Uses more command
ROM, but less data
ROM.

RAM usage Not significant. Not significant. Not significant.

The number of Y data points follows the expected pattern. For the same
worst-case error, unrestricted spacing (uneven) requires the fewest data
points, and power-of-two-spaced breakpoints require the most. However, the
implementation for the evenly-spaced and the power of two cases does not

33-31

33 Producing Lookup Table Data

need the breakpoints in the generated code. This reduces their data ROM
requirements by half. As a result, the evenly-spaced case actually uses less
data ROM than the unevenly-spaced case. Also, the power of two case requires
only slightly more ROM than the uneven case. Changing the worst-case error
can change these rankings. Nonetheless, when you compare data ROM usage,
you should always take into account the fact that the evenly-spaced and power
of two spaced cases do not require their breakpoints in ROM.

The effort of determining where the current input is relative to the
breakpoints strongly favors the evenly-spaced and power of two spaced cases.
With uneven spacing, you use a binary search method that loops up to log2(N)
times. With even and power of two spacing, you can determine the location
with the execution of one line of C code. But you cannot decide the relative
advantages of power of two versus evenly spaced without detailed knowledge
of the hardware and the C compiler.

The effort of calculating the interpolation favors the power of two case, which
uses a bitwise AND operation and a shift to replace a subtraction and a
division. The advantage of this behavior depends on the specific hardware,
but you can expect an advantage in code size, speed, and also in accuracy. The
evenly-spaced case calculates the interpolation with a minor improvement in
efficiency over the unevenly-spaced case.

33-32

34

Automatic Data Typing

• “About Automatic Data Typing” on page 34-2

• “Before Proposing Data Types for Your Model” on page 34-3

• “Best Practices for Fixed-Point Workflow” on page 34-5

• “Models That Might Cause Data Type Propagation Errors” on page 34-8

• “Automatic Data Typing Using Simulation Data” on page 34-12

• “Automatic Data Typing Using Derived Ranges” on page 34-27

• “Propose Fraction Lengths” on page 34-43

• “Propose Word Lengths” on page 34-61

• “Propose Data Types Using Multiple Simulations” on page 34-71

• “View Simulation Results” on page 34-77

• “Viewing Results With the Simulation Data Inspector” on page 34-83

34 Automatic Data Typing

About Automatic Data Typing
The Fixed-Point Tool automates the task of specifying fixed-point data
types in a Simulink model. This process is also known as autoscaling. The
tool collects range data for model objects, either from design minimum
and maximum values that objects specify explicitly, from logged minimum
and maximum values that occur during simulation, or from minimum and
maximum values derived using range analysis. Based on these values, the
tool proposes fixed-point data types that maximize precision and cover the
range. The tool allows you to review the data type proposals and then apply
them selectively to objects in your model.

You can use the Fixed-Point Tool to select data types automatically for your
model using the following methods.

Automatic Data Typing
Method

Advantages Disadvantages

Using simulation minimum
and maximum values • Useful if you know the

inputs to use for the model.

• You do not need to
specify any design range
information.

• Not always feasible to
collect full simulation
range.

• Simulation might take a
very long time.

Using design minimum and
maximum values

You can use this method if
the model contains blocks
that range analysis does not
support. However, if possible,
use simulation data to propose
data types.

• Design range often available
only on some input and
output signals.

• Can propose data types only
for signals with specified
design minimum and
maximum values.

Using derived minimum and
maximum values

You do not have to simulate
multiple times to ensure that
simulation data covers the full
intended operating range.

• Derivation might take a
very long time.

34-2

Before Proposing Data Types for Your Model

Before Proposing Data Types for Your Model
Before you use the Fixed-Point Tool to propose data types your Simulink
model, consider how automatic data typing affects your model:

• The Fixed-Point Tool proposes new data types for the fixed-point data
types in your model. If you choose to apply the proposed data types, the
tool changes the data types in your model. Before using the Fixed-Point
Tool, back up your model and workspace variables to ensure that you
can recover your original data type settings and capture the fixed-point
instrumentation and data type override settings using the Shortcut Editor.

For more information, see “Best Practices for Fixed-Point Workflow” on
page 34-5.

• Before proposing data types, verify that you can update diagram
successfully . Sometimes, changing the data types in your model results
in subsequent update diagram errors. Immediately before and after
applying data type proposals, it is good practice to test update diagram
again. This practice enables you to fix any errors before making further
modifications to your model.

For more information, see “Update a Block Diagram”.

• The Fixed-Point Tool alerts you to potential issues with proposed data
types for each object in your model:

- If the Fixed-Point Tool detects that the proposed data type introduces
data type errors when applied to an object, the tool marks the object
with an error, . You must inspect this proposal and fix the problem in
the Simulink model. After fixing the problem, rerun the simulation and
generate a proposal again to confirm that you have resolved the issue.

For more information, see “Examine Results to Resolve Conflicts” on
page 34-20.

- If the Fixed-Point Tool detects that the proposed data type poses
potential issues for an object, the tool marks the object with a yellow
caution, . Review the proposal before accepting it.

- If the Fixed-Point Tool detects that the proposed data type poses no
issues for an object, the tool marks the object with a green check, .

34-3

34 Automatic Data Typing

Caution The Fixed-Point Tool does not detect all potential data type
issues. If the Fixed-Point Tool does not detect any issues for your model,
it is still possible to experience subsequent data type propagation
issues. For more information, see “Models That Might Cause Data Type
Propagation Errors” on page 34-8.

34-4

Best Practices for Fixed-Point Workflow

Best Practices for Fixed-Point Workflow

Use a Known Working Simulink Model
Before you begin automatic data typing, verify that update diagram
succeeds for your model. To update diagram, press Ctrl+D. If update
diagram fails, before automatic data typing to propose data types, fix the
failure in your model.

Back Up Your Simulink Model
Before using the Fixed-Point Tool, back up your Simulink model and
associated workspace variables.

Backing up your model provides a backup of your original model in case of
error and a baseline for testing and validation.

Capture the Current Data Type Override Settings
Before changing the current fixed-point instrumentation and data type
override settings, use the Fixed-Point Tool Shortcut Editor to create a
shortcut for these settings. Creating a shortcut allows you to revert to the
original model settings. For more information, see “Capture Model Settings
Using the Shortcut Editor” on page 31-10.

Convert Individual Subsystems
Convert individual subsystems in your model one at a time. This practice
facilitates debugging by isolating the source of fixed-point issues. For
example, see “Debug a Fixed-Point Model” on page 31-12.

Isolate the System Under Conversion
If you encounter data type propagation issues with a particular subsystem
during the conversion, isolate this subsystem by placing Data Type Conversion
blocks on the inputs and outputs of the system. The Data Type Conversion
block converts an input signal of any Simulink data type to the data type
and scaling you specify for its Output data type parameter. This practice
enables you to continue automatic data typing for the rest of your model.

34-5

34 Automatic Data Typing

Do Not Use “Save as” on Referenced Models
During the fixed-point conversion process using the Fixed-Point Tool, do not
use the “Save as” option to save referenced models with a different name. If
you do, you might lose existing results for the original referenced model.

Use Lock Output Data Type Setting
You can prevent the Fixed-Point Tool from replacing the current data
type. Use the Lock output data type setting against changes by the
fixed-point tools parameter that is available on many blocks. The default
setting allows for replacement. Use this setting when:

• You already know the fixed-point data types that you want to use for a
particular block.

For example, the block is modeling a real-world component. Set up the
block to allow for known hardware limitations, such as restricting outputs
to integer values.

Explicitly specify the output data type of the block and select Lock output
data type setting against changes by the fixed-point tools.

• You are debugging a model and know that a particular block accepts only
certain input signal data types.

Explicitly specify the output data type of upstream blocks and select Lock
output data type setting against changes by the fixed-point tools.

Save Simulink Signal Objects
If your model contains Simulink signal objects and you accept proposed data
types, the Fixed-Point Tool automatically applies the changes to the signal
objects. However, the Fixed-Point Tool does not automatically save changes
that it makes to Simulink signal objects. To preserve changes, before closing
your model, save the Simulink signal objects in your workspace and model.

Test Update Diagram Failure
Immediately after applying data type proposals, test update diagram. If
update diagram fails, perform one of the following actions:

34-6

Best Practices for Fixed-Point Workflow

• Use the failure information to fix the errors in your model. After fixing the
errors, test update diagram again.

• If you are unable to fix the errors, restore your back-up model. After
restoring the model, try to fix the errors by, for example, locking output
data type settings and isolating the system, as described in the preceding
sections. After addressing the errors, test update diagram again.

34-7

34 Automatic Data Typing

Models That Might Cause Data Type Propagation Errors
When the Fixed-Point Tool proposes changes to the data types in your model,
it alerts you to potential issues. If the Fixed-Point Tool alerts you to data
type errors, you must diagnose the errors and fix the problems. For more
information, see “Examine Results to Resolve Conflicts” on page 34-20.

The Fixed-Point Tool does not detect all potential data type issues. If the tool
does not report any issues for your model, it is still possible to experience
subsequent data type propagation errors. Before you use the Fixed-Point
Tool, back up your model to ensure that you can recover your original data
type settings. For more information, see “Best Practices for Fixed-Point
Workflow” on page 34-5.

The following models are likely to cause data type propagation issues.

Model Uses... Fixed-Point Tool
Behavior

Data Type Propagation
Issue

Buses Does not detect the
minimum, maximum,
data type, and initial
value information
for bus objects and
does not use them for
automatic data typing.

If you are using
strict bus mode,
the Fixed-Point Tool
handles data type
constraints introduced
by connections
using virtual buses
that do not have
any associated bus
objects. The data
type proposals take
into account these
constraints.

Fixed-Point Tool might
propose data types that are
inconsistent with the data
types for the bus object or
generate proposals that
cause overflows.

34-8

Models That Might Cause Data Type Propagation Errors

Model Uses... Fixed-Point Tool
Behavior

Data Type Propagation
Issue

How to enable strict
bus mode

To enable strict
bus mode, set
Configuration
Parameters >
Diagnostics >
Connectivity > Mux
blocks used to create
bus signals to error.

Simulink
parameter objects

Does not consider
any data type
information for
Simulink parameter
objects and does not
use them for automatic
data typing.

Fixed-Point Tool might
propose data types that are
inconsistent with the data
types for the parameter
object or generate proposals
that cause overflows.

34-9

34 Automatic Data Typing

Model Uses... Fixed-Point Tool
Behavior

Data Type Propagation
Issue

User-defined
S-functions

Cannot detect
the operation
of user-defined
S-functions.

• The user-defined
S-function accepts
only certain input data
types. The Fixed-Point
Tool cannot detect
this requirement and
proposes a different data
type upstream of the
S-function. Update
diagram fails on the
model due to data type
mismatch errors.

• The user-defined
S-function specifies certain
output data types. The
Fixed-Point Tool is not
aware of this requirement
and does not use it for
automatic data typing.
Therefore, the tool might
propose data types that are
inconsistent with the data
types for the S-function or
generate proposals that
cause overflows.

User-defined
masked
subsystems

Has no knowledge of
the masked subsystem
workspace and cannot
take this subsystem
into account when
proposing data types.

Fixed-Point Tool might
propose data types that
are inconsistent with the
requirements of the masked
subsystem, particularly if
the subsystem uses mask
initialization. The proposed
data types might cause data
type mismatch errors or
overflows.

34-10

Models That Might Cause Data Type Propagation Errors

Model Uses... Fixed-Point Tool
Behavior

Data Type Propagation
Issue

Linked subsystems Does not include linked
subsystems when
proposing data types.

Data type mismatch errors
might occur at the linked
subsystem boundaries.

MATLAB Function
blocks

Does not propose data
types for MATLAB
Function blocks.

Fixed-Point Tool might
propose data types that
are inconsistent with
the requirements of the
MATLAB Function blocks.
The proposed data types
might cause data type
mismatch errors or overflows.

34-11

34 Automatic Data Typing

Automatic Data Typing Using Simulation Data

In this section...

“Workflow for Automatic Data Typing Using Simulation Data” on page
34-13

“Set Up the Model” on page 34-14

“Prepare the Model for Fixed-Point Conversion” on page 34-15

“Gather a Floating-Point Benchmark” on page 34-16

“Proposing Data Types” on page 34-17

“Propose Data Types” on page 34-19

“Examine Results to Resolve Conflicts” on page 34-20

“Apply Proposed Data Types” on page 34-24

“Verify New Settings” on page 34-25

“Automatic Data Typing of Simulink Signal Objects” on page 34-26

34-12

Automatic Data Typing Using Simulation Data

Workflow for Automatic Data Typing Using
Simulation Data

34-13

34 Automatic Data Typing

1 Set up the model

2 Prepare the model for fixed-point conversion

3 Run the model to gather floating-point benchmark

4 Propose data types

5 Examine results to resolve conflicts

6 Apply proposed data types

7 Verify new settings

Set Up the Model
To use the Fixed-Point Tool to generate data type proposals for your model
based on simulation minimum and maximum values only, you must first set
up your model in Simulink.

1 Back up your model in case of error and as a baseline for testing and
validation.

2 Open your model in Simulink.

3 From the Simulink menu, select Simulation > Mode > Normal so that
the model runs in Normal mode. The Fixed-Point Tool supports only
Normal mode.

4 If you are using design minimum and maximum range information, add
this information to blocks.

You specify a design range for model objects using parameters typically
titled Output minimum and Output maximum. For a list of blocks
that permit you to specify these values, see “Blocks That Allow Signal
Range Specification”.

5 Specify fixed-point data types for blocks and signals in your model. For
blocks with the Data Type Assistant, use the Calculate Best-Precision
Scaling button to calculate best-precision scaling automatically. For more
information, see “Specify Fixed-Point Data Types with the Data Type
Assistant” on page 26-24. Use the Fixed-Point Advisor to prepare your

34-14

Automatic Data Typing Using Simulation Data

model for conversion to an equivalent fixed-point representation For more
information, see “Preparation for Fixed-Point Conversion” on page 30-2.

6 You can choose to lock some blocks against automatic data typing by
selecting the Lock output data type setting against changes by the
fixed-point tools parameter. If you select the Lock output data type
setting against changes by the fixed-point tools parameter, the tool
does not propose data types for that object.

7 From the Simulink Simulation menu, select Update Diagram to perform
parameter range checking for all blocks in the model.

If update diagram fails, use the failure information to fix the errors in
your model. After fixing the errors, test update diagram again. If you are
unable to fix the errors, restore your back-up model.

8 If the model changed, back up the model again in case of error and as a
baseline for testing and validation.

9 Create a shortcut to capture the initial fixed-point instrumentation and
data type override settings. For more information, see “Capture Model
Settings Using the Shortcut Editor” on page 31-10.

Prepare the Model for Fixed-Point Conversion
First use the Fixed-Point Advisor to prepare the model for conversion to fixed
point. You do this preparation only once. The Fixed-Point Advisor gives
advice about model and block configuration settings to prepare for automatic
conversion to fixed point using the Fixed-Point Tool. The Fixed-Point Advisor:

• Checks the model against fixed-point guidelines.

• Identifies unsupported blocks.

• Removes output data type inheritance from blocks.

The Fixed-Point Advisor also makes recommendations for a model, such as
model-level diagnostic settings and removal of inheritance rules. It configures
the model for autoscaling by the Fixed-Point Tool. Therefore, even if your
model uses only fixed-point data types, it is useful to run the Fixed-Point
Advisor on the model.

34-15

34 Automatic Data Typing

To open the Fixed-Point Advisor:

1 From the Simulink Analysis menu, select Fixed-Point Tool.

2 On the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem of interest.

3 On the Fixed-point preparation for selected system pane, click
Fixed-Point Advisor.

Use the Fixed-Point Advisor to prepare the model for conversion. For more
information, see “Preparation for Fixed-Point Conversion” on page 30-2.

Gather a Floating-Point Benchmark
First, run the model with a global override of the fixed-point data types using
double-precision numbers to avoid quantization effects. This action provides
a floating-point benchmark that represents the ideal output. The Simulink
software logs the signal logging results to the MATLAB workspace. The
Fixed-Point Tool displays the simulation results, including minimum and
maximum values, that occur during the run.

1 From the Simulink Analysis menu, select Fixed-Point Tool.

2 Enable signal logging for the system or subsystem of interest. Using
the Fixed-Point Tool you can enable signal logging for multiple signals
simultaneously. For more information, see “Signal Logging Options” in the
fxptdlg Reference.

To enable signal logging:

a On the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem.

b Right-click the selected system to open the context menu.

c Use the Enable Signal Logging option to enable signal logging, as
necessary.

The Contents pane of the Fixed-Point Tool displays an antenna icon
next to items that have signal logging enabled.

34-16

Automatic Data Typing Using Simulation Data

Note You can plot results only for signals that have signal logging enabled.

3 On the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem for which you want a proposal.

4 On the Shortcuts to set up runs pane, click the Model-wide double
override and full instrumentation button to set:

• Data type override to Double

• Data type override applies to to All numeric types

• Fixed-point instrumentation mode to Minimums, maximums and
overflows

• The run name (in the Data collection pane Store results in run field)
to DoubleOverride

The Fixed-Point Tool performs a global override of the fixed-point data
types with double-precision data types, thus avoiding quantization effects.
During simulation, the tool logs minimum value, maximum value, and
overflow data for all blocks in the current system or subsystem in the run
DoubleOverride.

Note Data type override does not apply to boolean or enumerated data
types.

5 Click the Fixed-Point Tool Simulate button to run the simulation.

The Fixed-Point Tool highlights any simulation results that have issues,
such as overflows or saturations.

Proposing Data Types
Unless you select an object’s Lock output data type setting against
changes by the fixed-point tools parameter or the data types are using
inheritance rules, the Fixed-Point Tool proposes data types for model objects
that specify fixed-point data types.

34-17

34 Automatic Data Typing

When proposing data types, the Fixed-Point Tool collects the following types
of range data for model objects:

• Design minimum or maximum values — You specify a design range for
model objects using parameters typically titled Output minimum and
Output maximum. For a list of blocks that permit you to specify these
values, see “Blocks That Allow Signal Range Specification”.

• Simulation minimum or maximum values — When simulating a system
whose Fixed-point instrumentation mode parameter specifies
Minimums, maximums and overflows, the Fixed-Point Tool logs the
minimum and maximum values generated by model objects. For more
information about the Fixed-point instrumentation mode parameter,
see fxptdlg.

• Derived minimum or maximum values — When deriving minimum and
maximum values for a selected system, the Fixed-Point Tool uses the
design minimum and maximum values that you specify for the model to
derive range information for signals in your model. For more information,
see “Derive Ranges”.

The Fixed-Point Tool uses available range data to calculate data type
proposals according to the following rules:

• Design minimum and maximum values take precedence over the
simulation and derived range.

The Safety margin for design and derived min/max (%) parameter
specifies a range that differs from that defined by the design range. For
example, a value of 20 specifies that a range of at least 20 percent larger is
desired. A value of -10 specifies that a range of up to 10 percent smaller is
acceptable. If this parameter is not visible in the Automatic data typing
for selected system pane, click the Configure link.

• The tool observes the derived range only when the Derived min/max
option is selected. Otherwise, the tool ignores the derived range.

The Safety margin for design and derived min/max (%) parameter
specifies a range that differs from that defined by the derived range. For
example, a value of 20 specifies that a range of at least 20 percent larger is
desired. A value of -10 specifies that a range of up to 10 percent smaller is

34-18

Automatic Data Typing Using Simulation Data

acceptable. If this parameter is not visible in the Automatic data typing
for selected system pane, click the Configure link.

• The tool observes the simulation range only when the Simulation
min/max option is selected. Otherwise, the tool ignores the simulation
range.

The Safety margin for simulation min/max (%) parameter specifies
a range that differs from that defined by the simulation range. For
example, a value of 20 specifies that a range of at least 20 percent larger is
desired. A value of -10 specifies that a range of up to 10 percent smaller is
acceptable. If this parameter is not visible in the Automatic data typing
for selected system pane, click the Configure link.

Propose Data Types
1 In the Automatic data typing for selected system Settings pane,
select either Propose fraction lengths for specified word lengths or
Propose word lengths for specified fraction lengths.

If these options are not visible, use the Configure link to display them.

2 To use simulation min/max information only, clear Derived min/max.

3 If you have safety margins to apply:

a Enter Safety margin for design and derived min/max (%), if
applicable. For example, enter 10 for a 10% safety margin. If this
parameter is not visible in the Automatic data typing for selected
system pane, click the Configure link.

b Enter Safety margin for simulation min/max (%), if applicable.

4 Click the Propose fraction lengths or Propose word lengths button

to generate a proposal, .

Note When the Fixed-Point Tool proposes data types, it does not alter
your model.

If there are conflicts in your model, the Fixed-Point Tool displays the
Result Details dialog box.

34-19

34 Automatic Data Typing

If you do not see this warning, there are no conflicts in your model. Go to
“Apply Proposed Data Types” on page 34-24.

Examine Results to Resolve Conflicts
You can examine each proposal using the Result Details dialog box, which
displays the rationale underlying the proposed data types. Also, this dialog
box describes potential issues or errors, and it suggests methods for resolving
them. To open the dialog box:

1 On the Contents pane, select an object that has proposed data types.

2 Click the Show details for selected result button .

The Result Details dialog box provides the following information about the
proposed data types, as appropriate.

Summary
Details which run the result is in and the current data type specified for
the selected object.

Proposed Data Type Summary
Describes a proposal in terms of how it differs from the object’s current data
type. For cases when the Fixed-Point Tool does not propose data types, this
section provides a rationale. For example, the data type might be locked
against changes by the fixed-point tools.

Needs Attention
Lists potential issues and errors associated with data type proposals. It
describes the issues and suggests methods for resolving them. The dialog box
uses the following icons to differentiate warnings from errors:

Indicates a warning message.

Indicates an error message.

34-20

Automatic Data Typing Using Simulation Data

Shared Data Type Summary
This section of the dialog box informs you that the selected object must
share the same data type as other objects in the model because of data type
propagation rules. For example, the inputs to a Merge block must have the
same data type. Therefore, the outputs of blocks that connect to these inputs
must share the same data type. Similarly, blocks that are connected by the
same element of a virtual bus must share the same data type.

The dialog box provides a hyperlink that you can click to highlight the objects
that share data types in the model. To clear this highlighting, from the model
View menu, select Remove Highlighting.

The Fixed-Point Tool allocates an identification tag to objects that must share
the same data type. The tool displays this identification tag in the DTGroup
column for the object. To display only the objects that must share data types,
from the Fixed-Point Tool main toolbar, select the Show option.

Constrained Data Type Summary
Some Simulink blocks accept only certain data types on some ports. This
section of the dialog box informs you when a block that connects to the
selected object has data type constraints that impact the proposed data type
of the selected object. The dialog box lists the blocks that have data type
constraints, provides details of the constrained data types, and links to the
blocks in the model.

Data Type Details
Provides a table with model object attributes that influence its data type
proposal.

Item Description

Currently
Specified Data
Type

Data type that an object specifies.

Proposed Data
Type

Data type that the Fixed-Point Tool proposes for this
object.

34-21

34 Automatic Data Typing

Item Description

Proposed
Representable
Maximum

Maximum value that the proposed data type can
represent.

Design Maximum Design maximum value that an object specifies
using, e.g., its Output maximum parameter.

Simulation
Maximum

Maximum value that occurs during simulation.

Simulation
Minimum

Minimum value that occurs during simulation.

Design Minimum Design minimum value that an object specifies using,
e.g., its Output minimum parameter.

Proposed
Representable
Minimum

Minimum value that the proposed data type can
represent.

The dialog box table also includes a column titled Percent Proposed
Representable. This column indicates the percentage of the proposed
representable range that each value covers. Overflows occur when values
lie outside this range.

Shared Values. When proposing data types, the Fixed-Point Tool attempts
to satisfy data type requirements that model objects impose on one another.
For example, the Sum block provides an option that requires all of its inputs
to have the same data type. Consequently, the dialog box table might also
list attributes of other model objects that impact the proposal for the selected
object. In such cases, the table displays the following types of shared values:

• Initial Values

Some model objects provide parameters that allow you to specify the
initial values of their signals. For example, the Constant block includes
a Constant value parameter that initializes the block output signal.
The Fixed-Point Tool uses initial values to propose data types for model
objects whose design and simulation ranges are unavailable. When data

34-22

Automatic Data Typing Using Simulation Data

type dependencies exist, the tool considers how initial values impact the
proposals for neighboring objects.

• Model-Required Parameters

Some model objects require the specification of numeric parameters to
compute the value of their outputs. For example, the Table data parameter
of an n-D Lookup Table block specifies values that the block requires to
perform a lookup operation and generate output. When proposing data
types, the Fixed-Point Tool considers how this “model-required” parameter
value impacts the proposals for neighboring objects.

To Examine the Results and Resolve Conflicts
1 On the Fixed-Point Tool toolbar, use the Show option to filter the results
to show Conflicts with proposed data types.

The Fixed-Point Tool lists its data type proposals on the Contents pane
under the ProposedDT column. The tool alerts you to potential issues for
each object in the list by displaying a green, yellow, or red icon.

The proposed data type poses no issues for this object.

The proposed data type poses potential issues for this object.

The proposed data type will introduce data type errors if applied
to this object.

2 Review and fix each error.

a Select the error, right-click and select Highlight Block In Model from
the context menu to identify which block has a conflict.

b Click the Show details for selected result button to open the
Result Details dialog box.

c Use the information provided in the Needs Attention section of the
Result Details dialog box to resolve the conflict by fixing the problem in
the Simulink model.

3 Review the Result Details for the warnings and correct the problem
if necessary.

34-23

34 Automatic Data Typing

4 You have changed the Simulink model, so the benchmark data is not up to

date. Click the Fixed-Point Tool Start button to rerun the simulation.

The Fixed-Point Tool warns you that you have not applied proposals. Click
the Ignore and Simulate button to continue.

5 Click the Propose fraction lengths or Propose word lengths button

to generate a proposal, .

6 On the Fixed-Point Tool toolbar, use the Show option to filter the results
to show All results.

Apply Proposed Data Types
After reviewing the data type proposals, apply the proposed data types to
your model. The Fixed-Point Tool allows you to apply its data type proposals
selectively to objects in your model. On the Contents pane, use the Accept
check box to specify the proposals that you want to assign to model objects.
The check box indicates the status of a proposal:

The Fixed-Point Tool will apply the proposed data type to this object.
By default, the tool selects the Accept check box when a proposal
differs from the object’s current data type.

The Fixed-Point Tool will ignore the proposed data type and leave the
current data type intact for this object.

No proposal exists for this object, for example, when the object
specifies a data type inheritance rule or is locked against automatic
data typing.

1 Examine each result. For more information about a particular result, select

the result and then click the Show details for selected result button
to display the Result Details dialog box.

2 If you do not want to accept the proposal for a result, on the Fixed-Point
Tool Contents pane, clear the Accept check box for that result.

Before applying proposals to your model, you can customize them with the
Fixed-Point Tool. On the Contents pane, click a ProposedDT cell and

34-24

Automatic Data Typing Using Simulation Data

edit the data type expression. For information about specifying fixed-point
data types, see fixdt.

3 Click the Apply accepted fraction lengths or Apply accepted word

lengths button to write the proposed data types to the model.

If you have not fixed all the warnings in the model, the Fixed-Point Tool
displays a warning dialog box.

Verify New Settings
After applying proposed data types to your model, you simulate the model
using the applied fixed-point data types.

1 On the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem for which you want a proposal.

2 On the Shortcuts to set up runs pane, click the Model-wide no
override and full instrumentation button to use the locally specified
data type settings.

This sets:

• Data type override to Use local settings.

• Fixed-point instrumentation mode to Minimums, maximums and
overflows.

• The run name (in the Data collection pane Store results in run field)
to NoOverride.

Using these settings, the Fixed-Point Tool simulates the model using the
new fixed-point settings and logs minimum value, maximum value, and
overflow data for all blocks in the current system or subsystem in the run
NoOverride.

3 Click the Fixed-Point Tool Start button to run the simulation.

4 Compare the ideal results stored in the DoubleOverride run with the
fixed-point results in the NoOverride run:

a On the Contents pane, select a result that has logged signal data. These
results are annotated with the icon.

34-25

34 Automatic Data Typing

b Click the Compare Signals to view the difference between the
fixed-point and double override runs for the selected result.

If you have more than two runs, in the Compare Runs Selector dialog
box, select the two runs that you want to compare.

Automatic Data Typing of Simulink Signal Objects
The Fixed-Point Tool can propose new data types for Simulink signal objects
in the base or model workspace. If you accept the proposed data types, the
Fixed-Point Tool automatically applies them to the Simulink signal objects.

Caution The Fixed-Point Tool does not save the changes to the signal object.
Before closing the model, you must save the changes.

After automatic data typing, if you delete or manipulate a signal object in the
base workspace, you must rerun the automatic data typing.

34-26

Automatic Data Typing Using Derived Ranges

Automatic Data Typing Using Derived Ranges

In this section...

“Prerequisites for Autoscaling Using Derived Ranges” on page 34-27

“Workflow for Autoscaling Using Derived Data” on page 34-27

“Set Up the Model” on page 34-28

“Prepare Model for Autoscaling Using Derived Data” on page 34-29

“Derive Minimum and Maximum Values” on page 34-30

“Resolve Range Analysis Issues” on page 34-32

“Proposing Data Types” on page 34-32

“Propose Data Types” on page 34-34

“Examine Results to Resolve Conflicts” on page 34-35

“Apply Proposed Data Types” on page 34-41

“Update Diagram” on page 34-42

Prerequisites for Autoscaling Using Derived Ranges
The Fixed-Point Tool uses range analysis to derive minimum and maximum
values for objects in your model.

Range analysis:

• Requires a Fixed-Point Designer license.

• Works only for compatible models. For more information, see “Model
Compatibility with Range Analysis” on page 35-6.

Workflow for Autoscaling Using Derived Data

1 Verify that your model is compatible with range analysis. See “Model
Compatibility with Range Analysis” on page 35-6.

2 Set up model.

3 Prepare model prior to automatic data typing using derived data.

34-27

34 Automatic Data Typing

4 Derive minimum and maximum values.

5 Resolve any issues.

6 Derive minimum and maximum values.

7 Propose data types.

8 Examine results to resolve conflicts.

9 Apply proposed data types.

10 Update diagram.

Set Up the Model
To use the Fixed-Point Tool to generate data type proposals for your model
based on derived minimum and maximum values only, you must first set
up your model in Simulink.

1 Back up your model in case of error and as a baseline for testing and
validation.

2 Open your model in Simulink.

3 Select Simulation > Normal in the Simulink menu so that the model runs
in Normal mode. The Fixed-Point Tool supports only Normal mode.

4 To autoscale using derived data, you must specify design minimum and
maximum values on at least the model inputs. The range analysis tries to
narrow the derived range by using all the specified design ranges in the
model. The more design range information you specify, the more likely
the range analysis is to succeed. As the analysis is performed, it derives
new range information for the model and then attempts to use this new
information together with the specified ranges to derive ranges for the
remaining objects in the model. For this reason, the analysis results might
depend on block priorities because these priorities determine the order in
which the software analyzes the blocks.

You specify a design range for model objects using parameters typically
titled Output minimum and Output maximum. For a list of blocks

34-28

Automatic Data Typing Using Derived Ranges

that permit you to specify these values, see “Blocks That Allow Signal
Range Specification”.

5 Specify fixed-point data types for blocks and signals in your model. For
blocks with the Data Type Assistant, use the Calculate Best-Precision
Scaling button to calculate best-precision scaling automatically. For more
information, see “Specify Fixed-Point Data Types with the Data Type
Assistant” on page 26-24.

6 You can choose to lock some blocks against automatic data typing by
selecting the Lock output data type setting against changes by the
fixed-point tools parameter. If you select the Lock output data type
setting against changes by the fixed-point tools parameter, the tool
does not propose data types for that object.

7 From the Simulink Simulation menu, select Update Diagram to perform
parameter range checking for all blocks in the model.

If update diagram fails, use the failure information to fix the errors in
your model. After fixing the errors, test update diagram again. If you are
unable to fix the errors, restore your back-up model.

8 If the model changed, back up the model in case of error and as a baseline
for testing and validation.

9 Create a shortcut to capture the initial fixed-point instrumentation and
data type override settings. For more information, see “Capture Model
Settings Using the Shortcut Editor” on page 31-10.

Prepare Model for Autoscaling Using Derived Data
First use the Fixed-Point Advisor to prepare the model for conversion to fixed
point. You do this preparation only once. The Fixed-Point Advisor gives
advice about model and block configuration settings to prepare for automatic
conversion to fixed point using the Fixed-Point Tool. The Fixed-Point Advisor:

• Checks the model against fixed-point guidelines.

• Identifies unsupported blocks.

• Removes output data type inheritance from blocks.

34-29

34 Automatic Data Typing

• Allows you to promote simulation minimum and maximum values to design
minimum and maximum values. This capability is useful if you have not
specified design ranges and you have simulated the model with inputs that
cover the full intended operating range. For more information, see “Specify
block minimum and maximum values” on page 38-37.

• Runs simulation range detection diagnostics. When preparing the model
for automatic data typing using derived data, you can complete the
preparation without setting up signal logging and creating a simulation
reference run. However, creating at least one simulation run is useful for
early error detection. Simulating the model helps to verify that the design
minimum and maximum values specified on the model are correct and that
the model conforms to modeling guidelines.

To open the Fixed-Point Advisor:

1 From the Simulink Analysis menu, select Fixed-Point Tool.

2 On the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem of interest.

3 On the Fixed-point preparation for selected system pane, click
Fixed-Point Advisor.

Use the Fixed-Point Advisor to prepare the model for conversion. For more
information, see “Preparation for Fixed-Point Conversion” on page 30-2.

Derive Minimum and Maximum Values

1 On the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem of interest.

2 On the Settings for selected system pane, set Data type override to
Double.

3 Optionally, in the Data collection pane Store results in run field,
specify a run name. Specifying a unique run name avoids overwriting
results from previous runs.

4 In the Fixed-Point Tool, click Derive min/max values for selected
system.

34-30

Automatic Data Typing Using Derived Ranges

The analysis runs and tries to derive range information for objects in the
selected system.

If the analysis successfully derives range data for the model, the Fixed-Point
Tool displays the derived minimum and maximum values for the blocks in
the selected system. (See “View Derived Ranges in the Fixed-Point Tool” on
page 35-12.) Before proposing data types, review the results.

If the analysis fails, examine the error messages and resolve the issues.
See “Resolve Range Analysis Issues” on page 34-32.

34-31

34 Automatic Data Typing

Resolve Range Analysis Issues
The following table shows the different types of range analysis issues and the
steps to resolve them.

Analysis Results Next Steps For More Information

The analysis fails
because the model
contains blocks that
it does not support.
The Fixed-Point Tool
generates an error.

Review the error
message information
and replace the
unsupported blocks.

“Model Compatibility
with Range Analysis”
on page 35-6

The analysis cannot
derive range data
because the model
contains conflicting
design range
information. The
Fixed-Point Tool
generates an error.

Examine the design
ranges specified in
the model to identify
inconsistent design
specifications and
modify them to make
them consistent.

“Fixing Design Range
Conflicts” on page 35-28

The analysis cannot
derive range data for
an object because there
is insufficient design
range information
specified on the model.
The Fixed-Point Tool
highlights the results
for the object.

Examine the model to
determine which design
range information is
missing.

“Providing More Design
Range Information” on
page 35-25

Proposing Data Types
Unless you select an object’s Lock output data type setting against
changes by the fixed-point tools parameter or the data types are using
inheritance rules, the Fixed-Point Tool proposes data types for model objects
that specify fixed-point data types. You set up the tool to either propose
fraction lengths for specified word lengths or to propose word lengths for
specified fraction lengths. For more information, see “Propose Fraction
Lengths” on page 34-43 and “Propose Word Lengths” on page 34-61.

34-32

Automatic Data Typing Using Derived Ranges

When generating data type proposals, the Fixed-Point Tool collects the
following types of range data for model objects:

• Design minimum or maximum values — You specify a design range for
model objects using parameters typically titled Output minimum and
Output maximum. For a list of blocks that permit you to specify these
values, see “Blocks That Allow Signal Range Specification”.

• Simulation minimum or maximum values — When simulating a system
whose Fixed-point instrumentation mode parameter specifies
Minimums, maximums and overflows, the Fixed-Point Tool logs the
minimum and maximum values generated by model objects. For more
information about the Fixed-point instrumentation mode parameter,
see fxptdlg.

• Derived minimum or maximum values — When deriving minimum and
maximum values for a selected system, the Fixed-Point Tool uses the
design minimum and maximum values that you specify for the model to
derive range information for signals in your model. For more information,
see “Derive Ranges”.

For models that contain floating-point operations, range analysis might
report a range that is slightly larger than expected due to rounding errors
in the analysis. Automatic data typing bases its proposal on this slightly
larger derived range. To avoid this issue, use the safety margin for design
and derived min/max.

The Fixed-Point Tool uses available range data to calculate data type
proposals according to the following rules:

• Design minimum and maximum values take precedence over the
simulation and derived range.

The Safety margin for design and derived min/max (%) parameter
specifies a range that differs from that defined by the design range. For
example, a value of 20 specifies that a range of at least 20 percent larger is
desired. A value of -10 specifies that a range of up to 10 percent smaller is
acceptable. If this parameter is not visible in the Automatic data typing
for selected system pane, click the Configure link.

For more information, see “Safety margin for design and derived min/max
(%)” in the fxptdlg reference.

34-33

34 Automatic Data Typing

• The tool observes the derived range only when the Derived min/max
option is selected. Otherwise, the tool ignores the derived range.

The Safety margin for design and derived min/max (%) parameter
specifies a range that differs from that defined by the derived range.
For more information, see Percent safety margin for design and derived
min/max in the fxptdlg reference.

• The tool observes the simulation range only when the Simulation
min/max option is selected. Otherwise, the tool ignores the simulation
range.

The Safety margin for simulation min/max (%) parameter specifies a
range that differs from that defined by the simulation range. For more
information, see “Safety margin for simulation min/max (%)” in the
fxptdlg reference.

Propose Data Types
1 On the Automatic data typing for selected system Settings pane,
select either Propose fraction lengths for specified word lengths or
Propose word lengths for specified fraction lengths, as applicable.

If these options are not visible, use the Configure link to display them.

2 If you have a safety margin to apply, set Safety margin for design and
derived min/max (%). For example, enter 10 for a 10% safety margin.

3 Click the Propose fraction lengths or Propose word lengths button

to generate a proposal, .

Note When the Fixed-Point Tool proposes data types, it does not alter
your model.

If there are conflicts in your model, the Fixed-Point Tool displays the
Result Details dialog box.

If you do not see this warning, there are no conflicts in your model, go to
“Apply Proposed Data Types” on page 34-24.

34-34

Automatic Data Typing Using Derived Ranges

Examine Results to Resolve Conflicts
You can examine each data type proposal using the Result Details dialog
box, which displays the rationale underlying the proposal. Also, this dialog
box describes potential issues or errors, and provides methods for resolving
them. To open the dialog box:

1 On the Contents pane, select an object that has proposed data types.

2 Click the Show details for selected result button .

34-35

34 Automatic Data Typing

34-36

Automatic Data Typing Using Derived Ranges

The Result Details dialog box provides the following information about the
proposed data type, as appropriate.

Summary
Details about which run the result is in and the current data type specified
for the selected object.

Proposed Data Type Summary
Describes a data type proposal in terms of how it differs from the object’s
current data type. For cases when the Fixed-Point Tool does not propose
data types, provides a rationale. For example, the data type might be locked
against changes by the fixed-point tool.

Needs Attention
Lists potential issues and errors associated with data type proposals.
Describes the issues and suggests methods for resolving them. The dialog box
uses the following icons to differentiate warnings from errors.

Indicates a warning message.

Indicates an error message.

Shared Data Type Summary
This section of the dialog box informs you that the selected object must
share the same data type as other objects in the model because of data type
propagation rules. For example, the inputs to a Merge block must have the
same data type. Therefore, the outputs of blocks that connect to these inputs
must share the same data type.

**The Shared Data Type Summary also reports all source blocks that drive
the same element of a bus object. **

The dialog box provides a hyperlink that you can click to highlight the objects
that share data types in the model. To clear this highlighting, from the model
View menu, select Remove Highlighting.

34-37

34 Automatic Data Typing

The Fixed-Point Tool allocates an identification tag to objects that must share
the same data type. The tool displays this identification tag in the DTGroup
column for the object. To display only the objects that must share data types,
from the Fixed-Point Tool main toolbar, select the Show option.

Constrained Data Type Summary
Some Simulink blocks accept only certain data types on some ports. This
section of the dialog box informs you when a block that connects to the
selected object has data type constraints that impact the proposed data type
of the selected object. The dialog box lists the blocks that have data type
constraints, provides details of the constrained data types, and links to the
blocks in the model.

Data Type Details
Provides a table that lists a model object attributes that influence its data
type proposal.

Item Description

Currently
Specified Data
Type

Data type that an object specifies.

Proposed Data
Type

Data type that the Fixed-Point Tool proposes for this
object.

Proposed
Representable
Maximum

Maximum value that the proposed data type can
represent.

Design Maximum Design maximum value that an object specifies
using, e.g., its Output maximum parameter.

Simulation
Maximum

Maximum value that occurs during simulation.

Derived
Maximum

Maximum value that the Fixed-Point Tool derives for
this signal from design ranges.

Intermediate
Maximum

Intermediate maximum value reached by the object
based on design ranges.

34-38

Automatic Data Typing Using Derived Ranges

Item Description

Intermediate
Minimum

Intermediate minimum value reached by the object
based on design ranges.

Derived Minimum Minimum value that the Fixed-Point Tool derives for
this signal from design ranges.

Simulation
Minimum

Minimum value that occurs during simulation.

Design Minimum Design minimum value that an object specifies using,
e.g., its Output minimum parameter.

Proposed
Representable
Minimum

Minimum value that the proposed data type can
represent.

The dialog box table also includes a column titled Percent Proposed
Representable. This column indicates the percentage of the proposed
representable range that each value covers. Overflows occur when values
lie outside this range.

Shared Values. When proposing data types, the Fixed-Point Tool attempts
to satisfy data type requirements that model objects impose on one another.
For example, the Sum block provides an option that requires all of its inputs
to have the same data type. Consequently, the dialog box table might also
list attributes of other model objects that impact the data type proposal for
the selected object. In such cases, the table displays the following types
of shared values:

• Initial Values

Some model objects provide parameters that allow you to specify the
initial values of their signals. For example, the Constant block includes
a Constant value parameter that initializes the block output signal.
The Fixed-Point Tool uses initial values to propose data types for model
objects whose design and simulation ranges are unavailable. When data
type dependencies exist, the tool considers how initial values impact the
proposals for neighboring objects.

• Model-Required Parameters

34-39

34 Automatic Data Typing

Some model objects require the specification of numeric parameters to
compute the value of their outputs. For example, the Table data parameter
of an n-D Lookup Table block specifies values that the block requires to
perform a lookup operation and generate output. When proposing data
types, the Fixed-Point Tool considers how this “model-required” parameter
value impacts the proposals for neighboring objects.

To Examine the Results and Resolve Conflicts
1 On the Fixed-Point Tool toolbar, use the Show option to filter the results
to show Conflicts with proposed data types.

The Fixed-Point Tool lists its data type proposals on the Contents pane
under the ProposedDT column. The tool alerts you to potential issues for
each object in the list by displaying a green, yellow, or red icon.

The proposed data type poses no issues for this object.

The proposed data type poses potential issues for this object.

The proposed data type will introduce data type errors if applied
to this object.

2 Review and fix each error.

a Select the error, right-click, and from the context menu, selectHighlight
Block In Model to identify which block has a conflict.

b Click the Show details for selected result button to open the
Result Details dialog box.

c Use the information provided in the Needs Attention section of the
Result Details dialog box to resolve the conflict by fixing the problem in
the Simulink model.

3 Review the Result Details for the warnings and correct the problem
if necessary.

4 You have changed the Simulink model, so the benchmark data is not up to
date. Click the Fixed-Point Tool Start button to rerun the simulation.

34-40

Automatic Data Typing Using Derived Ranges

The Fixed-Point Tool warns you that you have not applied proposals. Click
the Ignore and Simulate button to continue.

5 Click the Propose fraction lengths or Propose word lengths button to

generate a data type proposal, .

6 On the Fixed-Point Tool toolbar, use the Show option to filter the results
to show All results.

Apply Proposed Data Types
After reviewing the data type proposals, apply the proposed data types to
your model. The Fixed-Point Tool allows you to apply its data type proposals
selectively to objects in your model. On the Contents pane, use the Accept
check box to specify the proposals that you want to assign to model objects.
The check box indicates the status of a proposal:

The Fixed-Point Tool will apply the proposed data type to this object.
By default, the tool selects the Accept check box when a proposal
differs from the object’s current data type.

The Fixed-Point Tool will ignore the proposed data type and leave the
current data type intact for this object.

No proposal exists for this object, for example, when the object
specifies a data type inheritance rule or is locked against automatic
data typing.

1 Examine each result. For more information about a particular result, select

the result and then click the Show details for selected result button
to open the Result Details dialog box.

2 If you do not want to accept the proposal for a result, on the Fixed-Point
Tool Contents pane, clear the Accept check box for that result.

Before applying proposals to your model, the Fixed-Point Tool enables you
to customize them. On the Contents pane, click a ProposedDT cell and
edit the data type expression. For information about specifying fixed-point
data types, see fixdt.

34-41

34 Automatic Data Typing

3 Click the Apply accepted fraction lengths or Apply accepted word
lengths button to write the proposed data types to the model.

If you have not fixed all the warnings in the model, the Fixed-Point Tool
displays a warning dialog box.

Update Diagram
From the model’s Simulation menu, select Update Diagram.

After applying the data types to the model, update diagram to check for
data type propagation issues.

If update diagram fails, use the failure information to fix the errors in your
model. After fixing the errors, test update diagram again. If you are unable
to fix the errors, restore your backed up model.

34-42

Propose Fraction Lengths

Propose Fraction Lengths

In this section...

“Propose Fraction Lengths” on page 34-43

“About the Feedback Controller Example Model” on page 34-44

“Propose Fraction Lengths Using Simulation Range Data” on page 34-50

Propose Fraction Lengths

1 On the Fixed-Point Tool Automatic data typing for selected system
pane, select Propose fraction lengths for specified word lengths. If
you cannot see this option, click Configure to display more options.

2 On the same pane:

• For simulation min/max information only, clear Derived min/max.

• For derived min/max information only, clear Simulation min/max.

3 If you have safety margins to apply, set Safety margin for design and
derived min/max (%) and Safety margin for design and derived
min/max (%), as applicable.

4 Click the Propose fraction lengths button, .

Note When the Fixed-Point Tool proposes data types, it does not alter
your model.

If there are conflicts in your model, the Fixed-Point Tool opens the Result
Details dialog box.

If you do not see this warning, there are no conflicts in your model. Review
the proposed word lengths,

34-43

34 Automatic Data Typing

About the Feedback Controller Example Model

• “Opening the Feedback Controller Model” on page 34-44

• “Simulation Setup” on page 34-45

• “Idealized Feedback Design” on page 34-46

• “Digital Controller Realization” on page 34-47

Opening the Feedback Controller Model
To open the Simulink feedback design model for this tutorial, at the MATLAB
command line, type fxpdemo_feedback.

The Simulink model of the feedback design consists of the following blocks
and subsystems:

• Reference

34-44

Propose Fraction Lengths

This Signal Generator block generates a continuous-time reference signal.
It is configured to output a square wave.

• Sum

This Sum block subtracts the plant output from the reference signal.

• ZOH

The Zero-Order Hold block samples and holds the continuous signal. This
block is configured so that it quantizes the signal in time by 0.01 seconds.

• Analog to Digital Interface

The analog to digital (A/D) interface consists of a Data Type Conversion
block that converts a double to a fixed-point data type. It represents any
hardware that digitizes the amplitude of the analog input signal. In the
real world, its characteristics are fixed.

• Controller

The digital controller is a subsystem that represents the software running
on the hardware target. Refer to “Digital Controller Realization” on page
34-47.

• Digital to Analog Interface

The digital to analog (D/A) interface consists of a Data Type Conversion
block that converts a fixed-point data type into a double. It represents any
hardware that converts a digitized signal into an analog signal. In the real
world, its characteristics are fixed.

• Analog Plant

The analog plant is described by a transfer function, and is controlled by
the digital controller. In the real world, its characteristics are fixed.

• Scope

The model includes a Scope block that displays the plant output signal.

Simulation Setup
To set up this kind of fixed-point feedback controller simulation:

1 Identify all design components.

34-45

34 Automatic Data Typing

In the real world, there are design components with fixed characteristics
(the hardware) and design components with characteristics that you
can change (the software). In this feedback design, the main hardware
components are the A/D hardware, the D/A hardware, and the analog
plant. The main software component is the digital controller.

2 Develop a theoretical model of the plant and controller.

For the feedback design in this tutorial, the plant is characterized by
a transfer function.

The digital controller model in this tutorial is described by a z-domain
transfer function and is implemented using a direct-form realization.

3 Evaluate the behavior of the plant and controller.

You evaluate the behavior of the plant and the controller with a Bode plot.
This evaluation is idealized, because all numbers, operations, and states
are double-precision.

4 Simulate the system.

You simulate the feedback controller design using Simulink and
Fixed-Point Designer software. In a simulation environment, you can treat
all components (software and hardware) as though their characteristics
are not fixed.

Idealized Feedback Design
Open loop (controller and plant) and plant-only Bode plots for the “Scaling
a Fixed-Point Control Design” model are shown in the following figure. The
open loop Bode plot results from a digital controller described in the idealized
world of continuous time, double-precision coefficients, storage of states, and
math operations.

34-46

Propose Fraction Lengths

10
−1

10
0

10
1

10
2

10
3

10
−5

10
0

Bode Plots: Plant Only (dashed) and Open Loop (solid)

Freq (rad/sec)

M
ag

ni
tu

de

10
−1

10
0

10
1

10
2

10
3

−400

−300

−200

−100

0

Freq (rad/sec)

P
ha

se

The Bode plots were created using workspace variables produced by a script
named preload_feedback.m.

Digital Controller Realization
In this simulation, the digital controller is implemented using the fixed-point
direct form realization shown in the following diagram. The hardware target
is a 16-bit processor. Variables and coefficients are generally represented
using 16 bits, especially if these quantities are stored in ROM or global RAM.
Use of 32-bit numbers is limited to temporary variables that exist briefly in
CPU registers or in a stack.

34-47

34 Automatic Data Typing

The realization consists of these blocks:

• Up Cast

34-48

Propose Fraction Lengths

Up Cast is a Data Type Conversion block that connects the A/D hardware
with the digital controller. It pads the output word size of the A/D hardware
with trailing zeros to a 16-bit number (the base data type).

• Numerator Terms and Denominator Terms

Each of these Discrete FIR Filter blocks represents a weighted sum carried
out in the CPU target. The word size and precision in the calculations
reflect those of the accumulator. Numerator Terms multiplies and
accumulates the most recent inputs with the FIR numerator coefficients.
Denominator Terms multiples and accumulates the most recent delayed
outputs with the FIR denominator coefficients. The coefficients are stored
in ROM using the base data type. The most recent inputs are stored in
global RAM using the base data type.

• Combine Terms

Combine Terms is a Sum block that represents the accumulator in the
CPU. Its word size and precision are twice that of the RAM (double bits).

• Down Cast

Down Cast is a Data Type Conversion block that represents taking the
number from the CPU and storing it in RAM. The word size and precision
are reduced to half that of the accumulator when converted back to the
base data type.

• Prev Out

Prev Out is a Unit Delay block that delays the feedback signal in memory
by one sample period. The signals are stored in global RAM using the
base data type.

Direct Form Realization. The controller directly implements this equation:

y k b u k a y ki i
i

N

i

N
() = −() − −()

==
∑∑ 1 1

10
,

• u(k – 1) represents the input from the previous time step.

• y(k) represents the current output, and y(k – 1) represents the output from
the previous time step.

• bi represents the FIR numerator coefficients.

34-49

34 Automatic Data Typing

• ai represents the FIR denominator coefficients.

The first summation in y(k) represents multiplication and accumulation of the
most recent inputs and numerator coefficients in the accumulator. The second
summation in y(k) represents multiplication and accumulation of the most
recent outputs and denominator coefficients in the accumulator. Because the
FIR coefficients, inputs, and outputs are all represented by 16-bit numbers
(the base data type), any multiplication involving these numbers produces a
32-bit output (the accumulator data type).

Propose Fraction Lengths Using Simulation Range
Data

• “Initial Guess at Scaling” on page 34-51

• “Data Type Override” on page 34-53

• “Automatic Data Typing” on page 34-55

This example shows you how to use the Fixed-Point Tool to refine the scaling
of fixed-point data types associated with a feedback controller model (see
“About the Feedback Controller Example Model” on page 34-44). Although the
tool enables multiple workflows for converting a digital controller described in
ideal double-precision numbers to one realized in fixed-point numbers, this
example uses the following approach:

• “Initial Guess at Scaling” on page 34-51. Run an initial “proof of concept”
simulation using a reasonable guess at the fixed-point word size and
scaling. This task illustrates how difficult it is to guess the best scaling.

• “Data Type Override” on page 34-53. Perform a global override of the
fixed-point data types using double-precision numbers. The Simulink
software logs the simulation results to the MATLAB workspace, and the
Fixed-Point Tool displays them.

• “Automatic Data Typing” on page 34-55. Perform the automatic data typing
procedure, which uses the double-precision simulation results to propose
fixed-point scaling for appropriately configured blocks. The Fixed-Point
Tool allows you to accept and apply the scaling proposals selectively.
Afterward, you determine the quality of the results by examining the input
and output of the model’s analog plant.

34-50

Propose Fraction Lengths

Initial Guess at Scaling
Initial guesses for the scaling of each block are already specified in each block
mask in the model. This task illustrates the difficulty of guessing the best
scaling.

1 Open both the fxpdemo_feedback model and the Fixed-Point Tool.

2 On the Fixed-Point Tool Shortcuts to set up runs pane, click the
Model-wide no override and full instrumentation button to set:

• Data type override to Use local settings. This option enables each
of the model’s subsystems to use its locally specified data type settings.

• Fixed-point instrumentation mode to Minimums, maximums and
overflows.

• The run name to NoOverride.

3 In the Fixed-Point Tool, click the Simulate button .

The Simulink software simulates the fxpdemo_feedbackmodel. Afterward,
on its Contents pane, the Fixed-Point Tool displays the simulation results
for each block that logged fixed-point data. By default, it displays the
Simulation View of these results. You can customize this view by clicking
Show Details. For more information about the standard views provided
by the Fixed-Point Tool, see “Customizing the Contents Pane View” in
the fxptdlg function reference. For more information about customizing
views, see “Control Model Explorer Contents Using Views”.

The tool stores the results in the NoOverride run, denoted by the
NoOverride label in the Run column. The Fixed-Point tool highlights
the Up Cast block to indicate that there is an issue with this result. The
Saturations column for this result shows that the block saturated 23
times, which indicates a poor guess for its scaling.

Tip In the main toolbar, use the Show option to view only blocks that
have Overflows.

34-51

34 Automatic Data Typing

4 On the Contents pane of the Fixed-Point Tool, select the Transfer Fcn

block named Analog Plant and then click the Inspect Signal button .

The Fixed-Point Tool plots the signal associated with the plant output.

34-52

Propose Fraction Lengths

The preceding plot of the plant output signal reflects the initial guess at
scaling. The Bode plot design sought to produce a well-behaved linear
response for the closed-loop system. Clearly, the response is nonlinear.
Significant quantization effects cause the nonlinear features. An important
part of fixed-point design is finding a scaling that reduces quantization effects
to acceptable levels.

Tip Use the Fixed-Point Tool plotting tools to plot simulation results
associated with logged signal data. To view a list of all logged signals, in the
main toolbar, use the Show option and select Signal logging results.

Data Type Override
Data type override mode enables you to perform a global override of the
fixed-point data types with double-precision data types, thereby avoiding
quantization effects. When performing automatic scaling to propose higher
fidelity fixed-point scaling, the Fixed-Point Tool uses these simulation results.

1 On the Fixed-Point Tool Shortcuts to set up runs pane, click the
Model-wide double override and full instrumentation button to set:

• Data type override to Double

• Data type override applies to to All numeric types

• Fixed-point instrumentation mode to Minimums, maximums and
overflows

• The run name (on the Data collection pane Store results in run
field) to DoubleOverride

2 In the Fixed-Point Tool, click the Simulate button .

The Simulink software simulates the fxpdemo_feedback model in data
type override mode and stores the results as the DoubleOverride run.
Afterward, on its Contents pane, the Fixed-Point Tool displays the
DoubleOverride run results along with those of the NoOverride run that
you generated previously (see “Initial Guess at Scaling” on page 34-51). The
compiled data type (CompiledDT) column for the DoubleOverride run
shows that the model’s blocks used a double data type during simulation.

34-53

34 Automatic Data Typing

3 On the Contents pane of the Fixed-Point Tool, select the Transfer Fcn
block named Analog Plant in the NoOverride run, and then click the
Compare Signals button .

The Fixed-Point Tool plots both the DoubleOverride and NoOverride
versions of the signal associated with the plant output (upper axes), and
plots the difference between the active and reference versions of that signal
(lower axes). Compare the ideal (double data type) plant output signal
with its fixed-point version.

Tip From the Simulation Data Inspector menu bar, use the zoom tools to
zoom in on an area.

34-54

Propose Fraction Lengths

Automatic Data Typing
Using the automatic data typing procedure, you can easily maximize the
precision of the output data type while spanning the full simulation range.

34-55

34 Automatic Data Typing

Because no design min/max information is supplied, the simulation min/max
data that was collected during the simulation run is used for proposing
data types. The Safety margin for simulation min/max (%) parameter
value multiplies the “raw” simulation values by a factor of 1.2. Setting this
parameter to a value greater than 1 decreases the likelihood that an overflow
will occur when fixed-point data types are being used. For more information
about how the Fixed-Point Tool calculates data type proposals, see “Proposing
Data Types” on page 34-17.

Because of the nonlinear effects of quantization, a fixed-point simulation
produces results that are different from an idealized, doubles-based
simulation. Signals in a fixed-point simulation can cover a larger or smaller
range than in a doubles-based simulation. If the range increases enough,
overflows or saturations could occur. A safety margin decreases this
likelihood, but it might also decrease the precision of the simulation.

Note When the maximum and minimum simulation values cover the
full, intended operating range of your design, the Fixed-Point Tool yields
meaningful automatic data typing results.

Perform automatic data typing for the Controller block. This block is a
subsystem that represents software running on the target, and it requires
optimization.

1 On the Model Hierarchy pane of the Fixed-Point Tool, select the
Controller subsystem. On the Automatic data typing for selected
system pane, click the Configure link. Select Simulation min/max for
Propose using information from design min/max and, then specify
the Safety margin for simulation min/max parameter as 20. Click
Apply.

2 In the Fixed-Point Tool:

a Click the Propose fraction lengths button .

b In the Propose Data Types dialog box, select DoubleOverride, and
then click OK.

The Fixed-Point Tool analyzes the scaling of all fixed-point blocks whose:

34-56

Propose Fraction Lengths

• Lock output data type setting against changes by the
fixed-point tools parameter is not selected.

• Output data type parameter specifies a generalized fixed-point
number.

• Data types are not inherited types.

The Fixed-Point Tool uses the minimum and maximum values stored in
the DoubleOverride run to propose each block’s data types such that
the precision is maximized while the full range of simulation values is
spanned. The tool displays the proposed data types on its Contents
pane. Now, it displays the Automatic Data Typing with Simulation
Min/Max View to provide information, such as ProposedDT,
ProposedMin, ProposedMax, which are relevant at this stage of the
fixed-point conversion.

Tip In the main toolbar, use the Show option to view the groups that
must share data types. For more information, see fxptdlg in the
Simulink Reference.

3 Review the scaling that the Fixed-Point Tool proposes. You can choose to
accept the scaling proposal for each block. On the Contents pane, select the
corresponding Accept check box. By default, the Fixed-Point Tool accepts
all scaling proposals that differ from the current scaling. For this example,
ensure that the Accept check box associated with the DoubleOverride run
is selected for each of the Controller subsystem’s blocks.

4 In the Fixed-Point Tool, click the Apply accepted fraction lengths

button .

The Fixed-Point Tool applies the scaling proposals that you accepted in the
previous step to the Controller subsystem’s blocks.

5 On the Model Hierarchy pane of the Fixed-Point Tool, select the
fxpdemo_feedback system.

34-57

34 Automatic Data Typing

a On the Shortcuts to set up runs pane, click the Model-wide no
override and full instrumentation button to use the locally specified
data type settings.

b On the Data collection pane, set Store results in run to FixedPoint
so that the Fixed-Point Tool stores the results with a new run name and
does not overwrite the results for the initial fixed-point set up. Storing
the results in different runs allows you to compare the initial system
behavior with the behavior of the autoscaled model.

6 In the Fixed-Point Tool, click Simulate.

The Simulink software simulates the fxpdemo_feedback model using
the new scaling that you applied. Afterward, in its Contents pane, the
Fixed-Point Tool displays information about blocks that logged fixed-point
data. The compiled data type (CompiledDT) column for the FixedPoint
run shows that the Controller subsystem’s blocks used fixed-point data
types with the new scaling.

7 On the Model Hierarchy pane of the Fixed-Point Tool, select the
fxpdemo_feedback system.

a On the Contents pane, select the Transfer Fcn block named Analog
Plant for the FixedPoint run, and then click the Compare Signals

button .

b In the Compare Runs Selector dialog box, select DoubleOverride,
and then click OK.

The Fixed-Point Tool plots the fixed-point and double override versions
of the plant output signal, as well as their difference.

34-58

Propose Fraction Lengths

34-59

34 Automatic Data Typing

Tip Optionally, you can zoom in to view the steady-state region with
greater detail. From the Tools menu of the figure window, select Zoom
In and then drag the pointer to draw a box around the area that you want
to view more closely.

The plant output signal represented by the fixed-point run achieves a
steady state, but a small limit cycle is present because of poor A/D design.

34-60

Propose Word Lengths

Propose Word Lengths

In this section...

“How the Fixed-Point Tool Proposes Word Lengths” on page 34-61

“Propose Word Lengths” on page 34-63

“Propose Word Lengths Based on Simulation Data” on page 34-64

How the Fixed-Point Tool Proposes Word Lengths
To use the Fixed-Point Tool to propose word lengths, you must specify the
target hardware and the fraction length requirements for data types in the
model. Select the fraction lengths based on the precision required for the
system that you are modeling. If you do not specify fraction lengths, the
Fixed-Point Tool sets the fraction length to zero. The Fixed-Point Tool uses
these specified fraction lengths to recommend the minimum word length for
fixed-point data types in the selected model or subsystem to avoid overflow
for the collected range information.

The proposed word length is based on:

• Design range information and range information that the Fixed-Point Tool
or Fixed-Point Advisor collects. This collected range information can be
either simulation or derived range data.

• The signedness and fraction lengths of data types that you specify for
blocks, signal objects.

• The signedness and fraction lengths of the default data types that you
specify in the Fixed-Point Tool or Fixed-Point Advisor.

• The production hardware implementation settings specified in the
Configuration Parameters dialog box.

How the Fixed-Point Tool Uses Range Information
The Fixed-Point Tool determines whether to use different types of range
information based on its availability and on the Fixed-Point Tool Derived
min/max and Simulation min/max settings.

34-61

34 Automatic Data Typing

Design range information always takes precedence over both simulation
and derived range data. When there is no design range information, the
Fixed-Point Tool uses the union of available simulation and derived range
data. If you specify safety margins, the Fixed-Point Tool takes these margins
into account.

For example, if a signal has a design range of [-10,10], the Fixed-Point
Tool uses this range for the proposal and ignores all simulation and derived
range information. If you specify a safety margin of 10% for design range, the
Fixed-Point Tool uses a range of [-11,11] for the proposal.

If the signal has no specified design information, but does have a simulation
range of [-8,8] and a derived range of [-2,2], the proposal uses the union
of the ranges, [-8,8]. If you specify a safety margin of 50%, the proposal
uses a range of [-12, 12].

How the Fixed-Point Tool Uses Target Hardware Information
The Fixed-Point Tool calculates the ideal word length and then checks this
length against the production hardware implementation settings for the
target hardware. The tool uses the following rules.

Target
Hardware

Ideal Word
Length

Proposed Word
Length

Restrictions

Ideal word
length=<128

Ideal word length NoneFPGA/ASIC

Ideal word
length>128

128 Maximum word
length is 128

34-62

Propose Word Lengths

Target
Hardware

Ideal Word
Length

Proposed Word
Length

Restrictions

Ideal word
length=< character
bit length for
the embedded
processor (char)

char Rounds up word
length

char <Ideal word
length=< short
bit length for
the embedded
processor (short)

short Rounds up word
length

short<Ideal word
length=< integer
bit length for
the embedded
processor (int)

int Rounds up word
length

int<Ideal word
length=<long
bit length for
the embedded
processor (long)

long Rounds up word
length

Embedded
Processor

Ideal word
length>long
bit length for
the embedded
processor

long Maximum word
length is the target
hardware long

Propose Word Lengths

1 Specify the target hardware.

a In the model, select Simulation > Model Configuration Parameters.

b In the Configuration Parameters dialog box, select Hardware
Implementation.

34-63

34 Automatic Data Typing

c On the Hardware Implementation pane, specify the Device vendor
and Device type, and then click Apply.

2 On the Fixed-Point Tool Automatic data typing for selected system
pane, select Propose word lengths for specified fraction lengths. If
you cannot see this option, click Configure to display more options.

3 On the same pane:

• For simulation min/max information only, clear Derived min/max.

• For derived min/max information only, clear Simulation min/max.

4 If you have safety margins to apply, set Safety margin for design and
derived min/max (%) and Safety margin for design and derived
min/max (%), as applicable.

5 Click the Propose word lengths button, .

Note When the Fixed-Point Tool proposes data types, it does not alter
your model.

If there are conflicts in your model, the Fixed-Point Tool opens the Result
Details dialog box.

If you do not see this warning, there are no conflicts in your model. Review
the proposed word lengths,

Propose Word Lengths Based on Simulation Data
This example shows how to use the Fixed-Point Tool to propose word lengths
for a model that implements a simple moving average algorithm. The model
already uses fixed-point data types, but they are not optimal. Simulate the
model and propose data types based on simulation data. To see how the target
hardware affects the word length proposals, first set the target hardware
to an embedded processor and propose word lengths. Then, set the target
hardware to an FPGA and propose word lengths.

1 Open the ex_moving_average model. At the MATLAB command line,
enter:

34-64

Propose Word Lengths

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_moving_average

Some blocks in the model already have specified fixed-point data types.

Block Data Type Specified on Block

Dbl2Fixpt fixdt(1,16,10)

Gain1 fixdt(1,32,17)

Gain2 fixdt(1,32,17)

Gain3 fixdt(1,32,17)

34-65

34 Automatic Data Typing

Block Data Type Specified on Block

Gain4 fixdt(1,16,1)

Add1 fixdt(1,32,17)

Add2 fixdt(1,32,17)

Add3 fixdt(1,32,17)

2 Verify that the target hardware is an embedded processor.

a In the model, select Simulation > Model Configuration Parameters.

b In the Configuration Parameters dialog box, select Hardware
Implementation.

On the Hardware Implementation pane, the Device vendor is
Generic and the Device type is 16 bit embedded processor.

c Close the Configuration Parameters dialog box.

3 From the model Analysis menu, select Fixed-Point Tool.

4 On the Shortcuts to set up runs pane, click the Model-wide double
override and full instrumentation button to set:

• Data type override to Double

• Data type override applies to to All numeric types

• Fixed-point instrumentation mode to Minimums, maximums and
overflows

• The run name (in the Data collection pane Store results in run field)
to DoubleOverride

Using these settings, the Fixed-Point Tool performs a global override of
the fixed-point data types with double-precision data types, avoiding
quantization effects. During simulation, the tool logs minimum value,
maximum value, and overflow data for all blocks in the current system or
subsystem in the run DoubleOverride.

5 Click the Fixed-Point Tool Simulate button to run the simulation.

34-66

Propose Word Lengths

The Fixed-Point Tool simulates the model and displays the results on the
Contents pane in the run named DoubleOverride.

6 On the Automatic data typing for selected system pane:

a Click Configure to display more options.

b Select Propose word lengths for specified fraction lengths, then
click Apply.

7 Click the Propose word lengths button.

The Fixed-Point Tool uses available range data to calculate data type
proposals according to the following rules:

• Design minimum and maximum values take precedence over the
simulation range.

The Safety margin for design and derived min/max (%) parameter
specifies a range that differs from that defined by the design range. In
this example, no safety margins are set.

• The tool observes the simulation range because you selected the
Simulation min/max option.

The Safety margin for simulation min/max (%) parameter specifies
a range that differs from that defined by the simulation range. In this
example, no safety margins are set.

34-67

34 Automatic Data Typing

The Fixed-Point Tool analyzes the data types of all fixed-point blocks whose:

• Lock output data type setting against changes by the fixed-point
tools parameter is not selected.

• Output data type parameter specifies a generalized fixed-point
number.

• Data types are not inherited types.

For each object in the model, the Fixed-Point Tool proposes the minimum
word length that avoids overflow for the collected range information.
Because the target hardware is a 16–bit embedded processor, the
Fixed-Point tool proposes word lengths based on the number of bits used
by the processor for each data type. For more information, see “How the
Fixed-Point Tool Uses Target Hardware Information” on page 34-62.

The tool proposes smaller word lengths for Gain4 and Gain4:Gain. The
tool calculated that their ideal word length is less than or equal to the
character bit length for the embedded processor (8), so the tool rounds up
the word length to 8.

34-68

Propose Word Lengths

8 To see how the target hardware affects the word length proposal, change
the target hardware to FPGA/ASIC.

a In the model, select Simulation > Model Configuration Parameters.

b In the Configuration Parameters dialog box, select Hardware
Implementation.

c On the Hardware Implementation pane, set Device vendor to
ASIC/FPGA. Simulink automatically sets the Device type to ASIC/FPGA.

d Click Apply and close the Configuration Parameters dialog box.

34-69

34 Automatic Data Typing

9 On the Fixed-Point Tool Automatic data typing for selected system
pane, click the Propose word lengths button.

Because the target hardware is an FPGA, there are no constraints on the
word lengths that the Fixed-Point Tool proposes. The word length for
Gain4:Gain is now 3.

34-70

Propose Data Types Using Multiple Simulations

Propose Data Types Using Multiple Simulations

In this section...

“About This Example” on page 34-71

“Running the Simulation” on page 34-74

About This Example
This example shows how to use the Fixed-Point Tool to propose fraction
lengths for a model based on the simulation minimum and maximum values
captured over multiple simulations.

This example uses the ex_fpt_merge model.

34-71

34 Automatic Data Typing

About the Model
The model contains a sine wave input and two alternate noise sources,
band-limited white noise and random uniform noise. The software converts
the sine wave input and selected noise signal to fixed point and then adds
them.

34-72

Propose Data Types Using Multiple Simulations

• The Data Type Conversion block Dbl-to-FixPt1 converts the
double-precision noise input to the fixed-point data type fixdt(1,16,15).

• The Data Type Conversion block Dbl-to-FixPt2 converts the
double-precision sine wave input to the fixed-point data type
fixdt(1,16,10).

• The Add block Accumulator data type is fixdt(1,32,30) and Output
data type is fixdt(1,16,14).

Merging Results from Two Simulation Runs
In this example, you use the Fixed-Point Tool to merge the results from two
simulation runs. Merging results allows you to autoscale your model over the
complete simulation range.

1 “Simulate the Model Using Random Uniform Noise” on page 34-74. Using
the Fixed-Point Tool, you simulate the model with the random uniform
noise signal and observe the simulation minimum and maximum values for
the Add block. The Fixed-Point Tool uses these simulation settings:

• Fixed-point instrumentation mode: Minimums, maximums and
overflows

• Data type override: Double

• Data type override applies to: All numeric types

• Merge instrumentation results from multiple simulations is not
selected.

This run provides the simulation results for the random uniform noise
input only.

2 “Simulate Model Using Band-Limited White Noise” on page 34-75. You
select the band-limited white noise signal and run another simulation
using the same Fixed-Point Tool simulation settings. The Fixed-Point Tool
overwrites the results of the previous run.

This run provides the simulation range for the band-limited white noise
input only.

34-73

34 Automatic Data Typing

3 “Merge Results” on page 34-75. You configure the Fixed-Point Tool to
merge results. Select the random uniform noise input again, rerun the
simulation, and observe the simulation results for the Add block.

This run provides the simulation range based on the entire set of input
data for both noise sources.

4 “Propose Fraction Lengths Based on Merged Results” on page 34-76. The
Fixed-Point Tool uses the merged simulation minimum and maximum
values to propose scaling for each block to ensure maximum precision while
spanning the full range of simulation values.

Running the Simulation

Simulate the Model Using Random Uniform Noise

1 Open the ex_fpt_merge model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_fpt_merge

2 From the model main menu, select Analysis > Fixed-Point Tool.

3 On the Fixed-Point Tool Shortcuts to set up runs pane, click the
Model-wide double override and full instrumentation button to set:

• Data type override to Double. This option enables each of the model’s
subsystems to use its locally specified data type settings.

• Fixed-point instrumentation mode to Minimums, maximums and
overflows.

• The run name to DoubleOverride.

4 In the Fixed-Point Tool, click the Simulate button .

The Simulink software simulates the ex_fpt_merge model, using the
random uniform noise signal. Afterward, the Fixed-Point Tool Contents
pane displays the simulation results for each block that logged fixed-point

34-74

Propose Data Types Using Multiple Simulations

data. The tool stores the results in a run named DoubleOverride, denoted
by the DoubleOverride label in the Run column.

5 The SimMin and SimMax values for the Add block are:

SimMin is -3.5822

SimMax is 2.7598

Simulate Model Using Band-Limited White Noise

1 In the model, double-click the switch to select the band-limited white
noise signal.

2 In the Fixed-Point Tool, click the Simulate button.

The Simulink software simulates the ex_fpt_merge model, now using
the band-limited white noise signal.

3 The changed values for SimMin and SimMax for the Add block are:

SimMin is now-2.5317

SimMax is now 3.1542

Merge Results

1 In the model, double-click the switch to select the random uniform noise
signal.

2 On the Fixed-Point Tool Data collection pane, select Merge
instrumentation results from multiple simulations, click Apply and
rerun the simulation.

3 The SimMin and SimMax values for the Add block now cover the entire
simulation range for both the random uniform and band-limited white
noise signals.

SimMin is -3.5822

SimMax is 3.1542

34-75

34 Automatic Data Typing

Propose Fraction Lengths Based on Merged Results

1 On the Automatic data typing for selected system pane, click the
Propose fraction lengths button.

The Fixed-Point Tool analyzes the data types of all fixed-point blocks whose:

• Lock output data type setting against changes by the fixed-point
tools parameter is not selected.

• Output data type parameter specifies a generalized fixed-point
number.

• Data types are not inherited.

The Fixed-Point Tool uses the merged minimum and maximum values to
propose fraction lengths for each block. These values ensure maximum
precision while spanning the full range of simulation values. The tool
displays the proposed data types in the Contents pane.

34-76

View Simulation Results

View Simulation Results

In this section...

“Compare Runs” on page 34-77

“Compare Signals” on page 34-78

“Inspect Signals” on page 34-80

“Histogram Plot of Signal” on page 34-81

“See Also” on page 34-82

Compare Runs
To compare runs:

1 In one of the runs that you want to compare, select a logged signal.

2 From the Fixed-Point Tool menu, select Results > Compare Runs or
click .

3 If there are more than two runs, in the Compare Runs Selector dialog
box, select the run that you want to compare, and then click OK.

On the upper axes, the Simulation Data Inspector plots the signal in both
selected runs. On the lower axes, the Simulation Data Inspector plots the
difference between those runs.

34-77

34 Automatic Data Typing

Compare Signals
To compare signals:

1 In one of the runs that you want to compare, select a logged signal.

2 From the Fixed-Point Tool menu, select Results > Compare Signals

or click .

3 If there are more than two runs, in the Compare Runs Selector dialog
box, select the run that you want to compare, and then click OK.

34-78

View Simulation Results

On the upper axes, the Simulation Data Inspector plots the signal in both
selected runs. On the lower axes, the Simulation Data Inspector plots the
difference between those runs.

34-79

34 Automatic Data Typing

Inspect Signals
To inspect a signal:

1 Select the logged signal that you want to inspect.

2 From the Fixed-Point Tool menu, select Results > Inspect Signal or click

.

The Simulation Data Inspector plots data as a function of time.

34-80

View Simulation Results

Histogram Plot of Signal
To view the histogram plot of a signal:

1 Select the logged signal that you want to plot.

2 From the Fixed-Point Tool menu, select Results > Histogram Plot of

Signal or click .

The histogram plot helps you visualize the dynamic range of a signal. It
provides information about the:

• Total number of samples (N).

• Maximum number of bits to prevent overflow.

• Number of times each bit has represented the data (as a percentage of the
total number of samples).

• Number of times that exact zero occurred (without the effect of
quantization). This number does not include the number of zeroes that
occurred due to rounding.

You can use this information to estimate the word size required to represent
the signal.

34-81

34 Automatic Data Typing

See Also

• “Viewing Results With the Simulation Data Inspector” on page 34-83

• “Propose Fraction Lengths Using Simulation Range Data” on page 34-50

• “Converting a Model from Floating- to Fixed-Point Using Simulation Data”
on page 30-11

34-82

Viewing Results With the Simulation Data Inspector

Viewing Results With the Simulation Data Inspector

Why Use the Simulation Data Inspector
Using the Simulation Data Inspector to inspect and compare data after
converting your floating-point model to fixed point facilitates tracking
numerical error propagation.

When to Use the Simulation Data Inspector
Use the Simulation Data Inspector to:

• Plot multiple signals in one or more axes

• Compare a signal in different runs

• Compare all logged signal data from different runs

• Export signal logging results to a MAT-file

• Specify tolerances for signal comparison

• Create a report of the current view and data in the Simulation Data
Inspector

What You Can Inspect in the Simulation Data
Inspector
The Fixed-Point Tool uses the Simulation Data Inspector tool plotting
capabilities that enable you to plot signals for graphical analysis. The tool can
access signal data that resides in the MATLAB workspace, allowing you to
plot simulation results associated with:

• Scope blocks whose Save data to workspace parameter is selected

• To Workspace blocks

• Root-level Outport blocks, when the Output check box on the Data
Import/Export pane of the Configuration Parameters dialog box is
selected

• Logged signal data

34-83

34 Automatic Data Typing

Tip The Contents pane of the Fixed-Point Tool displays an antenna icon
next to items that you can plot.

See Also

• “Validate System Behavior”

• fxptdlg

34-84

35

Range Analysis

• “How Range Analysis Works” on page 35-2

• “Derive Ranges” on page 35-7

• “Derive Ranges at the Subsystem Level” on page 35-10

• “View Derived Ranges in the Fixed-Point Tool” on page 35-12

• “Range Analysis Examples” on page 35-14

• “Derive Ranges for a Referenced Model” on page 35-31

• “Propose Data Types for a Referenced Model” on page 35-37

• “Deriving Ranges for a Referenced Model” on page 35-39

• “Intermediate Range Results” on page 35-41

• “Unsupported Simulink Software Features” on page 35-44

• “Supported and Unsupported Simulink Blocks” on page 35-46

35 Range Analysis

How Range Analysis Works

In this section...

“Analyzing a Model with Range Analysis” on page 35-2

“Automatic Stubbing” on page 35-5

“Model Compatibility with Range Analysis” on page 35-6

Analyzing a Model with Range Analysis
The model that you want to analyzemust be compatible with range analysis.
If your model is not compatible, either replace unsupported blocks or divide
the model so that you can analyze the parts of the model that are compatible.
For more information, see “Model Compatibility with Range Analysis” on
page 35-6.

The Fixed-Point Designer software performs a static range analysis of your
model to derive minimum and maximum range values for signals in the
model. The software analyzes the model behavior and computes the values
that can occur during simulation for each block Outport. The range of these
values is called a derived range.

The software statically analyzes the ranges of the individual computations in
the model based on:

• Specified design ranges, known as design minimum and maximum values,
for example, minimum and maximum values specified for:

- Inport and Outport blocks

- Block outputs

- Input, output, and local data used in MATLAB Function and Stateflow
Chart blocks

- Simulink data objects (Simulink.Signal and Simulink.Parameter
objects)

• Inputs

• The semantics of each calculation in the blocks

35-2

How Range Analysis Works

If the model contains objects that the analysis cannot support, where possible,
the software uses automatic stubbing. For more information, see “Automatic
Stubbing” on page 35-5.

The range analysis tries to narrow the derived range by using all the specified
design ranges in the model. The more design range information you specify,
the more likely the range analysis is to succeed. As the software performs the
analysis, it derives new range information for the model. The software then
attempts to use this new information, together with the specified ranges, to
derive ranges for the remaining objects in the model.

For models that contain floating-point operations, range analysis might
report a range that is slightly larger than expected. This difference is due to
rounding errors because the software approximates floating-point numbers
with infinite-precision rational numbers for analysis and then converts to
floating point for reporting.

35-3

35 Range Analysis

The following table summarizes how the analysis derives range information
and provides links to examples.

When... How the Analysis
Works

Examples

You specify design
minimum and
maximum data for
a block output.

The derived range at
the block output is
based on these specified
values and on the
following values for
blocks connected to its
inputs and outputs:

• Specified minimum
andmaximum values

• Derived minimum
andmaximum values

“Derive Ranges Using
Design Ranges” on page
35-14

A parameter on a block
has initial conditions
and a design range.

The analysis takes both
factors into account by
taking the union of the
design range and the
initial conditions.

“Derive Ranges
Using Block Initial
Conditions” on page
35-16

The model contains
a parameter with a
specified range and the
parameter storage class
is set to Auto.

The analysis does not
take into account the
range specified for the
parameter. Instead,
it uses the parameter
value.

“Derive Ranges Using
Design Ranges for
Simulink.Parameter
Objects” on page 35-19

The model contains
a parameter with a
specified range and the
parameter storage class
is not set to Auto.

The analysis takes
into account the
range specified for
the parameter and
ignores the value.

“Derive Ranges Using
Design Ranges for
Simulink.Parameter
Objects” on page 35-19

35-4

How Range Analysis Works

When... How the Analysis
Works

Examples

The model contains
insufficient design
range information.

The analysis cannot
determine derived
ranges. Specify
more design range
information and rerun
the analysis.

“Providing More Design
Range Information” on
page 35-25

The analysis results
might depend on block
sorting order which
determines the order
in which the software
analyzes the blocks. For
more information, see
“Control and Display
the Sorted Order”.

The model contains
conflicting design range
information.

The analysis cannot
determine the derived
minimum or derived
maximum value for an
object. The Fixed-Point
Tool generates an
error. To fix this error,
examine the design
ranges specified in
the model to identify
inconsistent design
specifications. Modify
them to make them
consistent.

“Fixing Design Range
Conflicts” on page 35-28

Automatic Stubbing

What is Automatic Stubbing?
Automatic stubbing is when the software considers only the interface of the
unsupported objects in a model, not their actual behavior. Automatic stubbing
lets you analyze a model that contains objects that the Fixed-Point Designer

35-5

35 Range Analysis

software does not support. However, if any unsupported model element
affects the derivation results, the analysis might achieve only partial results.

How Automatic Stubbing Works
With automatic stubbing, when the range analysis comes to an unsupported
block, the software ignores ("stubs") that block. The analysis ignores the
behavior of the block. As a result, the block output can take any value.

The software cannot “stub” all Simulink blocks, such as the Integrator block.
See the blocks marked “not stubbable” in “Supported and Unsupported
Simulink Blocks” on page 35-46.

Model Compatibility with Range Analysis
To verify that your model is compatible with range analysis, see:

• “Unsupported Simulink Software Features” on page 35-44

• “Supported and Unsupported Simulink Blocks” on page 35-46

• “Limitations of Support for Model Blocks” on page 35-57

35-6

Derive Ranges

Derive Ranges
1 Verify that your model is compatible with range analysis. See “Model
Compatibility with Range Analysis” on page 35-6.

2 In Simulink, open your model and set it up for use with the Fixed-Point
Tool. For more information, see “Set Up the Model” on page 34-28.

3 From the Simulink Analysis menu, select Fixed-Point Tool.

4 In the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem of interest.

5 Use the Fixed-Point Advisor to prepare the model for conversion.

a In the Fixed-Point Tool Fixed-point preparation for selected system
pane, click the Fixed-Point Advisor button.

b Run each task in the Fixed-Point Advisor. For more information, see
“Preparation for Fixed-Point Conversion” on page 30-2.

The Fixed-Point Advisor:

• Checks the model against fixed-point guidelines.

• Identifies unsupported blocks.

• Removes output data type inheritance from blocks.

• Allows you to promote simulation minimum and maximum values
to design minimum and maximum values. This capability is useful
if you have not specified design ranges and you have simulated the
model with inputs that cover the full intended operating range. For
more information, see “Specify block minimum and maximum values”
on page 38-37.

6 In the Settings for selected system pane, set Data type override to
Double, then click Apply.

This global override of the fixed-point data types using double-precision
numbers avoids quantization effects.

35-7

35 Range Analysis

7 Optionally, in the Data collection pane Store results in run field,
specify a run name. Specifying a unique run name avoids overwriting
results from previous runs.

35-8

Derive Ranges

8 In the Fixed-Point Tool, click the Derive min/max values for selected
system button.

The analysis runs and tries to derive range information for objects in the
selected system. Your next steps depend on the analysis results.

Analysis Results Fixed-Point Tool
Behavior

Next Steps For More
Information

Successfully derives
range data for the
model.

Displays the derived
minimum and
maximum values
for the blocks in the
selected system.

Review the derived
ranges to determine
if the results are
suitable for proposing
data types. If not,
you must specify
additional design
information and rerun
the analysis.

“View Derived Ranges
in the Fixed-Point
Tool” on page 35-12

Fails because the
model contains blocks
that the software does
not support.

Generates an
error and provides
information about the
unsupported blocks.

To fix the error,
review the error
message information
and replace the
unsupported blocks.

“Model Compatibility
with Range Analysis”
on page 35-6

Cannot derive range
data because the
model contains
conflicting design
range information.

Generates an error. To fix this error,
examine the design
ranges specified in
the model to identify
inconsistent design
specifications. Modify
them to make them
consistent.

“Fixing Design Range
Conflicts” on page
35-28

Cannot derive range
data for an object
because there is
insufficient design
range information
specified on the model.

Highlights the results
for the object.

Examine the model
to determine which
design range
information is
missing.

“Providing More
Design Range
Information” on page
35-25

35-9

35 Range Analysis

Derive Ranges at the Subsystem Level

In this section...

“Deriving Ranges at the Subsystem Level” on page 35-10

“Derive Ranges at the Subsystem Level” on page 35-11

Deriving Ranges at the Subsystem Level
You can derive range information for individual atomic subsystems and
atomic charts. When you derive ranges at the model level, the software takes
into account all information in the scope of the model. When you derive
ranges at the subsystem level only, the software treats the subsystem as a
standalone unit and the derived ranges are based on only the local design
range information specified in the subsystem or chart. Therefore, when you
derive ranges at the subsystem level, the analysis results might differ from
the results of the analysis at the model level.

For example, consider a subsystem that has an input with a design minimum
of -10 and a design maximum of 10 that is connected to an input signal with
a constant value of 1. When you derive ranges at the model level, the range
analysis software uses the constant value 1 as the input. When you derive
ranges at the subsystem level, the range analysis software does not take the
constant value into account and instead uses [-10..10] as the range.

When to Derive Ranges at the Subsystem Level
Derive ranges at the subsystem level to facilitate:

• System validation

It is a best practice to analyze individual subsystems in your model one at a
time. This practice makes it easier to understand the atomic behavior of
the subsystem. It also makes debugging easier by isolating the source of
any issues.

• Calibration

The results from the analysis at subsystem level are based only on the
settings specified within the subsystem. The proposed data types cover
the full intended design range of the subsystem. Based on these results,

35-10

Derive Ranges at the Subsystem Level

you can determine whether you can reuse the subsystem in other parts of
your model.

Derive Ranges at the Subsystem Level
The complete procedure for deriving ranges is described in “Derive Ranges”
on page 35-7.

To derive ranges at the subsystem level, the key points to remember are:

• The subsystem or subchart must be atomic.

• In the Fixed-Point Tool Model Hierarchy pane, select the subsystem
of interest.

• In the Settings for selected system pane, set Data type override to
Double, then click Apply.

Tip If the parent of the selected subsystem controls the data type override
setting of the subsystem, first set the parent Data type override to Use
local settings and then set the subsystem Data type override to
Double.

This global override of the fixed-point data types using double-precision
numbers avoids quantization effects.

• In the Data collection pane Store results in run field, specify a run
name. Specifying a unique run name avoids overwriting results from
previous runs. This run contains derived minimum and maximum values
that take into account the full intended design range of the subsystem.

35-11

35 Range Analysis

View Derived Ranges in the Fixed-Point Tool
After you use the Fixed-Point Tool to derive ranges for a model, the
Fixed-Point Tool Contents pane displays the derived minimum and
maximum values for each object in the selected system.

35-12

View Derived Ranges in the Fixed-Point Tool

If the analysis cannot derive a minimum or maximum value, the Fixed-Point
Tool highlights the result. To fix the issue, examine the model to identify
which objects have no specified design ranges and add this information. See
“Insufficient Design Range Information” on page 35-22.

35-13

35 Range Analysis

Range Analysis Examples

In this section...

“Derive Ranges Using Design Ranges” on page 35-14

“Derive Ranges Using Block Initial Conditions” on page 35-16

“Derive Ranges Using Design Ranges for Simulink.Parameter Objects” on
page 35-19

“Insufficient Design Range Information” on page 35-22

“Providing More Design Range Information” on page 35-25

“Fixing Design Range Conflicts” on page 35-28

Derive Ranges Using Design Ranges
This example shows how the range analysis narrows the derived range for the
Outport block. This range is based on the range derived for the Add block
using the design ranges specified on the two Inport blocks and the design
range specified for the Add block.

1 Open the ex_derived_min_max_1 model. At the MATLAB command line,
enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_derived_min_max_1

35-14

Range Analysis Examples

The model displays the specified design minimum and maximum values for
each block.

• In1 design range is [-50..100].

• In2 design range is [-50..35].

• Add block design range is [-125..55].

35-15

35 Range Analysis

Tip To display design ranges in your model, from the model menu, select
Display > Signals & Ports and select Design Ranges.

2 From the Simulink Analysis menu, select Fixed-Point Tool.

3 In the Settings for selected system pane, set Data type override to
Double, then click Apply.

This global override of the fixed-point data types using double-precision
numbers avoids quantization effects.

4 In the Fixed-Point Tool, click the Derive min/max values for selected
system button.

To calculate the derived range at the Add block input, the software uses
the design minimum and maximum values specified for the Inport blocks,
[-50..100] and [-50..35]. The derived range at the Add block input
is [-85..150].

In the Contents pane, the Fixed-Point Tool displays the derived and design
minimum and maximum values for the blocks in the selected system.

• The derived range for the Add block output signal is narrowed to
[-85..55]. This derived range is the intersection of the range derived
from the block inputs, [-85..150], and the design minimum and
maximum values specified for the block output, [-125..55].

• The derived range for the Outport block Out1 is [-85..55], the same as
the Add block output.

Derive Ranges Using Block Initial Conditions
This example shows how range analysis takes into account block initial
conditions.

1 Open the ex_derived_min_max_2 model. At the MATLAB command line,
enter:

35-16

Range Analysis Examples

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_derived_min_max_2

The model uses block annotations to display the specified design minimum
and maximum values for the Inport block and the initial conditions for
the Unit Delay block.

35-17

35 Range Analysis

• In1 design range is [5..10].

• Unit Delay block initial condition is 0.

Tip To display design ranges in your model, from the model menu, select
Display > Signals & Ports and select Design Ranges.

2 From the Simulink Analysis menu, select Fixed-Point Tool.

3 In the Settings for selected system pane, set Data type override to
Double, then click Apply.

This global override of the fixed-point data types using double-precision
numbers avoids quantization effects.

4 In the Fixed-Point Tool, click the Derive min/max values for selected
system button.

In the Contents pane, the Fixed-Point Tool displays the derived minimum
and maximum values for the blocks in the model.

The derived minimum and maximum range for the Outport block, Out1,
is [0..10]. The range analysis derives this range by taking the union of
the initial value, 0, on the Unit Delay block and the design range on the
block, [5..10].

5 Change the initial value of the Unit Delay block to 7.

a Double-click the Unit Delay block.

b In the Block Parameters dialog box, set Initial conditions to 7,
then click OK.

c In the Fixed-Point Tool, click the Derive min/max values for selected
system button.

Because the analysis takes the union of the initial conditions, 7, and the
design range, [5..10], on the Unit Delay block, the derived range for
the block is still [5..10].

35-18

Range Analysis Examples

Derive Ranges Using Design Ranges for
Simulink.Parameter Objects
This example shows how the range analysis takes into account design range
information for Simulink.Parameter objects unless the parameter storage
class is set to Auto. If the parameter storage class is set to Auto, the analysis
uses the value of the parameter.

1 Open the ex_derived_min_max_3 model. At the MATLAB command line,
enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

35-19

35 Range Analysis

ex_derived_min_max_3

The model displays the specified design minimum and maximum values for
the Inport blocks. The design range for both Inport blocks is [1..2].

35-20

Range Analysis Examples

Tip To display design ranges in your model, from the model menu, select
Display > Signals & Ports and select Design Ranges.

2 Examine the gain parameters for the Gain blocks.

a Double-click each Gain block and note the name of the Gain parameter
on the Main tab.

Gain Block Gain Parameter

Gain1 paramObjOne

Gain2 paramObjTwo

b From the model menu, select Tools > Model Explorer.

c In Model Explorer window, select the base workspace and view
information for each of the gain parameters used in the model.

Gain Parameter Type Information

paramObjOne Simulink.Parameter object.
Value 2. Storage class set to
Auto.

paramObjTwo Simulink.Parameter object.
Value 2. Storage class set to
SimulinkGlobal.

3 From the Simulink Analysis menu, select Fixed-Point Tool.

4 In the Settings for selected system pane, set Data type override to
Double , then click Apply.

This global override of the fixed-point data types using double-precision
numbers avoids quantization effects.

5 In the Fixed-Point Tool, click the Derive min/max values for selected
system button.

35-21

35 Range Analysis

In the Contents pane, the Fixed-Point Tool displays the derived minimum
and maximum values for the blocks in the model.

Block Derived
Range

Reason

Gain1 [2..4] The gain parameter, paramObjOne, specified
on Gain block Gain1 is a Simulink.Parameter
object that has its storage class specified as
Auto. The range analysis uses the value of
the Simulink.Parameter object, which is 2,
and ignores the design range specified for
these parameters.

Gain2 [1..20] The gain parameter, paramObjTwo, specified
on Gain block Gain2 is a Simulink.Parameter
object that has its storage class specified as
SimulinkGlobal. The range analysis takes
into account the design range, [1..10],
specified for this parameter.

Insufficient Design Range Information
This example shows that if the analysis cannot derive range information
because there is insufficient design range information, you can fix the issue
by providing additional input design minimum and maximum values.

1 Open the ex_derived_min_max_4 model. At the MATLAB command line,
enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_derived_min_max_4

35-22

Range Analysis Examples

The model displays the specified design minimum and maximum values
for the blocks in the model.

• The Inport block In1 has a design minimum of -1 but no specified
maximum value, as shown by the annotation, Max=[].

• The Gain block has a design range of [-1.5..1.5].

• The Outport block Out1 has no design range specified, as shown by the
annotations, Min=[], Max=[].

35-23

35 Range Analysis

Tip To display design ranges in your model, from the model menu select
Display > Signals & Ports and select Design Ranges.

2 From the Simulink Analysis menu, select Fixed-Point Tool.

3 In the Settings for selected system pane, set Data type override to
Double, then click Apply.

This global override of the fixed-point data types using double-precision
numbers avoids quantization effects.

4 In the Fixed-Point Tool, click the Derive min/max values for selected
system button.

In the Contents pane, the Fixed-Point Tool displays the derived minimum
and maximum values for the blocks in the model. The range analysis is
unable to derive a maximum value for the Inport block, In1. The tool
highlights this result.

5 To fix the issue, specify a design maximum value for In1:

a In the model, double-click the Inport block, In1.

b In the block parameters dialog box, select the Signal Attributes tab.

c On this tab, set Maximum to 1 and click OK.

The model displays the updated maximum value in the block annotation
for In1.

35-24

Range Analysis Examples

6 In the Fixed-Point Tool, click the Derive min/max values for selected
system button to rerun the range analysis.

The range analysis can now derive ranges for the Inport and Gain blocks.

Block Derived
Range

Reason

Inport
In1

[-1..1] Uses specified design range on the block.

Gain [-1.5..1.5] The design range specified on the Gain block
is[-1.5..1.5]. The derived range at the block
input is [-1..1] (the derived range at the
output of In1). Therefore, because the gain is
2, the derived range at the Gain block output
is the intersection of the propagated range,
[-2..2], and the design range, [-1.5..1.5].

Outport
In2

[-1.5..1.5] Same as Gain block output because no locally
specified design range on Outport block.

Providing More Design Range Information
This example shows that if the analysis cannot derive range information
because there is insufficient design range information, you can fix the issue
by providing additional output design minimum and maximum values.

1 Open the ex_derived_min_max_5 model. At the MATLAB command line,
enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_derived_min_max_5

35-25

35 Range Analysis

The model displays the specified design minimum and maximum values
for the blocks in the model.

• The Inport block In1 has a design range of -10,20.

• The rest of the blocks in the model have no specified design range.

Tip To display design ranges in your model, from the model menu select
Display > Signals & Ports and select Design Ranges.

2 From the Simulink Analysis menu, select Fixed-Point Tool.

35-26

Range Analysis Examples

3 In the Settings for selected system pane, set Data type override to
Double , then click Apply.

This global override of the fixed-point data types using double-precision
numbers avoids quantization effects.

4 In the Fixed-Point Tool, click the Derive min/max values for selected
system button.

In the Contents pane, the Fixed-Point Tool displays the derived minimum
and maximum values for the blocks in the model. Because one of the Add
block inputs is fed back from its output, the analysis is unable to derive an
output range for the Add block or for any of the blocks connected to this
output. The Fixed-Point Tool highlights these results.

5 To fix the issue, specify design minimum and maximum values for Out1:

a In the model, double-click the Outport block, Out1.

b In the block parameters dialog box, select the Signal Attributes tab.

c On this tab, setMinimum to -20 andMaximum to 40 and click OK.

6 In the Fixed-Point Tool, click the Derive min/max values for selected
system button to rerun the range analysis.

The range analysis uses the minimum and maximum values specified for
Out1, [-20..40] and the gain value of Gain3, 2, to derive an input range

35-27

35 Range Analysis

for Gain3, [-10..20]. Because the input of Gain3 feeds back to the input of
the Add block, the analysis now derives ranges for all objects in the model.

Fixing Design Range Conflicts
This example shows how to fix design range conflicts. If you specify conflicting
design minimum and maximum values in your model, the range analysis
software reports an error. To fix this error, examine the design ranges
specified in the model to identify inconsistent design specifications. Modify
them to make them consistent. In this example, the output design range
specified on the Outport block conflicts with the input design ranges specified
on the Inport blocks.

1 Open the ex_range_conflict model. At the MATLAB command line,
enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_range_conflict

35-28

Range Analysis Examples

The model displays the specified design minimum and maximum values
for the blocks in the model.

• The Inport blocks In1 and In2 have a design range of [-1..1].

• The Outport block Out1 has a design range of [10..20].

Tip To display design ranges in your model, from the model menu select
Display > Signals & Ports and select Design Ranges.

2 From the Simulink Analysis menu, select Fixed-Point Tool.

35-29

35 Range Analysis

3 In the Settings for selected system pane, set Data type override to
Double , then click Apply.

This global override of the fixed-point data types using double-precision
numbers avoids quantization effects.

4 In the Fixed-Point Tool, click the Derive min/max values for selected
system button.

The Fixed-Point Tool generates an error because the range analysis fails.
It reports an error because the derived range for the Sum block, [-2..2] is
outside the specified design range for the Outport block, [10..20].

5 Close the error dialog box.

6 To fix the conflict, change the design range on the Outport block to
[-10..20] so that this range includes the derived range for the Sum block.

a In the model, double-click the Outport block.

b In the block parameters dialog box, click the Signal Attributes tab.

c On this tab, set Minimum to -10 and click OK.

7 In the Fixed-Point Tool, click the Derive min/max values for selected
system button to rerun the range analysis.

The range analysis derives a minimum value of -2 and a maximum value
of 2 for the Outport block.

35-30

Derive Ranges for a Referenced Model

Derive Ranges for a Referenced Model
This example shows how to derive ranges for a model that contains multiple
instances of the same referenced model.

Derive Ranges

1 Open the ex_derived_sum_multi_instance model. At the MATLAB
command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_derived_sum_multi_instance

35-31

35 Range Analysis

The model displays the specified design minimum and maximum values
for the blocks in the model.

• The Inport block In1 has a design range of [-50..100].

• The Inport block In2 has a design range of [-50..35].

Tip To display design ranges in your model, from the model menu select
Display > Signals & Ports and select Design Ranges.

The model contains two Model blocks that both reference the ex_summodel.

35-32

Derive Ranges for a Referenced Model

Initially, the Sum block has no design range information.

2 From the ex_derived_sum_multi_instance model Analysis menu, select
Fixed-Point Tool.

3 In the Fixed-Point Tool Model Hierarchy pane, select the
ex_derived_sum_multi_instance model.

35-33

35 Range Analysis

4 In the Settings for selected system pane, set Data type override to
Double.

This global override of the fixed-point data types using double-precision
numbers avoids quantization effects.

5 In the Fixed-Point Tool Data collection pane, set Store results in run to
double_run and then click Apply.

Providing a unique name for the run avoids accidentally overwriting results
from previous runs and enables you to identify the run more easily.

6 In the Fixed-Point ToolModel Hierarchy pane, select the ex_sum model.

The Data type override setting is Off. The setting in the parent model
does not affect the setting in the referenced model — you must change it
manually in the referenced model.

7 For the ex_sum model, set Data type override to Double and then click
Apply.

Changing the setting for any instance of the referenced model changes the
setting on all instances and on the referenced model itself.

8 Save the models in a local writable folder.

The Fixed-Point Tool cannot derive ranges if your model contains unsaved
changes.

9 In the Fixed-Point Tool, select the ex_derived_sum_multi_instance
model and then click Derive min/max values for selected system.

To calculate the derived ranges, the software uses the design minimum and
maximum values specified for the Inport blocks in the top-level model,
In1 and In2.

In the Contents pane, the Fixed-Point Tool displays the derived and design
minimum and maximum values for the blocks and referenced models in
the ex_derived_sum_multi_instance model. Some of the derived values
that the Fixed-Point Tool reports are slightly larger than expected. This
difference is due to rounding errors because the software approximates

35-34

Derive Ranges for a Referenced Model

floating-point numbers with infinite-precision rational numbers for
analysis and then converts them to floating point for reporting.

View Derived Ranges for Referenced Model

1 In the Model Hierarchy pane, select the first instance of the referenced
model, Model(ex_sum).

The tool displays the derived minimum and maximum values for this
instance of the referenced model, [-82.001..140.001]. This range
is derived from the outputs of the two Gain blocks, [-40,80] and
[-60..42.001].

2 Select the second instance of the referenced model, Model1(ex_sum).

The tool displays the derived values for the second instance, [-85..150].
This range is derived from the referenced model inputs, In1 and In2,
[-50..100] and [-50..35] respectively.

3 Select the node for the referenced model, ex_sum.

For this node, the Fixed-Point Tool displays the merged results for the
derived range for the referenced model which is the union of the results for
each instance of the model, [-85..150].

Next, you set design range on Sum block in referenced model to see how the
range analysis takes this information into account.

Add Design Range for Sum Block and Derive Ranges

35-35

35 Range Analysis

1 In the ex_sum model, double-click the Sum block.

2 In the block parameters dialog box, on the Signal Attributes tab, set
Output minimum to -125 and Output maximum to 50, click OK, and
then save the model.

3 In the Fixed-Point Tool, select the ex_derived_sum_multi_instance
model and then click Derive min/max values for selected system.

This time, to calculate the derived ranges, the software uses the design
minimum and maximum values specified for the Inport blocks in the
parent model, In1 and In2, and the design minimum and maximum values
specified for the Sum block in the referenced model.

4 You can now propose data types for the model based on these derived
minimum and maximum values.

35-36

Propose Data Types for a Referenced Model

Propose Data Types for a Referenced Model
This example shows how to propose data types for a referenced model. To
run this example, you must first run the “Derive Ranges for a Referenced
Model” example.

1 In the Fixed-Point Tool Model Hierarchy pane, select the
ex_derived_sum_multi_instance model.

2 In the Automatic data typing for selected system pane, click the
Configure link, set Default data type of all floating-point signals to
fixdt(1,16,4) and then click Apply.

3 In the same pane, click Propose fraction lengths, .

The Fixed-Point Tool proposes fraction lengths for the inputs In1 and In2
based on the design minimum and maximum values specified on the blocks
in the model and on the derived minimum and maximum values.

The tool does not propose data types for the other blocks because they use
inherited data types. Instead, it displays n/a in the ProposedDT column.
The Fixed-Point Tool might not be able to propose data types for other
reasons, to view more information, click the Show details for selected
result button .

The tool displays the proposed scaling in its Contents pane. It displays the
Automatic Data Typing View to provide information, such as ProposedDT,
ProposedMin, ProposedMax, which are relevant at this stage of the
fixed-point conversion.

35-37

35 Range Analysis

4 After reviewing the data type proposals, click Apply accepted fraction
lengths to apply the proposed data types to your model.

35-38

Deriving Ranges for a Referenced Model

Deriving Ranges for a Referenced Model

In this section...

“Viewing Derived Minimum and Maximum Values for Referenced Models”
on page 35-39

“Data Type Override Settings” on page 35-40

“See Also” on page 35-40

Viewing Derived Minimum and Maximum Values for
Referenced Models
The Fixed-Point Tool derives minimum and maximum values for referenced
models. The simulation mode is not relevant for the analysis — instances of
the referenced models can be in any simulation mode.

The Fixed-Point Tool displays the top-level model that contains the referenced
models and the referenced models in its Model Hierarchy pane. For
example, the ex_derived_sum_multi_instance model contains two instances
of the referenced model ex_sum. The Fixed-Point Tool displays both models
and both instances of the referenced model in the model hierarchy.

If a model contains multiple instances of the referenced model, the tool
displays each instance of the referenced model as well as a node for the
referenced model. For example, here are the results for the first instance of
the referenced model ex_sum1 in ex_multi_instance.

35-39

35 Range Analysis

Here are the results for the second instance of ex_sum1.

In the referenced model node, the tool displays the union of the results for
each instance of the referenced model.

Data Type Override Settings
When you derive minimum and maximum values for a model that contains
referenced models, the data type override setting for the top-level model does
not control the setting for the referenced models. You must specify the data
type override setting separately for the referenced model.

You can set up user-defined shortcuts across referenced model boundaries.
The factory default shortcuts apply only to the top-level model and so do not
affect the settings of any referenced model.

When you change the fixed-point instrumentation and data type override
settings for any instance of a referenced model, the settings change on all
instances of the model and on the referenced model itself.

See Also

• “Derive Ranges for a Referenced Model” on page 35-31

35-40

Intermediate Range Results

Intermediate Range Results
This example shows the Intermediate Maximum and Intermediate Minimum
results in the Result Details dialog box.

Open the model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_intermediateRange

35-41

35 Range Analysis

1 Press CTRL+D to update the diagram. Notice the design range information
for each of the input ports.

2 Open the Fixed-Point Tool. From the model menu, select
Analysis > Fixed-Point Tool.

3 Click the Derive min/max values for selected system button .

The Fixed-Point Tool Contents pane displays the derived minimum and
maximum values for each object in the ex_intermediateRange model.

4 In the Automatic data typing for selected system pane, click
Configure.

Under Default data type of all floating-point signals, select int32.

5 Click the Propose fraction lengths button .

The proposed data types appear in the Contents pane of the Fixed-Point
Tool.

6 Look at the proposed data type of the Product block. The Fixed-Point Tool
proposed a data type with 32–bit word length and 11–bit fraction length.
The derived maximum value of the Product block is 1, but the maximum
representable value for the proposed data type is approximately 1,048,575.

To learn more about the data type proposal, in the Contents pane,
right-click on the product block and select Result Details.

7 In the Result Details dialog box, notice the rows labeled Intermediate
Maximum and Intermediate Minimum. After the first two inputs to the
Product block are multiplied, the block has a maximum value of 1000000
before being multiplied by the next two inputs for a final maximum value
of 1. The data type proposal for the Product block in this model is based
on the intermediate minimum and maximum values. It is not based on
the derived minimum and maximum values to prevent overflows at the
intermediate stages of the block.

35-42

Intermediate Range Results

35-43

35 Range Analysis

Unsupported Simulink Software Features
The software does not support the following Simulink software features.
Avoid using these unsupported features.

Not Supported Description

Variable-step solvers The software supports only fixed-step solvers.

For more information, see “Choosing a Fixed-Step
Solver”.

Callback functions The software does not execute model callback
functions during the analysis. The results that the
analysis generates may behave inconsistently with
the expected behavior.

• If a model or any referenced model calls a callback
function that changes any block parameters,
model parameters, or workspace variables, the
analysis does not reflect those changes.

• Changing the storage class of base workspace
variables on model callback functions or mask
initializations is not supported.

• Callback functions called prior to analysis,
such as the PreLoadFcn or PostLoadFcn model
callbacks, are fully supported.

Model callback
functions

The software only supports model callback functions
if the InitFcn callback of the model is empty.

Algebraic loops The software does not support models that contain
algebraic loops.

For more information, see “Algebraic Loops”.

Masked subsystem
initialization
functions

The software does not support models whose masked
subsystem initialization modifies any attribute of
any workspace parameter.

35-44

Unsupported Simulink® Software Features

Not Supported Description

Variable-size signals The software does not support variable-size signals.
A variable-size signal is a signal whose size (number
of elements in a dimension), in addition to its values,
can change during model execution.

Arrays of buses The software does not support arrays of buses.

For more information, see “Combine Buses into an
Array of Buses”.

Multiword
fixed-point data
types

The software does not support multiword fixed-point
data types.

Nonfinite data The software does not support nonfinite data (for
example, NaN and Inf) and related operations.

Signals with nonzero
sample time offset

The software does not support models with signals
that have nonzero sample time offsets.

Models with no
output ports

The software only supports models that have one or
more output ports.

35-45

35 Range Analysis

Supported and Unsupported Simulink Blocks

Overview of Simulink Block Support
The following tables summarize the analysis support for Simulink blocks.
Each table lists all the blocks in each Simulink library and describes support
information for that particular block. If the software does not support a
given block, where possible, automatic stubbing considers the interface of the
unsupported blocks, but not their behavior, during the analysis. However, if
any of the unsupported blocks affect the simulation outcome, the analysis may
achieve only partial results. If the analysis cannot use automatic stubbing for
a block, the block is marked as “not stubbable”. For more information, see
“Automatic Stubbing” on page 35-5.

Additional Math and Discrete Library

The software supports all blocks in the Additional Math and Discrete library.

Commonly Used Blocks Library

The Commonly Used Blocks library includes blocks from other libraries.
Those blocks are listed under their respective libraries.

Continuous Library

Block Support Notes

Derivative Not supported

Integrator Not supported and not stubbable

Integrator Limited Not supported and not stubbable

PID Controller Not supported

PID Controller (2 DOF) Not supported

Second Order Integrator Not supported and not stubbable

Second Order Integrator Limited Not supported and not stubbable

State-Space Not supported and not stubbable

Transfer Fcn Not supported and not stubbable

35-46

Supported and Unsupported Simulink® Blocks

Block Support Notes

Transport Delay Not supported

Variable Time Delay Not supported

Variable Transport Delay Not supported

Zero-Pole Not supported and not stubbable

Discontinuities Library

The software supports all blocks in the Discontinuities library.

Discrete Library

Block Support Notes

Delay Supported

Difference Supported

Discrete Derivative Supported

Discrete Filter The software analyzes through the filter. It does not
derive any range information for the filter.

Discrete FIR Filter The software analyzes through the filter. It does not
derive any range information for the filter.

Discrete PID Controller Supported

Discrete PID Controller (2 DOF) Supported

Discrete State-Space Not supported

Discrete Transfer Fcn Supported

Discrete Zero-Pole Not supported

Discrete-Time Integrator Supported

First-Order Hold Supported

Memory Supported

Tapped Delay Supported

35-47

35 Range Analysis

Block Support Notes

Transfer Fcn First Order Supported

Transfer Fcn Lead or Lag Supported

Transfer Fcn Real Zero Supported

Unit Delay Supported

Zero-Order Hold Supported

Logic and Bit Operations Library

The software supports all blocks in the Logic and Bit Operations library.

Lookup Tables Library

Block Support Notes

Cosine Supported

Direct Lookup Table (n-D) Supported

Interpolation Using Prelookup Not supported when:

• The Interpolation method parameter is Linear and
the Number of table dimensions parameter is greater
than 4.

or

• The Interpolation method parameter is Linear and
the Number of sub-table selection dimensions
parameter is not 0.

1-D Lookup Table Not supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.

2-D Lookup Table Not supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.

35-48

Supported and Unsupported Simulink® Blocks

Block Support Notes

n-D Lookup Table Not supported when:

• The Interpolation method or the Extrapolation
method parameter is Cubic Spline.

or

• The Interpolation method parameter is Linear and
the Number of table dimensions parameter is greater
than 5.

Lookup Table Dynamic Supported

Prelookup Supported

Sine Supported

Math Operations Library

Block Support Notes

Abs Supported

Add Supported

Algebraic Constraint Supported

Assignment Supported

Bias Supported

Complex to Magnitude-Angle Not supported

Complex to Real-Imag Not supported

Divide Supported

Dot Product Supported

Find Nonzero Elements Supported

Gain Supported

Magnitude-Angle to Complex Not supported

35-49

35 Range Analysis

Block Support Notes

Math Function All signal types support the following Function
parameter settings.

conj hermitian magnitude^2 mod

rem reciprocal square transpose

The software does not support the following Function
parameter settings.

10^u exp hypot

log log10 pow

Matrix Concatenate Supported

MinMax Supported

MinMax Running Resettable Supported

Permute Dimensions Supported

Polynomial Supported

Product Supported

Product of Elements Supported

Real-Imag to Complex Not supported

Reciprocal Sqrt Not supported

Reshape Supported

Rounding Function Supported

Sign Supported

Signed Sqrt Not supported

Sine Wave Function Not supported

Slider Gain Supported

Sqrt Not supported

35-50

Supported and Unsupported Simulink® Blocks

Block Support Notes

Squeeze Supported

Subtract Supported

Sum Supported

Sum of Elements Supported

Trigonometric Function Supported when Function is sin, cos, sincos , or
atan2, and Approximation method is CORDIC.

Unary Minus Supported

Vector Concatenate Supported

Weighted Sample Time Math Supported

Model Verification Library

The software supports all blocks in the Model Verification library.

Model-Wide Utilities Library

Block Support Notes

Block Support Table Supported

DocBlock Supported

Model Info Supported

Timed-Based Linearization Not supported

Trigger-Based Linearization Not supported

Ports & Subsystems Library

Block Support Notes

Atomic Subsystem Supported

Code Reuse Subsystem Supported

Configurable Subsystem Supported

35-51

35 Range Analysis

Block Support Notes

Enable Supported

Enabled Subsystem Range analysis does not consider the design minimum
and maximum values specified for blocks connected to
the outport of the subsystem.

Enabled and Triggered Subsystem Not supported when the trigger control signal specifies a
fixed-point data type.

Range analysis does not consider the design minimum
and maximum values specified for blocks connected to
the outport of the subsystem.

For Each Supported with the following limitations:

• When For Each Subsystem contains another For Each
Subsystem, not supported.

• When For Each Subsystem contains one or more
Simulink Design Verifier™ Test Condition, Test
Objective, Proof Assumption, or Proof Objective
blocks, not supported.

For Each Subsystem Supported with the following limitations:

• When For Each Subsystem contains another For Each
Subsystem, not supported.

• When For Each Subsystem contains one or more
Simulink Design Verifier Test Condition, Test
Objective, Proof Assumption, or Proof Objective
blocks, not supported.

For Iterator Subsystem Supported

Function-Call Feedback Latch Supported

Function-Call Generator Supported

Function-Call Split Supported

Function-Call Subsystem Range analysis does not consider the design minimum
and maximum values specified for blocks connected to
the outport of the subsystem.

35-52

Supported and Unsupported Simulink® Blocks

Block Support Notes

If Supported

If Action Subsystem Supported

Inport —

Model Supported except for the limitations described in
“Limitations of Support for Model Blocks” on page 35-57.

Model Variants Supported except for the limitations described in
“Limitations of Support for Model Blocks” on page 35-57.

Outport Supported

Subsystem Supported

Switch Case Supported

Switch Case Action Subsystem Supported

Trigger Supported

Triggered Subsystem Not supported when the trigger control signal specifies a
fixed-point data type.

Range analysis does not consider the design minimum
and maximum values specified for blocks connected to
the outport of the subsystem.

Variant Subsystem Supported

While Iterator Subsystem Supported

Signal Attributes Library

The software supports all blocks in the Signal Attributes library.

Signal Routing Library

Block Support Notes

Bus Assignment Supported

Bus Creator Supported

35-53

35 Range Analysis

Block Support Notes

Bus Selector Supported

Data Store Memory Range analysis does not consider the minimum and
maximum values specified on the Data Store Memory
block.

When deriving ranges, the analysis considers only local
model writes. It does not consider updates to global data
store memory by other processes.

Data Store Read Supported

Data Store Write Supported

Demux Supported

Environment Controller Supported

From Supported

Goto Supported

Goto Tag Visibility Supported

Index Vector Supported

Manual Switch The Manual Switch block is compatible with the
software, but the analysis ignores this block in a model.

Merge Supported

Multiport Switch Supported

Mux Supported

Selector Supported

Switch Supported

Vector Concatenate Supported

35-54

Supported and Unsupported Simulink® Blocks

Sinks Library

Block Support Notes

Display Supported

Floating Scope Supported

Outport (Out1) Supported

Scope Supported

Stop Simulation Not supported and not stubbable

Terminator Supported

To File Supported

To Workspace Supported

XY Graph Supported

Sources Library

Block Support Notes

Band-Limited White Noise Not supported

Chirp Signal Not supported

Clock Supported

Constant Supported unless Constant value is inf.

Counter Free-Running Supported

Counter Limited Supported

Digital Clock Supported

Enumerated Constant Supported

From File Not supported. When MAT-file data is stored in
MATLAB timeseries format, not stubbable.

From Workspace Not supported

Ground Supported

Inport (In1) Supported

35-55

35 Range Analysis

Block Support Notes

Pulse Generator Supported

Ramp Supported

Random Number Not supported and not stubbable

Repeating Sequence Not supported

Repeating Sequence Interpolated Not supported

Repeating Sequence Stair Supported

Signal Builder Not supported

Signal Generator Not supported

Sine Wave Not supported

Step Supported

Uniform Random Number Not supported and not stubbable

User-Defined Functions Library

Block Support Notes

Fcn Supports all operators except ^. Supports only the
mathematical functions abs, ceil, fabs, floor, rem,
and sgn.

Interpreted MATLAB Function Not supported

MATLAB Function The software uses the specified design minimum and
maximum values and returned derived minimum
and maximum values for instances of variables that
correspond to input and output ports. It does not
consider intermediate instances of these variables.
For example, consider a MATLAB Function block that
contains the following code:

function y = fcn(u,v)
%#codegen
y = 2*u;
y = y + v;

35-56

Supported and Unsupported Simulink® Blocks

Block Support Notes

Range analysis considers the design ranges specified
for u and v for the instance of y in y = y + v; because
this is the instance of y associated with the outport of
the block.

The analysis does not consider design ranges for the
instance of y in y = 2*u; because it is an intermediate
instance.

Level-2 MATLAB S-Function Not supported

S-Function Not supported

S-Function Builder Not supported

Limitations of Support for Model Blocks
The software supports the Model block, but with the following limitations. The
software cannot analyze a model that contains one or more Model blocks if:

• The referenced model is protected. Protected referenced models are
encoded to obscure their contents. This feature allows third parties to use
the referenced model without being able to view the intellectual property
that makes up the model.

Note For more information, see “Protected Model”.

• The parent model or any of the referenced models
gives an error when you set the Configuration
Parameters > Diagnostics > Connectivity > Element name
mismatch parameter to error.

You can use the Element name mismatch diagnostic along with bus
objects so that your model meets the bus element naming requirements
imposed by some blocks.

• The Model block uses asynchronous function-call inputs.

35-57

35 Range Analysis

• Any of the Model blocks in the model reference hierarchy creates an
artificial algebraic loop. If this occurs, take the following steps:

1 On the Diagnostics pane of the Configuration Parameters dialog box,
set theMinimize algebraic loop parameter to error so that Simulink
reports an algebraic loop error.

2 On the Model Referencing Pane of the Configuration Parameters
dialog box, select the Minimize algebraic loop occurrences parameter.

Simulink tries to eliminate the artificial algebraic loop during simulation.

3 Simulate the model.

4 If Simulink cannot eliminate the artificial algebraic loop, highlight
the location of the algebraic loop by selecting Simulation > Update
Diagram.

5 Eliminate the artificial algebraic loop so that the software can analyze
the model. Break the loop with Unit Delay blocks so that the execution
order is predictable.

Note For more information, see “Algebraic Loops”.

• The parent model and the referenced model have mismatched data type
override settings. The data type override setting of the parent model and
all of its referenced models must be the same, unless the data type override
setting of the parent model is Use local settings. You can select the
data type override settings for your model in the Analysis menu, in the
Fixed Point Tool dialog box under the Settings for selected system pane.

35-58

36

Working with Bus Objects
in the Fixed-Point Workflow

• “Refine Data Types of a Model with Buses Using Simulation Data” on page
36-2

• “Convert a Model with Buses to Fixed-Point Using Range Analysis” on
page 36-13

• “Bus Objects in the Fixed-Point Workflow” on page 36-24

• “” on page 36-1

36 Working with Bus Objects in the Fixed-Point Workflow

Refine Data Types of a Model with Buses Using Simulation
Data

In this section...

“Open and Simulate the Model” on page 36-2

“Use Data Type Override to Resolve Overflows” on page 36-3

“Propose New Fraction Lengths” on page 36-6

“Examine and Apply Proposed Types” on page 36-6

“Verify New Fixed-Point Settings” on page 36-9

“Save the Model and New Bus Data Types” on page 36-12

This example shows how to refine the fixed-point types of a model with bus
objects based on simulation data.

Open and Simulate the Model
Open the ex_bus_Fix model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_bus_Fix

1 Press ctrl+d to update the diagram. Notice the use of fixed-point data
types in the model.

36-2

Refine Data Types of a Model with Buses Using Simulation Data

2 Simulate the model.

The Diagnostic Viewer warns that several overflows occurred during
simulation.

Use Data Type Override to Resolve Overflows

1 Open the Fixed-Point Tool from the model menu by selecting
Analysis > Fixed-Point Tool.

Because the Fixed-Point Instrumentation Mode was set to Minimums,
maximums and overflows, the rows containing the Gain3, Gain5, and
Gain1 blocks are highlighted in red, indicating where the overflows
occurred.

36-3

36 Working with Bus Objects in the Fixed-Point Workflow

36-4

Refine Data Types of a Model with Buses Using Simulation Data

2 Obtain the ideal numerical behavior of the model by overriding all of the
data types with floating-point singles.

In the Settings for selected system pane, set Data type override to
Single. Set Data type override applies to to All numeric types.

3 In theData collection pane, set Store results in run to SingleOverride.
Click Simulate.

The model is simulated using floating-point singles, so this run does not
contain any overflows.

4 Return to the model. A prefix has been added to the names on the bus
signals. This prefix indicates that the bus objects are replaced by temporary
overridden bus objects specifying single data types. For more information,
see “Bus Naming Conventions with Data Type Override” on page 36-24.

Overridden bus objects are not stored in the base workspace, so you cannot
see them in the Bus Editor. The Bus Editor continues to display the data
types of the bus objects before they were overridden.

36-5

36 Working with Bus Objects in the Fixed-Point Workflow

Propose New Fraction Lengths
Propose new fraction lengths for your model based on the simulation results
from the SingleOverride run.

1 Click the Propose fraction lengths button .

2 In the Propose Data Types dialog box, select SingleOverride as the run
to use for proposing data types. Click OK.

The proposed data types appear in the Contents pane of the Fixed-Point
Tool.

Examine and Apply Proposed Types
Examine the new data types that the Fixed-Point Tool has proposed for
ex_bus_Fix.

36-6

Refine Data Types of a Model with Buses Using Simulation Data

1 On the Fixed-Point Tool toolbar, select Show > Groups that must share
the same data type to better understand the proposed data types.

2 In the Contents pane, right-click the column labeled DTGroup and select
Group by This Column.

The Fixed-Point Tool organizes the Contents pane to group the elements
by data type.

3 Right-click the SensorData:Speed bus element (element of the bus
object) and select Result Details.

In the Result Details dialog box, view the details of the proposed data
type for the bus element. The data type proposal for a bus element is found
by taking the union of the ranges of all blocks that must share the same
data type, which includes all of the sources driving the bus element. The
software then proposes a data type for this range.

36-7

36 Working with Bus Objects in the Fixed-Point Workflow

36-8

Refine Data Types of a Model with Buses Using Simulation Data

The Shared Simulation Maximum and Shared Simulation Minimum
represent the union of the ranges of the sources driving the bus element.
The data type proposal for SensorData:Speed is based on this range.

Click OK to close the dialog box.

4 Right-click the bus element again. Select Highlight Blocks Sharing
Same Data Type to see all of the sources driving the bus element.

5 Return to the Fixed-Point Tool. Click the Apply accepted fraction

lengths button to write the proposed data types to the model.

Verify New Fixed-Point Settings

1 In the Settings for selected system pane, set Data type override to
Off so when you simulate the model, it uses the new fixed-point types
that you applied.

36-9

36 Working with Bus Objects in the Fixed-Point Workflow

2 Simulate the model. This time, store the results in Fixed_Run.

3 In the Fixed-Point Tool Contents pane, verify that there are no overflows
in Fixed_Run.

4 In the Simulation Data Inspector, compare the results of Fixed_Run to the
results of the SingleOverride run.

36-10

Refine Data Types of a Model with Buses Using Simulation Data

5 Return to the model. Notice that the bus objects no longer contain the
prefixes.

36-11

36 Working with Bus Objects in the Fixed-Point Workflow

Open the Bus Editor by clicking Edit > Bus Editor. You can now view the
new, refined data types of the bus objects in the Bus Editor.

Save the Model and New Bus Data Types
Data types for bus elements are stored in the base workspace, not the model.
To save the fixed-point data types for the bus elements in ex_bus_Flt, export
them from the Bus Editor to a .mat file. For instructions, see Export Bus
Objects. Alternatively, you can save workspace variables to a file at the
MATLAB command line using the save function .

36-12

Convert a Model with Buses to Fixed-Point Using Range Analysis

Convert a Model with Buses to Fixed-Point Using Range
Analysis

In this section...

“Open and Simulate the Model” on page 36-13

“Set Design Minimums and Maximums” on page 36-14

“Open the Fixed-Point Tool and Run the Fixed-Point Advisor” on page 36-16

“Derive Minimum and Maximum Values” on page 36-17

“Propose Fraction Lengths” on page 36-17

“Examine and Apply Proposed Types” on page 36-17

“Verify New Fixed-Point Types” on page 36-20

“Save the Model and the New Bus Data Types” on page 36-23

This example shows how to use range analysis to convert a floating-point
model that contains buses to a fixed-point model.

Open and Simulate the Model
Open the ex_bus_Flt model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_bus_Flt

1 Press ctrl+d to update the diagram and view the data types of each block
in the model.

This model uses floating-point doubles for all signals.

36-13

36 Working with Bus Objects in the Fixed-Point Workflow

Set Design Minimums and Maximums

1 Open the TorqueSensor1 subsystem, and double-click the output port, T.

2 Under the Signal Attributes tab, notice that the design minimum and
maximum have been set to -1 and 1, respectively.

36-14

Convert a Model with Buses to Fixed-Point Using Range Analysis

3 Notice that the TorqueSensor2, SpeedSensor1, SpeedSensor2, and
InputFuel subsystems also have their design minimums and maximums
set to -1 and 1.

36-15

36 Working with Bus Objects in the Fixed-Point Workflow

Open the Fixed-Point Tool and Run the Fixed-Point
Advisor

1 Open the Fixed-Point Tool from the model menu by selecting
Analysis > Fixed-Point Tool.

2 In the Fixed-point preparation for selected system pane, open the
Fixed-Point Advisor by clicking the Fixed-Point Advisor button.

3 Run each check in the Prepare Model for Conversion folder.

The Address unsupported blocks check warns that the Sine blocks do
not support fixed-point data types. Because the Sine blocks are decoupled
from the model with Data Type Conversion blocks, you do not need to take
any further action.

All other tasks in this folder pass.

4 Run each check in the Verify Fixed-Point Conversion Guidelines
folder.

The Check bus usage check advises you to configure your model to detect
future changes that can result in improper bus usage.

In the Configuration Parameters > Diagnostics > Connectivity pane,
set Bus signal treated as vector: to error.

Click OK and run the check again from the Fixed-Point Advisor.

This time the check passes. All other checks under Verify Fixed-Point
Conversion Guidelines pass.

5 Run each check in the Prepare for Data Typing and Scaling folder.

The Verify hardware selection check fails. Because the target hardware
is an embedded processor, the Fixed-Point Advisor recommends that you
set this value to the hardware integer used by the embedded hardware. Set
Default data type of all floating point signals to Same as embedded
hardware integer.

Rerun the check. The task passes.

36-16

Convert a Model with Buses to Fixed-Point Using Range Analysis

All other checks under Prepare for Data Typing and Scaling pass.

6 Run check 3 to return to the Fixed-Point Tool.

Derive Minimum and Maximum Values

1 Click the Derive min/max values for selected system button .

The Fixed-Point Tool Contents pane displays the derived minimum and
maximum values for each object in the ex_bus_Flt model.

Propose Fraction Lengths

1 Click the Propose fraction lengths button .

The proposed data types appear in the Contents pane of the Fixed-Point
Tool.

Examine and Apply Proposed Types
Examine the new data types that the Fixed-Point Tool has proposed for
ex_bus_Flt.

1 On The Fixed-Point Tool toolbar, select Show > Groups that must share
the same data type to better understand the proposed data types.

2 In the Contents pane, right-click the column labeled DTGroup and select
Group by This Column.

The Fixed-Point Tool organizes the contents pane to group the elements
by data type.

36-17

36 Working with Bus Objects in the Fixed-Point Workflow

3 Right-click the SensorData:Speed bus element (element of the bus
object) and select Result Details.

In the Result Details dialog box, view the details of the proposed data
type for the bus element. The software finds the data type proposal for
a bus element by taking the union of the ranges of all blocks that must
share the same data type, which includes all of the sources driving the bus
element. It then proposes a data type for this range.

36-18

Convert a Model with Buses to Fixed-Point Using Range Analysis

36-19

36 Working with Bus Objects in the Fixed-Point Workflow

The Shared Derived Maximum and Shared Derived Minimum
represent the union of the ranges of the sources driving the bus element.
The data type proposal for SensorData:Speed is based on this range.

Click OK to close the dialog box.

4 Right-click the bus element again. Select Highlight Blocks Sharing
Same Data Type to see all of the sources driving the bus element.

5 Return to the Fixed-Point Tool. Click the Apply accepted fraction

lengths button to write the proposed data types to the model.

Verify New Fixed-Point Types

1 Simulate the model again. This time, store the results in Fixed_Run.

36-20

Convert a Model with Buses to Fixed-Point Using Range Analysis

2 In the Fixed-Point Tool Contents pane, verify that there are no overflows
in Fixed_Run.

3 In the Simulation Data Inspector, compare the results of Fixed_Run to the
results of FPA_Reference.

36-21

36 Working with Bus Objects in the Fixed-Point Workflow

36-22

Convert a Model with Buses to Fixed-Point Using Range Analysis

4 Open the Bus Editor from the model menu by clicking Edit > Bus Editor.
You can now view the new fixed-point data types of the bus elements in
the Bus Editor.

Save the Model and the New Bus Data Types
Data types for bus elements are stored in the base workspace, not the model.
To save the fixed-point data types for the bus elements in ex_bus_Flt, export
them from the Bus Editor to a .mat file. For instructions, see Export Bus
Objects. Alternatively, you can save workspace variables to a file at the
MATLAB command line using the save function .

36-23

36 Working with Bus Objects in the Fixed-Point Workflow

Bus Objects in the Fixed-Point Workflow

In this section...

“Bus Naming Conventions with Data Type Override” on page 36-24

“Data Type Override Limitations” on page 36-24

“How Data Type Proposals Are Determined for Bus Objects” on page 36-25

Bus Naming Conventions with Data Type Override
When you use Data Type Override on a model that contains buses, the
Fixed-Point Tool generates a new bus which uses the overridden data type.
To indicate that a model is using an overridden bus, the tool adds a prefix to
the name of the original bus object. While a model is in an overridden state, a
bus object named myBus is renamed based on the following pattern.

DTO Applies To

DTO Mode
All numeric
types Floating point Fixed point

Scaled Double dtoScl_myBus dtoSclFlt_myBus dtoSclFxp_myBus

Double dtoDbl_myBus dtoDblFlt_myBus dtoDblFxp_myBus

Single dtoSgl_myBus dtoSglFlt_myBus dtoSglFxp_myBus

Note You cannot see bus objects with an overridden data type within the Bus
Editor because they are not stored in the base workspace.

Data Type Override Limitations
An error can occur when you use data type override and your model contains
any of the following conditions.

• A model in accelerator mode that has a bus object with an overridden data
type at the output port.

To perform data type override, run the model in normal mode.

36-24

Bus Objects in the Fixed-Point Workflow

• Stateflow charts that use MATLAB as the action language.

• MATLAB structures assigned to a bus signal (such as Unit Delay blocks
with structure initial conditions, Stateflow data, and MATLAB structures
from the workspace).

To use data type override on a model that contains a block with a structure
initial condition assigned to a bus signal, create a Simulink.Parameter
object in the Model Explorer.

- Set the Value of the Simulink.Parameter object to the structure that
was used as the initial condition of the block and set the data type of
that structure to doubles.

- Set the Data Type of the Simulink.Parameter object to the bus object.

- Set the initial condition of the block to the parameter object that you
defined.

You can now update the model without errors.

How Data Type Proposals Are Determined for Bus
Objects
The data type proposal for a bus object is found by taking the union of the
ranges of all sources driving the same bus element, and then proposing a
data type for this range. The Fixed-Point Tool does not log minimum and
maximum ranges for elements of a bus signal.

The following example shows how the software determines the data types
for elements of bus objects.

36-25

36 Working with Bus Objects in the Fixed-Point Workflow

Each of the four input ports in this model have specified design ranges. The
In2 and In4 input ports must share the same data type because they drive the
same element of the mybus bus object.

The Fixed-Point Tool proposes a data type based on the union of these two
ranges. After proposing data types for the model, in the Result Details
dialog box for the mybus : b element of the bus object, notice the field
labeled Shared Design Maximum and Shared Design Minimum. The
proposed data type is based on this range, which is the union of the design
ranges of the In2 and In4 blocks.

36-26

Bus Objects in the Fixed-Point Workflow

36-27

36 Working with Bus Objects in the Fixed-Point Workflow

36-28

37

Code Generation

• “Generating and Deploying Production Code” on page 37-2

• “Code Generation Support” on page 37-3

• “Accelerating Fixed-Point Models” on page 37-5

• “Using External Mode or Rapid Simulation Target” on page 37-7

• “Optimize Your Generated Code” on page 37-9

• “Optimizing Your Generated Code with the Model Advisor” on page 37-32

• “Use the Model Advisor to Optimize Fixed-Point Operations in Generated
Code” on page 37-41

37 Code Generation

Generating and Deploying Production Code
You can generate C code with the Fixed-Point Designer software by using the
Simulink Coder product. The code generated from fixed-point models uses
only integer types and automatically includes all operations, such as shifts,
needed to account for differences in fixed-point locations. You can use the
generated code on embedded fixed-point processors or on rapid prototyping
systems even if they contain a floating-point processor. For more information
about code generation, refer to the Simulink Coder documentation.

You can generate code for testing on a rapid prototyping system using products
such as Simulink Real-Time™, Real-Time Windows Target™, or dSPACE®

software. The target compiler and processor may support floating-point
operations in software or in hardware. In any case, the fixed-point portions of
a model generate pure integer code and do not use floating-point operations.
This allows valid bit-true testing even on a floating-point processor.

You can also generate code for non-real-time testing. For example, you can
generate code to run in nonreal time on computers running any supported
operating system. Even though the processors have floating-point hardware,
the code generated by fixed-point blocks is pure integer code. The Generic
Real-Time Target (GRT) in the Simulink Coder product and acceleration
modes in the Simulink software are examples of where non-real-time code
is generated and run.

When used with HDL Coder, Fixed-Point Designer lets you generate bit-true
synthesizable Verilog® and VHDL® code from Simulink models, Stateflow
charts, and MATLAB Function blocks.

37-2

Code Generation Support

Code Generation Support

In this section...

“Introduction” on page 37-3

“Languages” on page 37-3

“Data Types” on page 37-3

“Rounding Modes” on page 37-3

“Overflow Handling” on page 37-3

“Blocks” on page 37-4

“Scaling” on page 37-4

Introduction
All fixed-point blocks support code generation, except particular simulation
features. The sections that follow describe the code generation support that
the Fixed-Point Designer software provides. You must have a Simulink Coder
license to generate C code or a HDL Coder license to generate HDL code.

Languages
C code generation is supported.

Data Types
Fixed-point code generation supports all integer and fixed-point data types
that are supported by simulation. See “Supported Data Types” on page 26-20.

Rounding Modes
All rounding modes—Ceiling, Convergent, Floor, Nearest, Round,
Simplest, and Zero —are supported.

Overflow Handling

• Saturation and wrapping are supported.

37-3

37 Code Generation

• Wrapping generates the most efficient code.

• Currently, you cannot choose to exclude saturation code automatically
when hardware saturation is available. Select wrapping in order for the
Simulink Coder product to exclude saturation code.

Blocks
All blocks generate code for all operations with a few exceptions. The
Lookup Table Dynamic block generates code for all lookup methods except
Interpolation-Extrapolation.

Scaling
Any binary-point-only scaling and [Slope Bias] scaling that is supported in
simulation is supported, bit-true, in code generation.

37-4

Accelerating Fixed-Point Models

Accelerating Fixed-Point Models
If the model meets the code generation restrictions, you can use Simulink
acceleration modes with your fixed-point model. The acceleration modes can
drastically increase the speed of some fixed-point models. This is especially
true for models that execute a very large number of time steps. The time
overhead to generate code for a fixed-point model is generally larger than the
time overhead to set up a model for simulation. As the number of time steps
increases, the relative importance of this overhead decreases.

Note Rapid Accelerator mode does not support models with bus objects or
33+ bit fixed-point data types as parameters.

Every Simulink model is configured to have a start time and a stop time in
the Configuration Parameters dialog box. Simulink simulations are usually
configured for non-real-time execution, which means that the Simulink
software tries to simulate the behavior from the specified start time to the
stop time as quickly as possible. The time it takes to complete a simulation
consists of two parts: overhead time and core simulation time, which is spent
calculating changes from one time step to the next. For any model, the time
it takes to simulate if the stop time is the same as the start time can be
regarded as the overhead time. If the stop time is increased, the simulation
takes longer. This additional time represents the core simulation time. Using
an acceleration mode to simulate a model has an initially larger overhead
time that is spent generating and compiling code. For any model, if the
simulation stop time is sufficiently close to the start time, then Normal mode
simulation is faster than an acceleration mode. But an acceleration mode
can eliminate the overhead of code generation for subsequent simulations if
structural changes to the model have not occurred.

In Normal mode, the Simulink software runs general code that can handle
various situations. In an acceleration mode, code is generated that is tailored
to the current usage. For fixed-point use, the tailored code is much leaner
than the simulation code and executes much faster. The tailored code allows
an acceleration mode to be much faster in the core simulation time. For any
model, when the stop time is close to the start time, overhead dominates the
overall simulation time. As the stop time is increased, there is a point at
which the core simulation time dominates overall simulation time. Normal

37-5

37 Code Generation

mode has less overhead compared to an acceleration mode when fresh
code generation is necessary. Acceleration modes are faster in the core
simulation portion. For any model, there is a stop time for which Normal
mode and acceleration mode with fresh code generation have the same overall
simulation time. If the stop time is decreased, then Normal mode is faster. If
the stop time is increased, then an acceleration mode has an increasing speed
advantage. Eventually, the acceleration mode speed advantage is drastic.

Normal mode generally uses more tailored code for floating-point calculations
compared to fixed-point calculations. Normal mode is therefore generally
much faster for floating-point models than for similar fixed-point models.
For acceleration modes, the situation often reverses and fixed point becomes
significantly faster than floating point. As noted above, the fixed-point code
goes from being general to highly tailored and efficient. Depending on the
hardware, the integer-based fixed-point code can gain speed advantages over
similar floating-point code. Many processors can do integer calculations much
faster than similar floating-point operations. In addition, if the data bus is
narrow, there can also be speed advantages to moving around 1-, 2-, or 4-byte
integer signals compared to 4- or 8-byte floating-point signals.

37-6

Using External Mode or Rapid Simulation Target

Using External Mode or Rapid Simulation Target

In this section...

“Introduction” on page 37-7

“External Mode” on page 37-7

“Rapid Simulation Target” on page 37-8

Introduction
If you are using the Simulink Coder external mode or rapid simulation (rsim)
target, there are situations where you might get unexpected errors when
tuning block parameters. These errors can arise when you specify the Best
precision scaling option for blocks that support constant scaling for best
precision. See “Constant Scaling for Best Precision” on page 27-15 for a
description of the constant scaling feature.

The sections that follow provide further details about the errors you might
encounter. To avoid these errors, specify a scaling value instead of using
the Best precision scaling option.

External Mode
If you change a parameter such that the binary point moves during an
external mode simulation or during graphical editing, and you reconnect to
the target, a checksum error occurs and you must rebuild the code. When you
use Best Precision scaling, the binary point is automatically placed based
on the value of a parameter. Each power of two roughly marks the boundary
where a parameter value maps to a different binary point. For example, a
parameter value of 1 to 2 maps to a particular binary point position. If you
change the parameter to a value of 2 to 4, the binary point moves one place to
the right, while if you change the parameter to a value of 0.5 to 1, it moves
one place to the left.

For example, suppose a block has a parameter value of -2. You then build
the code and connect in external mode. While connected, you change the
parameter to -4. If the simulation is stopped and then restarted, this
parameter change causes a binary point change. In external mode, the binary
point is kept fixed. If you keep the parameter value of -4 and disconnect

37-7

37 Code Generation

from the target, then when you reconnect, a checksum error occurs and you
must rebuild the code.

Rapid Simulation Target
If a parameter change is great enough, and you are using the best precision
mode for constant scaling, then you cannot use the rsim target.

If you change a block parameter by a sufficient amount (approximately a
factor of two), the best precision mode changes the location of the binary
point. Any change in the binary point location requires the code to be rebuilt
because the model checksum is changed. This means that if best precision
parameters are changed over a great enough range, you cannot use the rapid
simulation target and a checksum error message occurs when you initialize
the rsim executable.

37-8

Optimize Your Generated Code

Optimize Your Generated Code

In this section...

“Reducing ROM Consumption or Model Execution Time” on page 37-9

“Restrict Data Type Word Lengths” on page 37-10

“Avoid Fixed-Point Scalings with Bias” on page 37-11

“Wrap and Round to Floor or Simplest” on page 37-11

“Limit the Use of Custom Storage Classes” on page 37-13

“Limit the Use of Unevenly Spaced Lookup Tables” on page 37-13

“Minimize the Variety of Similar Fixed-Point Utility Functions” on page
37-13

“Handle Net Slope Correction” on page 37-14

“Use Integer Division to Handle Net Slope Correction” on page 37-15

“Improve Numerical Accuracy of Simulation Results with Integer Division
to Handle Net Slope” on page 37-16

“Improve Efficiency of Generated Code with Integer Division to Handle Net
Slope” on page 37-21

“Optimize Generated Code Using Specified Minimum and Maximum
Values” on page 37-25

“Eliminate Unnecessary Utility Functions Using Specified Minimum and
Maximum Values” on page 37-28

Reducing ROM Consumption or Model Execution Time

Tip Reduces ROM

Reduces
Model

Execution
Time

“Restrict Data Type Word Lengths” on page 37-10 Yes Yes

“Avoid Fixed-Point Scalings with Bias” on page 37-11 Yes Yes

“Wrap and Round to Floor or Simplest” on page 37-11 Yes Yes

37-9

37 Code Generation

Tip Reduces ROM

Reduces
Model

Execution
Time

“Limit the Use of Custom Storage Classes” on page 37-13 Yes No

“Limit the Use of Unevenly Spaced Lookup Tables” on page
37-13

Yes Yes

“Minimize the Variety of Similar Fixed-Point Utility
Functions” on page 37-13

Yes No

“Handle Net Slope Correction” on page 37-14

Dependent
on model
configuration,
compiler, and
target hardware

Dependent
on model
configuration,
compiler,
and target
hardware

“Optimize Generated Code Using Specified Minimum and
Maximum Values” on page 37-25

Yes Yes

Restrict Data Type Word Lengths
If possible, restrict the fixed-point data type word lengths in your model
so that they are equal to or less than the integer size of your target
microcontroller. This results in fewer mathematical instructions in the
microcontroller, and reduces ROM and execution time.

This recommendation strongly applies to global variables that consume global
RAM. For example, Unit Delay blocks have discrete states that have the
same word lengths as their input and output signals. These discrete states
are global variables that consume global RAM, which is a scarce resource
on many embedded systems.

For temporary variables that only occupy a CPU register or stack location
briefly, the space consumed by a long is less critical. However, depending on
the operation, the use of long variables in math operations can be expensive.
Addition and subtraction of long integers generally requires the same effort
as adding and subtracting regular integers, so that operation is not a concern.

37-10

Optimize Your Generated Code

In contrast, multiplication and division with long integers can require
significantly larger and slower code.

Avoid Fixed-Point Scalings with Bias
Whenever possible, avoid using fixed-point numbers with bias. In certain
cases, if you choose biases carefully, you can avoid significant increases in
ROM and execution time. Refer to “Recommendations for Arithmetic and
Scaling” on page 28-33 for more information on how to choose appropriate
biases in cases where it is necessary; for example if you are interfacing with a
hardware device that has a built-in bias. In general, however, it is safer to
avoid using fixed-point numbers with bias altogether.

Inputs to lookup tables are an important exception to this recommendation. If
a lookup table input and the associated input data use the same bias, then
there is no penalty associated with nonzero bias for that operation.

Wrap and Round to Floor or Simplest
For most fixed-point and integer operations, the Simulink software provides
you with options on how overflows are handled and how calculations are
rounded. Traditional handwritten code, especially for control applications,
almost always uses the “no effort” rounding mode. For example, to reduce the
precision of a variable, that variable is shifted right. For unsigned integers
and two’s complement signed integers, shifting right is equivalent to rounding
to floor. To get results comparable to or better than what you expect from
traditional handwritten code, you should round to floor in most cases.

The primary exception to this rule is the rounding behavior of signed integer
division. The C language leaves this rounding behavior unspecified, but for
most targets the “no effort” mode is round to zero. For unsigned division,
everything is nonnegative, so rounding to floor and rounding to zero are
identical.

You can improve code efficiency by setting the value of the Model
Configuration Parameters > Hardware Implementation > Production
hardware> Signed integer division rounds to parameter to describe how
your production target handles rounding for signed division. For Product
blocks that are doing only division, setting the Integer rounding mode
parameter to the rounding mode of your production target gives the best

37-11

37 Code Generation

results. You can also use the Simplest rounding mode on blocks where it
is available. For more information, refer to “Rounding Mode: Simplest” on
page 28-14.

The options for overflow handling also have a big impact on the efficiency
of your generated code. Using software to detect overflow situations and
saturate the results requires the code to be much bigger and slower compared
to simply ignoring the overflows. When overflows are ignored for unsigned
integers and two’s complement signed integers, the results usually wrap
around modulo 2N, where N is the number of bits. Unhandled overflows that
wrap around are highly undesirable for many situations.

However, because of code size and speed needs, traditional handwritten code
contains very little software saturation. Typically, the fixed-point scaling is
very carefully set so that overflow does not occur in most calculations. The
code for these calculations safely ignores overflow. To get results comparable
to or better than what you would expect from traditional handwritten code,
the Saturate on integer overflow parameter should not be selected for
Simulink blocks doing those calculations.

In a design, there might be a few places where overflow can occur and
saturation protection is needed. Traditional handwritten code includes
software saturation for these few places where it is needed. To get comparable
generated code, the Saturate on integer overflow parameter should only
be selected for the few Simulink blocks that correspond to these at-risk
calculations.

A secondary benefit of using the most efficient options for overflow handling
and rounding is that calculations often reduce from multiple statements
requiring several lines of C code to small expressions that can be folded into
downstream calculations. Expression folding is a code optimization technique
that produces benefits such as minimizing the need to store intermediate
computations in temporary buffers or variables. This can reduce stack size
and make it more likely that calculations can be efficiently handled using only
CPU registers. An automatic code generator can carefully apply expression
folding across parts of a model and often see optimizations that might not be
obvious. Automatic optimizations of this type often allow generated code to
exceed the efficiency of typical examples of handwritten code.

37-12

Optimize Your Generated Code

Limit the Use of Custom Storage Classes
In addition to the tip mentioned in “Wrap and Round to Floor or Simplest”
on page 37-11, to obtain the maximum benefits of expression folding you
also need to make sure that the Storage class field in the Signal Properties
dialog box is set to Auto for each signal. When you choose a setting other
than Auto, you need to name the signal, and a separate statement is created
in the generated code. Therefore, only use a setting other than Auto when
it is necessary for global variables.

You can access the Signal Properties dialog box by selecting any connection
between blocks in your model, and then selecting Signal Properties from
the Simulink Edit menu.

Limit the Use of Unevenly Spaced Lookup Tables
If possible, use lookup tables with nontunable, evenly spaced axes. A table
with an unevenly spaced axis requires a search routine and memory for each
input axis, which increases ROM and execution time. However, keep in mind
that an unevenly spaced lookup table might provide greater accuracy. You
need to consider the needs of your algorithm to determine whether you can
forgo some accuracy with an evenly spaced table in order to reduce ROM and
execution time. Also note that this decision applies only to lookup tables with
nontunable input axes, because tables with tunable input axes always have
the potential to be unevenly spaced.

Minimize the Variety of Similar Fixed-Point Utility
Functions
The Embedded Coder product generates fixed-point utility functions that are
designed to handle specific situations efficiently. The Simulink Coder product
can generate multiple versions of these optimized utility functions depending
on what a specific model requires. For example, the division of long integers
can, in theory, require eight varieties that are combinations of the output
and the two inputs being signed or unsigned. A model that uses all these
combinations can generate utility functions for all these combinations.

In some cases, it is possible to make small adjustments to a model that reduce
the variety of required utility functions. For example, suppose that across
most of a model signed data types are used, but in a small part of a model, a

37-13

37 Code Generation

local decision to use unsigned data types is made. If it is possible to switch
that portion of the model to use signed data types, then the overall variety of
generated utility functions can potentially be reduced.

The best way to identify these opportunities is to inspect the generated code.
For each utility function that appears in the generated code, you can search
for all the call sites. If relatively few calls to the function are made, then trace
back from the call site to the Simulink model. By modifying those places in
the Simulink model, it is possible for you to eliminate the few cases that
need a rarely used utility function.

Handle Net Slope Correction
The Fixed-Point Designer software provides an optimization parameter, Use
integer division to handle net slopes that are reciprocals of integers,
that controls how the software handles net slope correction. To learn how
to enable this optimization, see “Use Integer Division to Handle Net Slope
Correction” on page 37-15.

When a change of fixed-point slope is not a power of two, net slope correction
is necessary. Normally, net slope correction is implemented using an integer
multiplication followed by shifts. Under some conditions, an alternate
implementation requires just an integer division by a constant. One of the
conditions is that the net slope can be accurately represented as the reciprocal
of an integer. Under this condition, the division implementation gives more
accurate numerical behavior. Depending on your compiler and embedded
hardware, the division implementation might be more desirable than the
multiplication and shifts implementation. The generated code for the division
implementation might require less ROM or improve model execution time.

When to Use Integer Division to Handle Net Slope Correction
This optimization works if:

• The net slope is a reciprocal of an integer.

• Division is more efficient than multiplication followed by shifts on the
target hardware.

37-14

Optimize Your Generated Code

Note The Fixed-Point Designer software is not aware of the target
hardware. Before selecting this option, verify that division is more efficient
than multiplication followed by shifts on your target hardware.

When Not to Use Integer Division to Handle Net Slope
Correction
This optimization does not work if:

• The software cannot perform the division using the production target long
data type and therefore must use multiword operations.

Using multiword division does not produce code suitable for embedded
targets. Therefore, do not use integer division to handle net slope correction
in models that use multiword operations. If your model contains blocks
that use multiword operations, change the word length of these blocks
to avoid these operations.

• Net slope is a power of 2

Binary-point-only scaling, where the net slope is a power of 2, involves
moving the binary point within the fixed-point word. This scaling mode
already minimizes the number of processor arithmetic operations.

Use Integer Division to Handle Net Slope Correction
To enable this optimization:

1 Select the Optimization > Use integer division to handle net slopes
that are reciprocals of integers configuration parameter.

For more information, see “Use integer division to handle net slopes that
are reciprocals of integers”.

2 On the Hardware Implementation > Production hardware pane, set
the Signed integer division rounds to configuration parameter to Floor
or Zero, as appropriate for your target hardware. The optimization does not
occur if the Signed integer division rounds to parameter is Undefined.

37-15

37 Code Generation

Note You must set this parameter to a value that is appropriate for the
target hardware. Failure to do so might result in division operations that
comply with the definition on the Hardware Implementation pane, but
are inappropriate for the target hardware.

3 Set the Integer rounding mode of the blocks that require net slope
correction (for example, Product, Gain, and Data Type Conversion) to
Simplest or match the rounding mode of your target hardware.

Note You can use the Model Advisor to alert you if you have not configured
your model correctly for this optimization. Open the Model Advisor and
run the Identify questionable fixed-point operations check. For more
information, see “Use the Model Advisor to Optimize Fixed-Point Operations
in Generated Code” on page 37-41.

Improve Numerical Accuracy of Simulation Results
with Integer Division to Handle Net Slope
This example illustrates how selecting the Use integer division to handle
net slopes that are reciprocals of integers optimization parameter
improves numerical accuracy. It uses the following model.

37-16

Optimize Your Generated Code

For the Product block in this model,

These values are represented by the general [Slope Bias] encoding scheme

described in “Scaling” on page 27-6:V S Q Bi i i i= + .

Because there is no bias for the inputs or outputs:

S Q S Q S Qa a b b c c= . , or

37-17

37 Code Generation

Q
S S
S

Q Qa
b c

a
b c= .

where the net slope is:

S S
S
b c

a

The net slope for the Product block is 1/1000. Because the net slope is the
reciprocal of an integer, you can use the Use integer division to handle
net slopes that are reciprocals of integers optimization parameter if your
model and hardware configuration are suitable. For more information, see
“When to Use Integer Division to Handle Net Slope Correction” on page 37-14.

To set up the model and run the simulation:

1 For the two Constant blocks, set the Output data type to fixdt(1, 16,
1/1000, 0).

2 For the Product block, set the Output data type to fixdt(1, 16,
1/1000, 0). Set the Integer rounding mode to Simplest.

3 Set the Hardware Implementation > Production hardware >
Signed integer division rounds to configuration parameter to Zero.

4 Clear the Optimization > Use integer division to handle net slopes
that are reciprocals of integers configuration parameter.

5 In your Simulink model window, select Simulation > Run.

37-18

Optimize Your Generated Code

Because the simulation uses multiplication followed by shifts to handle
the net slope correction, net slope precision loss occurs. This precision
loss results in numerical inaccuracy: the calculated product is 3.999, not
4, as you expect.

Note You can set up the Fixed-Point Designer software to provide alerts
when precision loss occurs in fixed-point constants. For more information,
see “Net Slope and Net Bias Precision” on page 28-21.

37-19

37 Code Generation

6 Select the Optimization > Use integer division to handle net slopes
that are reciprocals of integers configuration parameter, save your
model, and simulate again.

The software implements the net slope correction using division instead of
multiplication followed by shifts. The calculated product is 4, as you expect.

The optimization works for this model because:

• The net slope is a reciprocal of an integer.

37-20

Optimize Your Generated Code

• TheHardware Implementation > Production hardware > Signed
integer division rounds to configuration parameter is set to Zero.

Note This setting must match your target hardware rounding mode.

• The Integer rounding mode of the Product block in the model is set
to Simplest.

• The model does not use multiword operations.

Improve Efficiency of Generated Code with Integer
Division to Handle Net Slope
This example shows how selecting the Use integer division to handle
net slope correction optimization parameter improves the efficiency of
generated code.

Note The generated code is more efficient only if division is more efficient
than multiplication followed by shifts on your target hardware.

This example uses the following model.

37-21

37 Code Generation

For the Product block in this model,

These values are represented by the general [Slope Bias] encoding scheme

described in “Scaling” on page 27-6:V S Q Bi i i i= + .

Because there is no bias for the inputs or outputs:

S Q S Q S Qa a b b c c= . , or

Q
S S
S

Q Qa
b c

a
b c= .

where the net slope is:

S S
S
b c

a

The net slope for the Product block is 1/1000.

37-22

Optimize Your Generated Code

Similarly, for the Data Type Conversion block in this model,

S Q B S Q Ba a a b b b+ = +

There is no bias. Therefore, the net slope is

S
S

b

a . The net slope for this block
is also 1/1000.

Because the net slope is the reciprocal of an integer, you can use the Use
integer division to handle net slopes that are reciprocals of integers
optimization parameter if your model and hardware configuration are
suitable. For more information, see “When to Use Integer Division to Handle
Net Slope Correction” on page 37-14.

To set up the model and generate code:

1 For the two Inport blocks, U and V, set the Data type to int16.

2 For the Data Type Conversion block, set the Integer rounding mode to
Simplest. Set the Output data type to fixdt(1, 16, 1000, 0).

3 For the Product block, set the Integer rounding mode to Simplest. Set
the Output data type to fixdt(1, 16, 1000, 0).

4 Set the Hardware Implementation > Production hardware >
Signed integer division rounds to configuration parameter to Zero.

5 Clear the Optimization > Use integer division to handle net slopes
that are reciprocals of integers configuration parameter.

6 From the Simulink model menu, select Code > C/C++ Code > Build
Model.

Conceptually, the net slope correction is 1/1000 or 0.001:

Yc = 0.001 * U;
Ym = 0.001 * U * V;

The generated code uses multiplication with shifts:

% For the conversion
Yc = (int16_T)U * 16777 >> 24;

37-23

37 Code Generation

% For the multiplication
Ym = (int16_T)((int16_T)(U * V >> 10) * 16777 >> 14);

The ideal value of the net slope correction is 0.001. In the generated
code, the approximate value of the net slope correction is 16777L >> 24
= 16777/2^24 = 0.000999987125396729. This approximation introduces
numerical inaccuracy. For example, using the same model with constant
inputs produces the following results.

7 In the original model with inputs U and V, select the Optimization > Use
integer division to handle net slopes that are reciprocals of integers
optimization parameter, update diagram, and generate code again.

The generated code now uses integer division instead of multiplication
followed by shifts:

% For the conversion
Yc = (int16_T)(U / 1000);
% For the multiplication
Ym = (int16_T)(U * V / 1000);

8 In the generated code, the value of the net slope correction is now the ideal
value of 0.001. Using division, the results are numerically accurate.

37-24

Optimize Your Generated Code

In the model with constant inputs, select the Optimization > Use
integer division to handle net slopes that are reciprocals of
integers optimization parameter and simulate the model.

The optimization works for this model because the:

• Net slope is a reciprocal of an integer.

• Hardware Implementation > Production hardware > Signed
integer division rounds to configuration parameter is set to Zero.

Note This setting must match your target hardware rounding mode.

• For the Product and Data Type Conversion blocks in the model, the
Integer rounding mode is set to Simplest.

• Model does not use multiword operations.

Optimize Generated Code Using Specified Minimum
and Maximum Values
The Fixed-Point Designer software uses representable minimum and
maximum values and constant values to determine if it is possible to optimize
the generated code, for example, by eliminating unnecessary utility functions
and saturation code from the generated code.

37-25

37 Code Generation

This optimization results in:

• Reduced ROM and RAM consumption

• Improved execution speed

When you select the Optimize using specified minimum and maximum
values configuration parameter, the software takes into account input
range information, also known as design minimum and maximum, that you
specify for signals and parameters in your model. It uses these minimum and
maximum values to derive range information for downstream signals in the
model and then uses this derived range information to simplify mathematical
operations in the generated code whenever possible.

Prerequisites
The Optimize using specified minimum and maximum values
parameter appears for ERT-based targets only and requires an Embedded
Coder license when generating code.

How to Configure Your Model
To make optimization more likely:

• Provide as much design minimum and maximum information as possible.
Specify minimum and maximum values for signals and parameters in the
model for:

- Inport and Outport blocks

- Block outputs

- Block inputs, for example, for the MATLAB Function and Stateflow
Chart blocks

- Simulink.Signal objects

• Before generating code, test the minimum and maximum values for signals
and parameters. Otherwise, optimization might result in numerical
mismatch with simulation. You can simulate your model with simulation
range checking enabled. If errors or warnings occur, fix these issues before
generating code.

37-26

Optimize Your Generated Code

How to Enable Simulation Range Checking

1 In your model, select Simulation > Model Configuration
Parameters to open the Configuration Parameters dialog box.

2 In the Configuration Parameters dialog box, select Diagnostics > Data
Validity.

3 On the Data Validity pane, under Signals, set Simulation range
checking to warning or error.

• Use fixed-point data types with binary-point-only (power-of-two) scaling.

• Provide design minimum and maximum information upstream of blocks as
close to the inputs of the blocks as possible. If you specify minimum and
maximum values for a block output, these values are most likely to affect
the outputs of the blocks immediately downstream. For more information,
see “Eliminate Unnecessary Utility Functions Using Specified Minimum
and Maximum Values” on page 37-28.

How to Enable Optimization
1 In the Configuration Parameters dialog box, set the Code Generation >
System target file to select an Embedded Real-Time (ERT) target (requires
an Embedded Coder license).

2 Specify design minimum and maximum values for signals and parameters
in your model using the tips in “How to Configure Your Model” on page
37-26.

3 Select the Optimization > Optimize using specified minimum and
maximum values configuration parameter.

For more information, see “Optimize using the specified minimum and
maximum values”.

Limitations

• This optimization does not occur for:

- Multiword operations

- Fixed-point data types with slope and bias scaling

37-27

37 Code Generation

- Addition unless the fraction length is zero

• This optimization does not take into account minimum and maximum
values for:

- Merge block inputs. To work around this issue, use a Simulink.Signal
object on the Merge block output and specify the range on this object.

- Bus elements.

- Conditionally-executed subsystem (such as a triggered subsystem) block
outputs that are directly connected to an Outport block.

Outport blocks in conditionally-executed subsystems can have an initial
value specified for use only when the system is not triggered. In this
case, the optimization cannot use the range of the block output because
the range might not cover the initial value of the block.

• There are limitations on precision because you specify the minimum
and maximum values as double-precision values. If the true value of a
minimum or maximum value cannot be represented as a double, ensure
that you round the minimum and maximum values correctly so that they
cover the true design range.

• If your model contains multiple instances of a reusable subsystem and
each instance uses input signals with different specified minimum and
maximum values, this optimization might result in different generated code
for each subsystem so code reuse does not occur. Without this optimization,
the Simulink Coder software generates code once for the subsystem and
shares this code among the multiple instances of the subsystem.

Eliminate Unnecessary Utility Functions Using
Specified Minimum and Maximum Values
This example shows how the Fixed-Point Designer software uses the
input range for a division operation to determine whether it can eliminate
unnecessary utility functions from the generated code. It uses the
fxpdemo_min_max_optimization model. First, you generate code without
using the specified minimum and maximum values to see that the generated
code contains utility functions to ensure that division by zero does not occur.
You then turn on the optimization, and generate code again. With the
optimization, the generated code does not contain the utility function because
it is not necessary for the input range.

37-28

Optimize Your Generated Code

Generate Code Without Using Minimum and Maximum Values
First, generate code without taking into account the design minimum and
maximum values for the first input of the division operation to show the code
without the optimization. In this case, the software uses the representable
ranges for the two inputs, which are both uint16. With these input ranges, it
is not possible to implement the division with the specified precision using
shifts, so the generated code includes a division utility function.

1 Run the example. At the MATLAB command line, enter:

fxpdemo_min_max_optimization

2 In the example window, double-click the View Optimization
Configuration button.

The Optimization pane of the Configuration Parameters dialog box appears.

Note that the Optimize using specified minimum and maximum
values parameter is not selected.

3 Double-click the Generate Code button.

The code generation report appears.

4 In the model, right-click the Division with increased fraction length
output type block.

The context menu appears.

5 From the context menu, select C/C++ Code > Navigate To C/C++ Code.

The code generation report highlights the code generated for this block.
The generated code includes a call to the div_repeat_u32 utility function.

rtY.Out3 = div_repeat_u32((uint32_T)rtU.In5 << 16,
(uint32_T)rtU.In6, 1U);

6 Click the div_repeat_u32 link to view the utility function, which contains
code for handling division by zero.

37-29

37 Code Generation

Generate Code Using Minimum and Maximum Values
Next, generate code for the same division operation, this time taking into
account the design minimum and maximum values for the first input of the
Product block. These minimum and maximum values are specified on the
Inport block directly upstream of the Product block. With these input ranges,
the generated code implements the division by simply using a shift. It does
not need to generate a division utility function, reducing both memory usage
and execution time.

1 Double-click the Inport block labelled 5 to open the block parameters dialog
box.

2 On the block parameters dialog box, select the Signal Attributes pane
and note that:

• The Minimum value for this signal is 1.

• The Maximum value for this signal is 100.

3 Click OK to close the dialog box.

4 Double-click the View Optimization Configuration button.

The Optimization pane of the Configuration Parameters dialog box appears.

5 On this pane, select the Optimize using specified minimum and
maximum values parameter and click Apply.

6 Double-click the Generate Code button.

The code generation report appears.

7 In the model, right-click the Division with increased fraction length
output type block.

The context menu appears.

8 From the context menu, select C/C++ Code > Navigate To C/C++ Code.

The code generation report highlights the code generated for this block.
This time the generated code implements the division with a shift operation
and there is no division utility function.

37-30

Optimize Your Generated Code

tmp = rtU.In6;
rtY.Out3 = (uint32_T)tmp ==

(uint32_T)0 ? MAX_uint32_T : ((uint32_T)rtU.In5 << 17) /
(uint32_T)tmp;

Modify the Specified Minimum and Maximum Values
Finally, modify the minimum and maximum values for the first input to the
division operation so that its input range is too large to guarantee that the
value does not overflow when shifted. Here, you cannot shift a 16-bit number
17 bits to the right without overflowing the 32-bit container. Generate code for
the division operation, again taking into account the minimum and maximum
values. With these input ranges, the generated code includes a division utility
function to ensure that no overflow occurs.

1 Double-click the Inport block labelled 5 to open the block parameters dialog
box.

2 On the block parameters dialog box, select the Signal Attributes pane and
set theMaximum value to 40000, then click OK to close the dialog box.

3 Double-click the Generate Code button.

The code generation report appears.

4 In the model, right-click the Division with increased fraction length
output type block.

The context menu appears.

5 From the context menu, select C/C++ Code > Navigate To C/C++ Code.

The code generation report highlights the code generated for this block.
The generated code includes a call to the div_repeat_32 utility function.

rtY.Out3 = div_repeat_u32((uint32_T)rtU.In5 << 16,
(uint32_T)rtU.In6, 1U);

37-31

37 Code Generation

Optimizing Your Generated Code with the Model Advisor

In this section...

“Optimize Generated Code with Model Advisor” on page 37-32

“Identify Blocks that Generate Expensive Fixed-Point and Saturation
Code” on page 37-33

“Identify Questionable Fixed-Point Operations” on page 37-36

“Identify Blocks that Generate Expensive Rounding Code” on page 37-39

Optimize Generated Code with Model Advisor
You can use the Simulink Model Advisor to help you configure your fixed-point
models to achieve a more efficient design and optimize your generated code.
To use the Model Advisor to check your fixed-point models:

1 From the Analysis menu of the model you want to analyze, select Model
Advisor.

2 In the Model Advisor left pane, expand the By Product node and select
Embedded Coder.

3 From the Model Advisor Edit menu, select Select All to enable all Model
Advisor checks associated with the selected node. For fixed-point code
generation, the most important check boxes to select are Identify blocks
that generate expensive fixed-point and saturation code, Identify
questionable fixed-point operations, Identify blocks that generate
expensive rounding code, and Check the hardware implementation.

4 Click Run Selected Checks. Any tips for improving the efficiency of your
fixed-point model appear in the Model Advisor window.

The sections that follow discuss fixed-point related checks and sub-checks
found in the Model Advisor. The sections explain the checks, discuss their
importance in fixed-point code generation, and offer suggestions for tweaking
your model to optimize your generated code.

37-32

Optimizing Your Generated Code with the Model Advisor

Identify Blocks that Generate Expensive Fixed-Point
and Saturation Code

Identify Sum blocks for questionable fixed-point operations

• When the input range of a Sum block exceeds the output range, a range
error occurs. Users can get any addition or subtraction their application
requires by inserting data type conversion blocks before and/or after the
sum block.

• When a Sum block has an input with a slope adjustment factor that does
not equal the slope adjustment factor of the output, the mismatch requires
the Sum block to perform a multiply operation each time the input is
converted to the output’s data type and scaling. The mismatch can be
removed by changing the scaling of the output or the input.

• When the net sum of the Sum block input biases does not equal the bias of
the output, the generated code includes one extra addition or subtraction
instruction to correctly account for the net bias adjustment. Changing
the bias of the output scaling can make the net bias adjustment zero and
eliminate the need for the extra operation.

Identify Min Max blocks for questionable fixed-point
operations

• When the input and output of the MinMax block have different data types,
a conversion operation is required every time the block is executed. The
model is more efficient with the same data types.

• When the data type and scaling of the input of the MinMax block does not
match the data type and scaling of the output, a conversion is required
before performing a relational operation. This could result in a range error
when casting, or a precision loss each time a conversion is performed.
Change the scaling of either the input or output to generate more efficient
code.

• When the input of the MinMax block has a different slope adjustment
factor than the output, the MinMax block requires a multiply operation
each time the block is executed to convert the input to the data type and

37-33

37 Code Generation

scaling of the output. You can correct the mismatch by changing the scaling
of either the input or output.

Identify Discrete Integrator blocks for questionable fixed-point
operations

• When the initial condition for the Discrete-Time Integrator blocks is used
to initialize the state and output, the output equation generates excessive
code and an extra global variable is required. It is recommended that you
set the Function Block Parameters > Use initial condition as initial
and reset value for parameter to State only (most efficient).

Identify Compare to Constant blocks for questionable
fixed-point operations

• If the input data type of the Compare to Zero block cannot represent zero
exactly, the input signal is compared to the closest representable value of
zero, resulting in parameter overflow. To avoid this parameter overflow,
select an input data type that can represent zero.

• If the Compare to Constant block’s Constant value is outside the range
that the input data type can represent, the input signal is compared to
the closest representable value of the constant. This results in parameter
overflow. To avoid this parameter overflow, select an input data type that
can represent the Constant value, or change the Constant value to a
value that can be accommodated by the input data type.

Identify Lookup Table blocks for questionable fixed-point
operations
Efficiency trade-offs related to lookup table data are described in “Effects
of Spacing on Speed, Error, and Memory Usage” on page 33-24. Based on
these trade-offs, the Model Advisor identifies blocks where there is potential
for efficiency improvements, such as:

• Lookup table input data is not evenly spaced.

• Lookup table input data is not evenly spaced when quantized, but it is
very close to being evenly spaced.

37-34

Optimizing Your Generated Code with the Model Advisor

• Lookup table input data is evenly spaced, but the spacing is not a power of
two.

Check optimization and hardware implementation settings

• Integer division generated code contains protection against arithmetic
exceptions such as division by zero, INT_MIN/-1, and LONG_MIN/-1. If
you construct models making it impossible for exception triggering input
combinations to reach a division operation, the protection code generated
as part of the division operation is redundant.

• The index search method Evenly-spaced points requires a division
operation, which can be computationally expensive.

Identify blocks that will invoke net slope correction
When a change of fixed-point slope is not a power of two, net slope correction
is necessary. Normally, net slope correction is implemented using an integer
multiplication followed by shifts. Under some conditions, an alternate
implementation requires just an integer division by a constant. One of
the conditions is that the net slope can be very accurately represented
as the reciprocal of an integer. When this condition is met, the division
implementation produces more accurate numerical behavior. Depending on
your compiler and embedded hardware, the division implementation might
be more desirable than the multiplication and shifts implementation. The
generated code might be more efficient in either ROM size or model execution
size.

The Model Advisor alerts you when:

• You select the Use integer division to handle net slopes that are
reciprocals of integers optimization parameter, but your model
configuration is not compatible with this selection.

• Your model configuration is suitable for using integer division to handle net
slope correction, but you do not select the Use integer division to handle
net slopes that are reciprocals of integers optimization parameter.

For more information, see “Handle Net Slope Correction” on page 37-14.

37-35

37 Code Generation

Identify product blocks that are less efficient
The number of multiplications and divisions that a block performs can have a
big impact on accuracy and efficiency. The Model Advisor detects some, but
not all, situations where rearranging the operations can improve accuracy,
efficiency, or both.

One such situation is when a calculation using more than one division
operation is computed. A general guideline from the field of numerical
analysis is to multiply all the denominator terms together first, then do
one and only one division. This improves accuracy and often speed in
floating-point and especially fixed-point. This can be accomplished in
Simulink by cascading Product blocks. Note that multiple divisions spread
over a series of blocks are not detected by the Model Advisor.

Another situation is when a single Product block is configured to do more
than one multiplication or division operation. This is supported, but if the
output data type is integer or fixed-point, then better results are likely if
this operation is split across several blocks each doing one multiplication or
one division. Using several blocks allows the user to control the data type
and scaling used for intermediate calculations. The choice of data types for
intermediate calculations affects precision, range errors, and efficiency.

Check for expensive saturation code
Setting the Saturate on integer overflow parameter can produce condition
checking code that your application might not require.

Check whether your application requires setting Function Block
Parameters > Signal Attributes > Saturate on integer overflow.
Otherwise, clear this parameter for the most efficient implementation of the
block in the generated code.

Identify Questionable Fixed-Point Operations
This check identifies blocks that generate cumbersome multiplication and
division operations, expensive conversion code, inefficiencies in lookup table
blocks, and expensive comparison code.

37-36

Optimizing Your Generated Code with the Model Advisor

Check for expensive multiplication code

• “Targeting an Embedded Processor” on page 29-4 discusses the capabilities
and limitations of embedded processors. “Design Rules” on page 29-5
recommends that inputs to a multiply operation should not have word
lengths larger than the base integer type of your processor. Multiplication
with larger word lengths can always be handled in software, but that
approach requires much more code and is much slower. The Model
Advisor identifies blocks where undesirable software multiplications are
required. Visual inspection of the generated code, including the generated
multiplication utility function, will make the cost of these operations clear.
It is strongly recommended that you adjust the model to avoid these
operations.

• “Rules for Arithmetic Operations” on page 28-49 discusses the
implementation details of fixed-point multiplication and division. That
section shows the significant increase in complexity that occurs when
signals with nonzero biases are involved in multiplication and division. It
is strongly recommended that you make changes to eliminate the need for
these complicated operations. Extra steps are required to implement the
multiplication. Inserting a Data Type Conversion block before and after the
block doing the multiplication allows the biases to be removed and allows
the user to control data type and scaling for intermediate calculations. In
many cases the Data Type Conversion blocks can be moved to the “edges” of
a (sub)system. The conversion is only done once and all blocks can benefit
from simpler bias-free math.

Check for expensive division code
The rounding behavior of signed integer division is not fully specified by C
language standards. Therefore, the generated code for division is too large
to provide bit-true agreement between simulation and code generation. To
avoid integer division generated code that is too large, in the Configuration
Parameters dialog box, on the Hardware Implementation pane, set the
Signed integer division rounds to parameter to the recommended value.

Identify lookup blocks with uneven breakpoint spacing
Efficiency trade-offs related to lookup table data are described in “Effects of
Spacing on Speed, Error, and Memory Usage” on page 33-24. Based on these

37-37

37 Code Generation

trade-offs, the Model Advisor identifies blocks where there is potential for
efficiency improvements, and issues a warning when:

• Lookup table input data is not evenly spaced.

• Lookup table input data is not evenly spaced when quantized, but it is
very close to being evenly spaced.

• Lookup table input data is evenly spaced, but the spacing is not a power of
two.

Check for expensive pre-lookup division
For a Prelookup or n-D Lookup Table block, Index search method is Evenly
spaced points. Breakpoint data does not have power of 2 spacing.

If breakpoint data is nontunable, it is recommended that you adjust the
data to have even, power of 2 spacing. Otherwise, in the block parameter
dialog box, specify a different Index search method to avoid the
computation-intensive division operation.

Check for expensive data type conversions
When a block is configured such that it would generate inefficient code for
a data type conversion, the Model Advisor generates a warning and makes
suggestions on how to make your model more efficient.

Check for fixed-point comparisons with predetermined results
When you select isNan, isFinite, or isInf as the operation for the Relational
Operator block, the block switches to one-input mode. In this mode, if the
input data type is fixed point, boolean, or a built-in integer, the output is
FALSE for isInf and isNan, TRUE for isFinite. This might result in dead
code which will be eliminated by Simulink Coder.

Check for expensive binary comparison operations

• When the input data types of a Relational Operator block are not the
same, a conversion operation is required every time the block is executed.
If one of the inputs is invariant, then changing the data type and scaling

37-38

Optimizing Your Generated Code with the Model Advisor

of the invariant input to match the other input improves the efficiency
of the model.

• When the inputs of a Relational Operator block have different ranges,
there will be a range error when casting, and a precision loss each time
a conversion is performed. You can insert Data Type Conversion blocks
before the Relational Operator block to convert both inputs to a common
data type that has enough range and precision to represent each input.

• When the inputs of a Relational Operator block have different slope
adjustment factors, the Relational Operator block is required to perform
a multiply operation each time the input with lesser positive range is
converted to the data type and scaling of the input with greater positive
range. The extra multiplication requires extra code, slows down the speed
of execution, and usually introduces additional precision loss. By adjusting
the scaling of the inputs, you can eliminate mismatched slopes.

Check for expensive comparison code
When your model is configured such that the generated code contains
expensive comparison code, the Model Advisor generates a warning.

Identify Blocks that Generate Expensive Rounding
Code
This check alerts you when rounding optimizations are available. To check for
blocks that generate expensive rounding code, the Model Advisor performs
the following sub-checks:

• Check for expensive rounding operations in multiplication and division

• Check optimization and Hardware Implementation settings (Lookup
Blocks)

• Check for expensive rounding in a data type conversion

• Check for expensive rounding modes in the model

Traditional handwritten code, especially for control applications, almost
always uses “no effort” rounding. For example, for unsigned integers and
two’s complement signed integers, shifting right and dropping the bits is
equivalent to rounding to floor. To get results comparable to, or better than,

37-39

37 Code Generation

what you expect from traditional handwritten code, use the simplest rounding
mode. In general the simplest mode provides the minimum cost solution with
no overflows. If the simplest mode is not available, round to floor.

The primary exception to this rule is the rounding behavior of signed integer
division. The C standard leaves this rounding behavior unspecified, but for
most production targets the “no effort” mode is to round to zero. For unsigned
division, everything is nonnegative, so rounding to floor and rounding to zero
are identical. To improve rounding efficiency, set Model Configuration
Parameters > Hardware Implementation > Production hardware >
Signed integer division rounds to using the mode that your production
target uses.

Use the Integer rounding mode parameter on your model’s blocks to
simulate the rounding behavior of the C compiler that you use to compile code
generated from the model. This setting appears on the Signal Attributes
pane of the parameter dialog boxes of blocks that can perform signed integer
arithmetic, such as the Product block. To obtain the most efficient generated
code, change the Integer rounding mode parameter of the block to the
recommended setting.

For more information on properties to consider when choosing a rounding
mode, see “Choosing a Rounding Method” on page 1-11.

37-40

Use the Model Advisor to Optimize Fixed-Point Operations in Generated Code

Use the Model Advisor to Optimize Fixed-Point Operations
in Generated Code

This example uses the following model.

37-41

37 Code Generation

37-42

Use the Model Advisor to Optimize Fixed-Point Operations in Generated Code

Open the ex_net_slope5 model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_net_slope5

In this model, the net slope for the Data Type Conversion and Product blocks
is 1/1000.

This model has the following properties:

• The Data type of the two Inport blocks, U and V, is set to int16.

• The Integer rounding mode of the Data Type Conversion block, is set to
Floor, and the Output data type is set to fixdt(1, 33, 1000, 0).

Note Setting the Output data type word length greater than the length
of the long data type results in multiword operations.

• The Integer rounding mode of the Product block, is set to Convergent,
and the Output data type is set to fixdt(1, 16, 1000, 0).

• The Simulation > Model Configuration Parameters > Hardware
Implementation > Production hardware > Signed integer division
rounds to configuration parameter is set to Zero.

• The checkbox under Optimization > Use integer division to handle
net slopes that are reciprocals of integers configuration parameter
is selected.

To run the Model Advisor checks:

1 From the model menu, select Analysis > Model Advisor > Model
Advisor.

2 In the Model Advisor left pane, expand the By Product node and then
expand the Embedded Coder node.

37-43

37 Code Generation

3 Select Identify blocks that generate expensive fixed-point and
saturation code.

4 Click Run this check.

The Model Advisor warns that your model contains a block that will invoke
net slope correction.

5 Make the suggested changes

a Double click the Data Type Conversion block and change the Integer
rounding mode to Simplest.

b Change the Output data type from fixdt(1,33,1000,0) to
fixdt(1,16,1000,0), to avoid multiword operations.

c Save the model.

6 Rerun the check.

The check now passes.

7 Run the Model Advisor Identify questionable fixed-point operations
check.

The check passes.

8 Select and run Identify blocks that generate expensive rounding
code.

The Model Advisor warns that your model contains blocks that will
generate expensive rounding code for multiplication and division. It also
provides recommendations on how to change your model configuration to
make it more efficient.

9 Make the suggested changes:

a Double click on the Product block, and change the Integer rounding
mode to Simplest.

b Save the model.

This is your model configuration.

37-44

Use the Model Advisor to Optimize Fixed-Point Operations in Generated Code

37-45

37 Code Generation

10 Rerun the Model Advisor Identify blocks that generate expensive
rounding code check.

The check passes.

37-46

38

Fixed-Point Advisor
Reference

• “Fixed-Point Advisor” on page 38-2

• “Preparing Model for Conversion” on page 38-6

• “Preparing for Data Typing and Scaling” on page 38-24

• “Return to the Fixed-Point Tool to Perform Data Typing and Scaling” on
page 38-39

38 Fixed-Point Advisor Reference

Fixed-Point Advisor

38-2

Fixed-Point Advisor

Fixed-Point Advisor Overview
The Fixed-Point Advisor is a tool you can use to prepare your model for
conversion from floating-point data types to fixed-point data types. The
Fixed-Point Advisor also makes recommendations for a model, such as
model-level diagnostic settings and removal of inheritance rules. It configures
the model for autoscaling by the Fixed-Point Tool. Therefore, even if your
model uses only fixed-point data types, it is useful to run the Fixed-Point
Advisor on the model prior to autoscaling.

The Fixed-Point Advisor performs checks on the entire model reference
hierarchy. It checks the top model and referenced models against fixed-point
guidelines and reports results for each referenced model.

Description
Use the Fixed-Point Advisor to:

• Set model-wide configuration options.

• Set block-specific dialog parameters.

• Check for unsupported blocks.

Procedures

Automatically Run Tasks. The following steps list how you can
automatically run all tasks within a folder.

1 Click the Run to Failure button. The tasks run in order until a task fails.

2 Fix the failure:

• Manually fix the problem using the Explore Result button, if present.

• Manually fix the problem by modifying the model as instructed in the
Analysis Result box.

• Automatically fix the problem using theModify All button, if available.

3 Continue the run to failure by selecting Run > Continue.

38-3

38 Fixed-Point Advisor Reference

Run Individual Tasks. The following steps list how you can run an
individual task.

1 Specify Input Parameters, if present.

2 Run the task by clicking Run This Task.

3 Review Results. The possible results are:

Pass: Move on to the next task.
Warning: Review results, decide whether to move on or fix.
Fail: Review results, do not move on without fixing.

4 If Status is Warning or Fail, you can:

• Manually fix the problem using the Explore Result button, if present.

• Manually fix the problem by modifying the model.

• Automatically fix the problem using theModify All button, if available.

5 Once you have fixed aWarning or Failed task, rerun the task by clicking
Run This Task.

Run to Selected Task. If you know that a particular task causes a failure,
you might want to run all the tasks prior to this task and save a restore point
before continuing the run. For more information about restore points, see
“Save a Restore Point” on page 30-8. To run all tasks up to and including
the currently selected task:

1 Select the last task that you want to run.

2 Right click this task to open the context menu.

3 From the context menu, select Run to Selected Task to run all tasks up
to and including the selected task.

Note If a task before the selected task fails, the Fixed-Point Advisor stops
the run at the failed task.

38-4

Fixed-Point Advisor

Rerun a Task. You might want to rerun a task to see if changes you make
result in a different answer. To rerun a task that you have run before:

1 Select the task that you want to rerun.

2 Specify input parameters, if present.

3 Run the task by clicking Run This Task.

The task reruns.

Caution All downstream tasks are reset to Not Run if:

• The task fails.

• You click the Modify All button.

View a Run Summary. To view a complete run summary of Pass, Failed,
Warning, and Not Run tasks:

1 Select the Fixed-Point Advisor folder.

2 Click the path link listed for Report. A report containing a summary of
all tasks is displayed.

See Also

• “Best Practices” on page 30-2

• “Preparation for Fixed-Point Conversion” on page 30-2

38-5

38 Fixed-Point Advisor Reference

Preparing Model for Conversion

In this section...

“Prepare Model for Conversion Overview” on page 38-7

“Verify model simulation settings” on page 38-8

“Verify update diagram status” on page 38-11

“Address unsupported blocks” on page 38-12

“Set up signal logging” on page 38-14

“Create simulation reference data” on page 38-15

“Verify Fixed-Point Conversion Guidelines Overview” on page 38-17

“Check model configuration data validity diagnostic parameters settings”
on page 38-18

“Implement logic signals as Boolean data” on page 38-19

“Check bus usage” on page 38-20

“Simulation range checking” on page 38-21

“Check for implicit signal resolution” on page 38-22

38-6

Preparing Model for Conversion

Prepare Model for Conversion Overview
This folder contains tasks for configuring and setting up the model for data
logging.

Description
Validate model-wide settings and create simulation reference data for
downstream tasks.

See Also

• “Preparation for Fixed-Point Conversion” on page 30-2

• “Converting a Model from Floating- to Fixed-Point Using Simulation Data”
on page 30-11

38-7

38 Fixed-Point Advisor Reference

Verify model simulation settings
Validate that model simulation settings allow signal logging and disable data
type override to facilitate conversion to fixed point. Logged signals are used
for analysis and comparison in later tasks.

Description
Ensures that fixed-point data can be logged in downstream tasks.

Results and Recommended Actions

Conditions Recommended Action

The following Fixed-Point Tool Data type
override setting is not set to the correct value.

Set Data type override to Use local
settings

The Model Configuration Parameters Data
Import/Export > Signal logging check box
is off.

Set to on

The fiprefDataTypeOverride property is not
set to `ForceOff'.

Set DataTypeOverride to 'ForceOff'

AModel Reference block is not in Normal mode.

Note If your model contains Model Reference
blocks that are not in Normal mode, it does not
make recommendations for them in subsequent
tasks.

Configure all referenced models that are in
non-Normal mode to use Normal mode.

Use Modify All or manually configure each
Model Reference block to use Normal mode:

1 To identify which referenced model instances
are not in Normal mode, click the Model
Dependency Viewer link to open the
Model Dependency Viewer. The viewer
displays all instances and shows which mode
they are in.

2 To change the mode, select the referenced
model, right-click, and then select Block
Parameters (ModelReference). In
the Block Parameters dialog box, set
Simulation mode to Normal.

38-8

Preparing Model for Conversion

Conditions Recommended Action

Tip Ignore this warning for protected models
or any other models that you do not want the
Fixed-Point Advisor to check.

A model in the model hierarchy is using a
referenced configuration set instead of an
active configuration set.

Use Modify All or manually configure all
models in the model hierarchy to use the active
configuration set. See “Manage a Configuration
Set”.

If you use Modify All, the Fixed-Point
Advisor creates an active configuration set
by copying the referenced configuration set
and configuring the model to use this new
configuration set as the active set.

If there are multiple reference sets, the
Fixed-Point Advisor creates multiple new
configuration sets.

Note When a model uses a referenced
configuration set, its configuration settings
are read-only. Downstream tasks in the
Fixed-Point Advisor make recommendations
to tune configuration settings. If you do not
update models to use an active configuration
set, these tasks might generate warnings.

Action Results
Clicking Modify All:

• Configures the model for recommended simulation settings and fipref
objects. A table displays the current and previous block settings.

• Configures all referenced model instances to use Normal mode.

38-9

38 Fixed-Point Advisor Reference

• Updates models in the model hierarchy that use referenced configuration
sets to use an active configuration set.

See Also

• “Data Type Override” on page 34-53

• “Signal logging”

• “Data Type Override Preferences Using fipref” on page 5-12

38-10

Preparing Model for Conversion

Verify update diagram status
Verify update diagram succeeds.

Description
A model update diagram action is necessary for most down stream tasks.

Results and Recommended Actions

Conditions Recommended Action

The model diagram does not update. Fix the model. Verify that all
required mat files are loaded.

See Also
“Update a Block Diagram” in the Simulink documentation

38-11

38 Fixed-Point Advisor Reference

Address unsupported blocks
Identify blocks that do not support fixed-point data types.

Description
Blocks that do not support fixed-point data types cannot be converted.

Results and Recommended Actions

Conditions Recommended Action

Blocks that do not support fixed-point data
types and cannot be converted exist in model. • Replace the block with the block specified in

the Result pane by right-clicking the block
and selecting the replacement from the
context menu.

Note The Fixed-Point Advisor provides a
preview of the replacement block. To view
the replacement and verify its settings, click
the Preview link. If the settings on the
replacement block differ from the settings
on the original block, set up the replacement
block to match the original block.

• Isolate the block by right-clicking the
block and selecting Insert Data Type
Conversion > All Ports.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task
to pass, replace or isolate unsupported blocks
in each referenced model.

38-12

Preparing Model for Conversion

Tips

• Before inserting a replacement block, use the Preview link to view the
replacement block. If necessary, update the settings on the replacement
block to match the settings on the original block.

• If the Fixed-Point Advisor does not recommend a corresponding fixed-point
block, replace the unsupported block with a number of lower-level blocks
to provide the same functionality.

• The goal is to replace all blocks that do not support fixed-point data types.
Using Data Type Conversion blocks to isolate blocks at this stage enables
you to continue running through the conversion process. However, this
will cause the Summarize data type task to fail downstream. To fix
this failure, you must replace the block that does not support fixed-point
data types.

See Also
The Simulink Block Data Type Support table summarizes characteristics of
blocks in the Simulink and Fixed-Point Designer block libraries, including
whether or not they support fixed-point data types. To view this table, enter
the following command at the MATLAB command line:

showblockdatatypetable

38-13

38 Fixed-Point Advisor Reference

Set up signal logging
Specify at least one signal of interest to log during simulation. Logged signals
are used for analysis and comparison in other tasks. Suggested signals to
log are model inports and outports.

Description
The Fixed-Point Advisor uses logged signals to compare the initial data type
to the fixed-point data type.

Analysis Result and Recommended Actions

Conditions Recommended Action

No signals are logged. If you are using simulation minimum and
maximum values, specify at least one signal to
be logged. Otherwise, ignore this warning.

The Fixed-Point Advisor provides separate
results for each referenced model. Specify at
least one signal to be logged for each referenced
model.

A model in the model hierarchy is using a
referenced configuration set and signal logging
is disabled in this configuration set.

Enable signal logging in the referenced
configuration set.

Return to the Verify model simulation
settings task and configure all models to use
an active configuration set.

Tip
Log inports and outports of the system under conversion.

38-14

Preparing Model for Conversion

Create simulation reference data
Simulate the model using the current solver settings, and create reference
data to use for comparison and analysis. If necessary, you can stop
the simulation by selecting the waitbar and then pressing Ctrl+C. To
set Fixed-point instrumentation mode to Minimums, maximums and
overflows, click the Modify All button.

Description
Simulate the model using the current solver settings, create and archive
reference signal data to use for comparison and analysis in downstream tasks.

Input Parameters

Merge instrumentation results from multiple simulations
Merges new simulation minimum and maximum results with existing
simulation results in the active run. Allows you to collect complete
range information from multiple test benches. Does not merge signal
logging results.

Results and Recommended Actions

Conditions Recommended Action

Simulation does not run. Fix errors so simulation will run.

Fixed-point instrumentation mode is not
set to Minimums, maximums and overflows

If you are using simulation minimum
and maximum values, set Fixed-point
instrumentation mode to Minimums,
maximums and overflows. Otherwise, ignore
this warning.

The Fixed-Point Advisor provides separate
results for each referenced model. UseModify
All or manually configure Fixed-point
instrumentation mode for each referenced
model. Then the Fixed-Point Advisor collects
simulation reference data for the entire model
reference hierarchy.

38-15

38 Fixed-Point Advisor Reference

Conditions Recommended Action

If your model is using a referenced
configuration set and signal logging is disabled
in this configuration set, either enable signal
logging in the referenced configuration set
or return to the Verify model simulation
settings task and configure all models to use
an active configuration set.

Action Results
ClickingModify All sets Fixed-point instrumentation mode to Minimums,
maximums and overflows. A table displays the current and previous block
settings.

If your model contains referenced models, sets Fixed-point instrumentation
mode to Minimums, maximums and overflows on all referenced models.

If your model is using a referenced configuration set and signal logging is
disabled in this configuration set, Modify All is disabled.

Tips

• If the simulation is set up to have a long simulation time, after starting the
run of this task you can stop the simulation by selecting the waitbar and
then pressing Ctrl+C. This allows you to change the simulation time and
continue without having to wait for the long simulation to complete.

• Specifying small simulation run times reduces task processing times. You
can change the simulation run time in the Configuration Parameters dialog
box. See “Start time” and “Stop time” in the Simulink reference for more
information.

38-16

Preparing Model for Conversion

Verify Fixed-Point Conversion Guidelines Overview
Verify modeling guidelines related to fixed-point conversion goals.

Description
Validate model-wide settings.

See Also

• “Preparation for Fixed-Point Conversion” on page 30-2

• “Converting a Model from Floating- to Fixed-Point Using Simulation Data”
on page 30-11

38-17

38 Fixed-Point Advisor Reference

Check model configuration data validity diagnostic
parameters settings
Verify that Model Configuration Parameters > Diagnostic > Data
Validity parameters are not set to error.

Description
If the Model Configuration Parameters > Diagnostic > Data Validity
parameters are set to error, the model update diagram action fails in
downstream tasks.

Results and Recommended Actions

Conditions Recommended Action

Detect downcast is set to error.

Detect overflow is set to error.

Detect underflow is set to error.

Detect precision loss is set to error.

Detect loss of tunability is set to error.

Set all Model Configuration Parameters >
Diagnostics > Data Validity > Parameters
options to warning.

The Fixed-Point Advisor provides separate
results for each referenced model. UseModify
All or manually configure these options for
each referenced model.

Action Results
Clicking Modify All sets all Model Configuration Parameters >
Diagnostics > Data Validity > Parameters options to warning. A table
displays the current and previous settings.

If your model contains referenced models, modifies these settings on all
referenced models.

If your model is using a referenced configuration set, because the referenced
configuration set is read-only, Modify All cannot update this parameter.
Either manually modify the referenced configuration set or return to the
Verify model simulation settings task and configure all models to use
an active configuration set.

38-18

Preparing Model for Conversion

Implement logic signals as Boolean data
Confirm that Simulink simulations are configured to treat logic signals as
Boolean data.

Description
Configuring logic signals as Boolean data optimizes the code generated in
downstream tasks.

Results and Recommended Actions

Conditions Recommended Action

Implement logic signals as Boolean data
is set to off.

Set Model Configuration Parameters >
Optimization > Implement logic signals as
Boolean data to on.

The Fixed-Point Advisor provides separate
results for each referenced model. UseModify
All or manually configure this option for each
referenced model.

Action Results
ClickingModify All selects the modelModel Configuration Parameters >
Optimization > Implement logic signals as Boolean data check box. A
table displays the current and previous parameter settings.

If your model contains referenced models, modifies this setting on all
referenced models.

If your model is using a referenced configuration set, because the referenced
configuration set is read-only, Modify All cannot update this parameter.
Either manually modify the referenced configuration set or return to the
Verify model simulation settings task and configure all models to use
an active configuration set.

38-19

38 Fixed-Point Advisor Reference

Check bus usage
Identify any Mux block used as a bus creator and any bus signal treated
as a vector.

Description
This task identifies:

• Mux blocks that are bus creators

• Bus signals that the top-level model treats as vectors

Results and Recommended Actions

Conditions Recommended Action

The Fixed-Point Advisor is not operating on a
top-level model.

If this task is important to your conversion,
start the Fixed-Point Advisor on the top-level
model. Otherwise, you can ignore this warning.

The model is not configured to detect future
changes that might result in improper bus
usage.

Set Model Configuration Parameters >
Diagnostics > Connectivity > Buses > Bus
signal treated as vector to error.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task
to pass, manually configure this option for each
referenced model.

Note This task is a Simulink task. For more information, see “Check bus
usage” in the Simulink documentation.

38-20

Preparing Model for Conversion

Simulation range checking
Verify that Model Configuration Parameters > Diagnostics >
Simulation range checking is not set to none.

Description
IfModel Configuration Parameters > Diagnostics > Simulation range
checking is set to none, the simulation does not generate any range checking
warnings.

Results and Recommended Actions

Conditions Recommended Action

Model Configuration Parameters >
Diagnostics > Simulation range checking
is set to none.

Set Model Configuration Parameters >
Diagnostics > Simulation range checking
to warning.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task
to pass, useModify All or manually configure
this option for each referenced model.

Action Results
ClickingModify All setsModel Configuration Parameters >Diagnostics
> Simulation range checking to warning.

If your model contains referenced models, modifies this setting on all
referenced models.

If your model is using a referenced configuration set, because the referenced
configuration set is read-only, Modify All cannot update this parameter.
Either manually modify the referenced configuration set or return to the
Verify model simulation settings task and configure all models to use
an active configuration set.

38-21

38 Fixed-Point Advisor Reference

Check for implicit signal resolution
Check if model uses implicit signal resolution.

Description
Models with implicit signal resolution attempt to resolve all named signals
and states to Simulink signal objects, which is inefficient and slows
incremental code generation and model reference. This task identifies those
signals and states for which you may turn off implicit signal resolution and
enforce resolution.

Results and Recommended Actions

Conditions Recommended Action

Model uses implicit signal resolution.
• Set Model Configuration Parameters
> Diagnostics > Data Validity > Signal
resolution to Explicit only.

• Enforce resolution for each of the signals
and states in the model by selecting Signal
name must resolve to Simulink signal
object.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task
to pass, useModify All or manually configure
these options for each referenced model.

Action Results
ClickingModify All setsModel Configuration Parameters >Diagnostics
> Data Validity > Signal resolution to Explicit only and enforces
resolution for each of the signals and states in the model. Tables display
the current and previous settings.

If your model contains referenced models, modifies these settings on all
referenced models.

38-22

Preparing Model for Conversion

If your model is using a referenced configuration set, because the referenced
configuration set is read-only, Modify All cannot update this parameter.
Either manually modify the referenced configuration set or return to the
Verify model simulation settings task and configure all models to use
an active configuration set.

See Also
“Resolve Signal Objects for Output Data” in the Simulink documentation

38-23

38 Fixed-Point Advisor Reference

Preparing for Data Typing and Scaling

In this section...

“Prepare for Data Typing and Scaling Overview” on page 38-25

“Review locked data type settings” on page 38-26

“Remove output data type inheritance” on page 38-27

“Relax input data type settings” on page 38-30

“Verify Stateflow charts have strong data typing with Simulink” on page
38-32

“Remove redundant specification between signal objects and blocks” on
page 38-33

“Verify hardware selection” on page 38-35

“Specify block minimum and maximum values” on page 38-37

38-24

Preparing for Data Typing and Scaling

Prepare for Data Typing and Scaling Overview
Configure blocks with data type inheritance or constraints to avoid data type
propagation errors.

Description
The block settings from this folder simplify the initial data typing and scaling.
The optimal block configuration is achieved in later stages. The tasks in this
folder are preparation for automatic data typing.

Tips
Block output and parameter minimum and maximum values can be specified
in this step.

See Also

• “Preparation for Fixed-Point Conversion” on page 30-2

• “Converting a Model from Floating- to Fixed-Point Using Simulation Data”
on page 30-11

38-25

38 Fixed-Point Advisor Reference

Review locked data type settings
Review blocks that currently have their data types locked down and will be
excluded from automatic data typing.

Description
When blocks have their data types locked, the Fixed-Point Advisor excludes
them from automatic data typing. This task identifies blocks that have locked
data types so that you can unlock them.

Results and Recommended Actions

Conditions Recommended Action

Blocks have locked data types. Unlock data types on blocks that currently
have locked data types.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task
to pass, use Modify All or unlock data types
on blocks for all referenced models.

Action Results
ClickingModify All unlocks data types on blocks that currently have locked
data types.

If your model contains referenced models, unlocks data types on blocks for
all referenced models.

38-26

Preparing for Data Typing and Scaling

Remove output data type inheritance
Identify blocks with an inherited output signal data type.

Description
Inherited data types might lead to data type propagation errors.

For floating-point inheritance blocks with floating-point inputs or outputs, the
Fixed-Point Advisor replaces the inheritance with the fixed-point data type
specified by the user. For floating-point inheritance blocks with fixed-point
output and other Simulink and DSP System Toolbox and Communications
System Toolbox blocks, the Fixed-Point Advisor now detects inheritance and
replaces it with the compiled data type.

What are Floating-Point Inheritance Blocks?

For floating-point inheritance blocks, when inputs are floating-point, all
internal and output data types are floating point.

Note This task is preparation for automatic data typing, not actual
automatic data typing.

Input Parameters

Data type for blocks with floating-point inheritance
Enter a default fixed-point data type to use for floating-point inheritance
blocks, or select one from the list:

undefined
int8
uint8
int16
uint16
int32
uint32
fixdt(1,16,4)

38-27

38 Fixed-Point Advisor Reference

Results and Recommended Actions

Conditions Recommended Action

An input parameter is invalid. Enter or select a valid value for the Data type
for blocks with floating-point inheritance
input parameter. The value of this parameter
applies to the entire model reference hierarchy.

The system or subsystems contain
floating-point inheritance blocks that have
floating-point inputs.

Set the block output data type to the
recommended data type. Remove floating-point
inheritance for these blocks by explicitly
configuring the Output data type or
Output data type mode parameter to the
recommended value where possible. The
recommended value is based on the value that
you specify for the Data type for blocks with
floating-point inheritance input parameter.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task
to pass, remove floating-point inheritance for
all blocks in all referenced models.

Remove output data type inheritance for blocks
by explicitly configuring the Output data
type or Output data type mode parameter
to the recommended value where possible.

Remove output data type inheritance for
Logical Operator blocks by clearing the
Require all inputs and outputs to have
the same data type parameter parameter.

Blocks or Stateflow output data in the current
system or subsystems have inherited output
data types.

Remove Stateflow output data type inheritance
by explicitly configuring the output data Type
property.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task
to pass, remove output data type inheritance in
all referenced models.

38-28

Preparing for Data Typing and Scaling

Action Results
Clicking Modify All explicitly configures the output data types to the
recommended values where possible. Tables list the previous and current
data types for the reconfigured blocks.

If your model contains referenced models, where possible, explicitly configures
the output data types to the recommended values for all referenced models.

38-29

38 Fixed-Point Advisor Reference

Relax input data type settings
Identify blocks with input data type constraints.

Description
Blocks that have input data type constraints might lead to data type
propagation errors.

Note This task is preparation for automatic data typing, not actual
automatic data typing.

Results and Recommended Actions

Conditions Recommended Action

Explicitly configure flexible input data types for
blocks by setting the InputSameDT parameter
to off where possible.

Explicitly configure Logical Operator blocks to
have flexible input data types by setting the
AllPortsSameDT parameter to off.

The input data types of blocks or Stateflow
charts in the current system or subsystems
have constraints.

Explicitly configure flexible Stateflow chart
input data types by setting the Type method
to Inherited.

Action Results
Clicking Modify All explicitly configures the specified settings to the
recommended value where possible. A table lists the previous and current
settings for the reconfigured blocks.

If your model contains referenced models, where possible, explicitly configures
the output data types to the recommended values for all referenced models.

38-30

Preparing for Data Typing and Scaling

Tip
Removing unnecessary data setting restrictions makes it more likely that the
Propose data types task will succeed downstream.

38-31

38 Fixed-Point Advisor Reference

Verify Stateflow charts have strong data typing with
Simulink
Verify all Stateflow charts are configured to have strong data typing with
Simulink I/O.

Description
Identify mismatches between input or output fixed-point data in Stateflow
charts and their counterparts in Simulink models.

Note This task is preparation for automatic data typing, not actual
automatic data typing.

Results and Recommended Actions

Conditions Recommended Action

Stateflow charts do not have strong data typing
with Simulink I/O.

Select the Use Strong Data Typing with
Simulink I/O check box in the chart properties
dialog.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task
to pass, useModify All or manually configure
this setting in each referenced model.

Action Results
Clicking Modify All configures all Stateflow charts to have strong data
typing with Simulink I/O.

If your model contains referenced models, configures this setting for all
referenced models.

38-32

Preparing for Data Typing and Scaling

Remove redundant specification between signal
objects and blocks
Identify and remove redundant data type specification originating from blocks
and Simulink signal objects.

Description
This task prepares your model for automatic data typing by identifying and
removing redundant data type specification originating from blocks and
Simulink signal objects.

Note You must rerun this task whenever you delete or manipulate a
Simulink signal object in the base workspace.

Input Parameters

Remove redundant specification from
Select from the list:

Blocks
Identify and remove redundant data type specification from blocks.
Signal objects
Identify and remove redundant data type specification from Simulink
signal objects.

Results and Recommended Actions

Conditions Recommended Action

Blocks associated with Simulink signal objects
do not have their data type specification set to
a passive mode.

Set the data type specification of these blocks
to a passive mode, such as Inherit via back
propagation.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task

38-33

38 Fixed-Point Advisor Reference

Conditions Recommended Action

to pass, useModify All or manually configure
this setting in each referenced model.

Simulink signal objects associated with blocks
do not have their data type specification set to
a passive mode.

Set the data type specification of these
Simulink signal objects to Auto.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task
to pass, useModify All or manually configure
this setting in each referenced model.

Action Results
Clicking Modify All explicitly configures the properties of the blocks or
Simulink signal objects to the recommended value where possible. A table
displays the current and previous settings.

If your model contains referenced models, where possible, configures these
settings for all referenced models.

38-34

Preparing for Data Typing and Scaling

Verify hardware selection
Verify target hardware setting.

Description
Review the hardware device settings and verify they are the settings you
intend to use.

Input Parameters

Default type of all floating-point signals
Enter a default fixed-point data type to use for all floating-point signals,
or select one from the list. For FPGA/ASIC targets, specify the type
explicitly.

Remain floating-point
Use this setting if you are converting only part of the model to fixed
point and want to leave the rest of the model as floating point.
Same as embedded hardware integer
Use this setting if the hardware device specified is a microprocessor.
int8

int16

int32

fixdt(1,16,4)

38-35

38 Fixed-Point Advisor Reference

Results and Recommended Actions

Conditions Recommended Action

The model’s Model Configuration
Parameters > Hardware Implementation
device parameters are not specified.

Provide values for Model Configuration
Parameters >Hardware Implementation >
Device vendor and Device type parameters.

The Fixed-Point Advisor provides results
for each referenced model. For this task to
pass, manually configure this setting in each
referenced model. All referenced models must
use the same hardware settings.

Default data type of all floating-point
signals is set to Remain floating-point.

For microprocessors, set to Same as embedded
hardware integer. For FPGA/ASIC, set the
data type explicitly. The Fixed-Point Advisor
uses the sign and word length of this data type.

See Also

• “Device type”

• “Device vendor”

38-36

Preparing for Data Typing and Scaling

Specify block minimum and maximum values
Specify block output and parameter minimum and maximum values.

Description
Block output and parameter minimum and maximum values are used for
fixed-point data typing in other tasks. Typically, they are determined during
the design process based on the system you are creating.

Note This task is preparation for automatic data typing, not actual
automatic data typing.

Results and Recommended Actions

Conditions Recommended Action

Minimum and maximum values are
not specified for Inport blocks.

Specify minimum and maximum
values for Inport blocks.

Warning if no simulation minimum
or maximum for any signals.

If you are using simulation minimum
and maximum data, return to
“Create simulation reference data”
to set up signal logging.

Tips

• In this task, you can specify minimum and maximum values for any block.

• You can promote simulation minimum and maximum values to output
minimum and maximum values using the Model Advisor Result Explorer,
launched by clicking the Explore Result button. In the center pane
of the Model Advisor Result Explorer, use the check boxes in the
PromoteSimMinMax column to promote values.

• If you do not specify block minimum and maximum values, the Propose
data types task might fail later in the conversion.

38-37

38 Fixed-Point Advisor Reference

See Also
“Batch-Fix Warnings or Failures” in the Simulink documentation.

38-38

Return to the Fixed-Point Tool to Perform Data Typing and Scaling

Return to the Fixed-Point Tool to Perform Data Typing
and Scaling

Close the Fixed-Point Advisor and return to the Fixed-Point Tool to autoscale
your model.

See Also

• “Preparation for Fixed-Point Conversion” on page 30-2

• “Converting a Model from Floating- to Fixed-Point Using Simulation Data”
on page 30-11

38-39

38 Fixed-Point Advisor Reference

38-40

39

Troubleshooting

• “Frequently Asked Questions About Fixed-Point Numbers” on page 39-2

• “Decide Which Workflow Is Right For Your Application” on page 39-6

• “Tips for Making Generated Code More Efficient” on page 39-8

• “Know When a Function is Supported for Instrumentation and
Acceleration” on page 39-10

• “What to Do If a Function Is Not Supported for Fixed-Point Conversion” on
page 39-11

• “Common Errors and Warnings” on page 39-13

• “Prevent The Fixed-Point Tool From Overriding Integer Data Types” on
page 39-16

• “Why Did The Fixed-Point Tool Not Propose Data Types?” on page 39-17

• “What to Do When a Block Is Not Supported For Fixed-Point Conversion”
on page 39-18

39 Troubleshooting

Frequently Asked Questions About Fixed-Point Numbers

In this section...

“What Is the Difference Between Fixed-Point and Built-In Integer Types?”
on page 39-2

“Negative Fraction Length” on page 39-2

“Fraction Length Greater Than Word Length” on page 39-4

“fi Constructor Does Not Follow globalfimath Rules” on page 39-5

What Is the Difference Between Fixed-Point and
Built-In Integer Types?
There are several distinct differences between fixed-point data types and
the built-in integer types in MATLAB. The most notable difference, is that
the built-in integer data types can only represent whole numbers, while the
fixed-point data types also contain information on the position of the binary
point, or the scaling of the number. This scaling allows the fixed-point data
types to represent both integers and non-integers. There are also slight
differences in how math is performed with these types. Fixed-point types
allow you to specify rules for math using the fimath object, including overflow
and rounding modes. However, the built-in types have their own internal
rules for arithmetic operations. See “Integers” for more information on how
math is performed using built-in types.

Negative Fraction Length
A negative fraction length occurs when the input value of a fi object contains
trailing zeros before the decimal point. For example,

x = fi(16000,1,8)

produces a fixed-point number with the specified signedness and word length,
and best precision fraction length.

x =

16000

39-2

Frequently Asked Questions About Fixed-Point Numbers

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8

FractionLength: -7

View the binary representation of x.

disp(bin(x))

01111101

There are seven implicit zeros at the end of this number before the binary
point because the fraction length of x is -7.

Convert from binary to decimal the binary representation of x with seven
zero bits appended to the end.

bin2dec('011111010000000')

ans =

16000

The result is the real world value of x.

You can also find the real world value using the equation

Real World Value = Stored Integer Value Fraction Lengt 2 hh .

Start by finding the stored integer of x.

Q = storedInteger(x)

Q =

125

Use the stored integer to find the real world value of x.

real_world_value = double(Q) * 2^-x.FractionLength

real_world_value =

39-3

39 Troubleshooting

16000

Fraction Length Greater Than Word Length
A fraction length greater than the word length of a fixed-point number occurs
when the number has an absolute value less than one and contains leading
zeros.

x = fi(.0234,1,8)

x =

0.0234

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8

FractionLength: 12

View the binary representation of x.

disp(bin(x))

01100000

There are four implied leading zeros before the binary point because the
fraction length of x is four greater than the word length.

Convert from binary to decimal the binary representation of x with four
leading zeros, and scale this value according to the fraction length.

bin2dec('000001100000')*2^(-12)

ans =

0.0234

The result is the real world value of x.

You can also find the real world value using the equation

Real World Value = Stored Integer Value Fraction Lengt 2 hh .

39-4

Frequently Asked Questions About Fixed-Point Numbers

Start by finding the stored integer of x.

Q = storedInteger(x)

Q =

96

Use the stored integer to find the real world value of x.

real_world_value = double(Q) * 2^-x.FractionLength

real_world_value =

0.0234

fi Constructor Does Not Follow globalfimath Rules
If no fimath properties are used in the argument of the fi constructor, then it
always uses nearest rounding and saturates on overflow for the creation of
the fi object, regardless of any globalfimath settings.

If this behavior is undesirable for your application, you can do one of the
following:

• Use the cast function to create a fi object using the globalfimath rules.

G = globalfimath('RoundingMethod', 'Floor', 'OverflowAction','Wrap');
cast(x, 'like', fi([],1,16,10))

• Specify fimath properties in the fi constructor.

fi(x,1,16,10,'RoundingMethod','Floor','OverflowAction','Wrap');

Note When you create a fi object using the cast function, the resulting fi
object does not have a local fimath. When you create a fi object with fimath
properties in the constructor, the fi object does have a local fimath.

39-5

39 Troubleshooting

Decide Which Workflow Is Right For Your Application
There are two primary workflows available for converting MATLAB code to
fixed-point code.

• Manual Workflow

The manual workflow provides the most control to optimize the fixed-point
types, but requires a greater understanding of fixed-point concepts.

For more information, see “Manual Fixed-Point Conversion Best Practices”
on page 8-89.

• Automated Workflow

The automated Fixed-Point Conversion Tool enables you to convert your
MATLAB code to fixed-point code without requiring extensive preexisting
knowledge of fixed-point concepts. However, this workflow provides less
control over your data types.

For more information, see “Automated Fixed-Point Conversion Best
Practices” on page 8-110.

Manual Workflow Automated
Workflow

Fully automated
conversion

Less fixed-point
expertise required

Quick turnaround time

Simulation range
analysis

Static range analysis

Iterative workflow

Portable design

Greatest control and
optimization of data
types

39-6

Decide Which Workflow Is Right For Your Application

Manual Workflow Automated
Workflow

Data type proposal

Histogram logging

Code coverage

Automatic plotting of
output variables for
comparison

39-7

39 Troubleshooting

Tips for Making Generated Code More Efficient

In this section...

“fimath Settings for Efficient Code” on page 39-8

“Replace Functions With More Efficient Fixed-Point Implementations”
on page 39-9

fimath Settings for Efficient Code
The default settings of the fimath object are:

• RoundingMethod: Nearest

• OverflowAction: Saturate

• ProductMode: FullPrecision

• SumMode: FullPrecision

These settings offer the smallest rounding error and prevent overflows.
However, they can result in extra logic in generated code. For leaner code, it
is recommended that you match the fimath settings to the settings of your
processor.

• The KeepLSB setting for ProductMode and SumMode models the behavior
of integer operations in the C language. KeepMSB for ProductMode models
the behavior of many DSP devices.

• Different rounding methods require different amounts of overhead code.
Setting the RoundingMethod property to Floor, which is equivalent
to two’s complement truncation, provides the most efficient rounding
implementation for most operations. For the divide function, the most
efficient RoundingMethod is Zero

• The standard method for handling overflows is to wrap using modulo
arithmetic. Other overflow handling methods create costly logic. It is
recommended that you set the OverflowAction property to Wrap when
possible.

39-8

Tips for Making Generated Code More Efficient

Replace Functions With More Efficient Fixed-Point
Implementations

CORDIC
The CORDIC-based algorithms are among the most hardware friendly
because they require only iterative shift-add operations. Replacing functions
with one of the CORDIC implementations can make your generated code
more efficient. For a list of the CORDIC functions, and examples of them
being implemented, see “CORDIC”.

Lookup tables
You can implement some functions more efficiently by using a lookup table
approach. For an example, see “Implement Fixed-Point Log2 Using Lookup
Table”.

Division
Division is often not supported by hardware. When possible, it is best to
avoid division operations.

When the denominator is a power of two, you can rewrite the division as a
bitshift operation.

x/8

can be rewritten as

bitsra(x,3)

Other times it is more efficient to implement division as a multiplication
by a reciprocal.

x/5

can be rewritten as

x*0.2

39-9

39 Troubleshooting

Know When a Function is Supported for Instrumentation
and Acceleration

There are several steps you can take to identify the features which could
result in errors during conversion.

• %#codegen and coder.screener

Add the %#codegen pragma to the top of the MATLAB file that is being
converted to fixed point. Adding this directive instructs the MATLAB Code
Analyzer to help you diagnose and fix violations that would result in errors
during when you try to accelerate or instrument your code.

The coder.screener function takes your function as its input argument
and warns you of anything in your code that is not supported for codegen.
Codegen support is essential for minimum and maximum logging and data
type proposals.

• Consult the table of supported functions

See “Language Support” for a table of features supported for code
generation and fixed-point conversion.

For information on what to do if a function is not supported for fixed-point
conversion, see “What to Do If a Function Is Not Supported for Fixed-Point
Conversion” on page 39-11.

39-10

What to Do If a Function Is Not Supported for Fixed-Point Conversion

What to Do If a Function Is Not Supported for Fixed-Point
Conversion

In this section...

“Isolate the Unsupported Functions” on page 39-11

“Create a Replacement Function” on page 39-12

Isolate the Unsupported Functions
When you encounter a function that is not supported for conversion, you can
temporarily leave that part of the algorithm in floating point.

The following code returns an error because the log function is not supported
for fixed-point inputs.

x = fi(rand(3),1,16,15);
y = log(x)

Cast the input, x, to a double, and then cast the output back to a fixed-point
data type.

y = fi(log(double(x)),1,16)

y =

-0.2050 -0.0906 -1.2783
-0.0990 -0.4583 -0.6035
-2.0637 -2.3275 -0.0435

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

This casting allows you to continue with your conversion until you can find a
replacement.

39-11

39 Troubleshooting

Create a Replacement Function

Lookup Table Approximation
You can replace many functions that are not supported for fixed-point
conversion with a lookup table. For an example, see “Implement Fixed-Point
Log2 Using Lookup Table”.

Polynomial Approximation
You can approximate the results of a function that is not supported for
fixed-point with a polynomial approximation. For an example, see “Calculate
Fixed-Point Arctangent”.

User-Authored Function
You can also write your own function that supports fixed-point inputs. For
example, using the mod function, which does support fixed-point inputs,
you can write your own version of the rem function, which does not support
fixed-point inputs.

39-12

Common Errors and Warnings

Common Errors and Warnings

In this section...

“fi*non-fi Errors” on page 39-13

“Data Type Mismatch Errors” on page 39-13

“Mismatched fimath Errors” on page 39-14

fi*non-fi Errors

Original Algorithm New Algorithm

function y = myProduct(x)
y = 1;
for n=1:length(x)

y(:)=y*x(n);
end

end

Issue:

When multiplying a
fixed-point variable by a
non-fixed-point variable, the
variable that does not have a
fixed-point type can only be a
constant.

Fix:

Before instrumenting your
code, cast the non-fi variable to
an acceptable fixed-point type.

function y = myProduct(x)
y = ones(1,1, 'like', x(1)*x(1))
for n=1:length(x)

y(:)=y*x(n);
end

end

Data Type Mismatch Errors

Original Algorithm New Algorithm

Function:

function y = mysum(x,T) %#codegen
y = zeros(size(x), 'like', T.y);

for n=1:length(x)
y = y + x(n);

end
end

Function:

function y = mysum(x,T) %#codegen
y = zeros(size(x), 'like', T.y);

for n=1:length(x)
y(:) = y + x(n);

end
end

Issue:

y uses the default fimath
setting FullPrecision for
the SumMode property. At
each iteration of the for-loop
in the function mysum, the
word length of y grows by
one bit. During simulation in

39-13

39 Troubleshooting

Original Algorithm New Algorithm

Types Table:

function T = mytypes(dt)
switch(dt)

case 'fixed'
F = fimath('RoundingMethod', 'Floor')
T.x = fi([],1,16,11, F);
T.y = fi([],1,16,6, F);

end
end

MATLAB, there is no issue
because data types can easily
change in MATLAB. However,
a type mismatch error occurs
at build time because data
types must remain static in C.

Fix:

Rewrite the function to use
subscripted assignment within
the for-loop.

By rewriting y = y + x(n) as
y(:) = y + x(n), the value on the
right is assigned in to the data
type of y. This assignment
preserves the numerictype of y
and avoids the type mismatch
error.

Types Table:

function T = mytypes(dt)
switch(dt)

case 'fixed'
F = fimath('RoundingMethod',
T.x = fi([],1,16,11, F);
T.y = fi([],1,16,6, F);

end
end

Mismatched fimath Errors

Original Algorithm New Algorithm

Function:

function y = mysum(x,T) %#codegen
y = zeros(size(x), 'like', T.y);

for n=1:length(x)
y(:) = y + x(n);

end
end

Function:

function y = mysum(x,T) %#codegen
y = zeros(size(x), 'like', T.y);

for n=1:length(x)
y(:) = removefimath(y) + x

end
end

Types Table:

function T = mytypes(dt)
switch(dt)

case 'fixed'

Issue:

If two fi object operands
have an attached fimath, the
fimaths must be equal.

Fix:

Use the removefimath
function to remove the fimath
of one of the variables in just
one instance. By removing
the fimath, you avoid the
“mismatched fimath” error

Types Table:

function T = mytypes(dt)
switch(dt)

case 'fixed'

39-14

Common Errors and Warnings

Original Algorithm New Algorithm

T.x = fi([],1,16,0, 'RoundingMethod', 'Floor',...
'OverflowAction','Wrap');

T.y = fi([],1,16,0, 'RoundingMethod','Nearest');
end

end

without permanently changing
the fimath of the variable.

T.x = fi([],1,16,0, 'Rounding
'OverflowAction','Wrap');

T.y = fi([],1,16,0, 'Rounding
end

end

39-15

39 Troubleshooting

Prevent The Fixed-Point Tool From Overriding Integer
Data Types

When performing data type override (DTO) on a selected system, the
Fixed-Point Tool overrides the output data types of each block in the system.
The only blocks that are never affected by DTO are blocks with boolean or
enumerated output data types, or blocks that are untouched by DTO by
design (for example, lookup table blocks). Depending on your application, you
might want certain signals to preserve their data type (for example, blocks
that represent indices). To prevent the Fixed-Point Tool from overriding the
data type of a specific block, set the Data type override setting of the
numerictype of the block to Off.

1 Open the Block Parameters dialog box by double-clicking the block.

2 Under the Signal Attributes tab, open the Data Type Assistant by

clicking .

3 Set Data type override to Off.

You can set this override to off at the command line by changing the Data
Type Override setting of a signal’s numerictype. The output data type of this
block remains a built-in uint8 even after performing data type override.

39-16

Why Did The Fixed-Point Tool Not Propose Data Types?

Why Did The Fixed-Point Tool Not Propose Data Types?

In this section...

“Inherited Output Data Types” on page 39-17

“Inadequate Range Information” on page 39-17

Inherited Output Data Types
If the output data types of your blocks are set to an inherited rule (such as
Inherit: auto), then the Fixed-Point Tool, by design, does not propose
new data types for those blocks. Blocks with inherited output data types
use internal block rules to determine the output data type of the block. The
Fixed-Point Tool marks the proposal for these blocks as N/A.

If it is not your intent to use an inherited data type, remove the output data
type inheritance of the block to get a data type proposal.

It is recommended that you use the Fixed-Point Advisor to prepare your
model for conversion. The Fixed-Point Advisor provides guidance about
model and block configuration settings to prepare for automatic conversion
to fixed point using the Fixed-Point Tool. The check Remove output data
type inheritance removes all unintentional output data type inheritance
from your model.

Inadequate Range Information
The Fixed-Point Tool bases its data type proposition on range information
collected through simulation, derivation, and design ranges that you provide.
Before proposing data types, you must collect range information which the
Fixed-Point Tool uses to propose data types.

Collect range information through simulation, or by deriving minimum and
maximum values for the selected system.

The Fixed-Point Advisor check Create simulation reference data creates
reference data to use for comparison and analysis.

39-17

39 Troubleshooting

What to Do When a Block Is Not Supported For Fixed-Point
Conversion

In this section...

“Which Simulink Blocks Are Supported by the Fixed-Point Tool” on page
39-18

“What to Do When a Block Is Not Supported for Fixed-Point Conversion” on
page 39-18

Which Simulink Blocks Are Supported by the
Fixed-Point Tool
Many, but not all, Simulink blocks are supported for automatic data typing
by the Fixed-Point Tool. For a list of blocks and features that are supported
for fixed-point conversion, see “Supported and Unsupported Simulink Blocks”
on page 35-46, .

What to Do When a Block Is Not Supported for
Fixed-Point Conversion

Isolate the Block
If you encounter a block that is not supported for fixed-point conversion, you
can isolate the block by decoupling it with a Data Type Converter block. This
workaround is useful when you do not intend to use the unsupported block
on an embedded processor. One example of this is if the Chirp Signal block
in the Sources library, which does not support fixed-point outputs, is used to
generate a signal for simulation data.

39-18

What to Do When a Block Is Not Supported For Fixed-Point Conversion

The subsystem shown is designed for use on an embedded processor and must
be converted to fixed point. The Chirp Signal block creates simulation data.
The Chirp Signal block supports only floating-point double outputs. However,
if you decouple the Chirp Signal from the rest of the model by inserting a data
type converter block after the Chirp Signal block, you can use the Fixed-Point
Tool to continue converting the Subsystem to fixed point.

Lookup Table Block Implementation
Many blocks that are not supported by the Fixed-Point Tool can
be approximated with a lookup table block. Design an efficient
fixed-point implementation of an unsupported block by using the
fixpt_look1_func_approx and fixpt_look1_func_plot functions. For an
example, see “Approximate the Square Root Function” on page 33-3.

User-Authored Blocks
You can create your own block which is supported by the Fixed-Point Tool
from one of the blocks in the User-Defined Functions Library.

39-19

39 Troubleshooting

39-20

A

Writing Fixed-Point
S-Functions

This appendix discusses the API for user-written fixed-point S-functions,
which enables you to write Simulink C S-functions that directly handle
fixed-point data types. Note that the API also provides support for standard
floating-point and integer data types. You can find the files and examples
associated with this API in the following locations:

• matlabroot/simulink/include/

• matlabroot/toolbox/simulink/fixedandfloat/fxpdemos/

• “Data Type Support” on page A-2

• “Structure of the S-Function” on page A-5

• “Storage Containers” on page A-7

• “Data Type IDs” on page A-13

• “Overflow Handling and Rounding Methods” on page A-20

• “Create MEX-Files” on page A-23

• “Fixed-Point S-Function Examples” on page A-24

• “API Function Reference” on page A-33

A Writing Fixed-Point S-Functions

Data Type Support

In this section...

“Supported Data Types” on page A-2

“The Treatment of Integers” on page A-3

“Data Type Override” on page A-3

Supported Data Types
The API for user-written fixed-point S-functions provides support for a variety
of Simulink and Fixed-Point Designer data types, including

• Built-in Simulink data types

- single

- double

- uint8

- int8

- uint16

- int16

- uint32

- int32

• Fixed-point Simulink data types, such as

- sfix16_En15

- ufix32_En16

- ufix128

- sfix37_S3_B5

• Data types resulting from a data type override with Scaled double, such as

- flts16

- flts16_En15

A-2

Data Type Support

- fltu32_S3_B5

For more information, see “Fixed-Point Data Type and Scaling Notation” on
page 27-18.

The Treatment of Integers
The API treats integers as fixed-point numbers with trivial scaling. In [Slope
Bias] representation, fixed-point numbers are represented as

real-world value = (slope × integer) + bias.

In the trivial case, slope = 1 and bias = 0.

In terms of binary-point-only scaling, the binary point is to the right of the
least significant bit for trivial scaling, meaning that the fraction length is zero:

real-world value = integer × 2-fraction length = integer × 20.

In either case, trivial scaling means that the real-world value is equal to the
stored integer value:

real-world value = integer.

All integers, including Simulink built-in integers such as uint8, are treated
as fixed-point numbers with trivial scaling by this API. However, Simulink
built-in integers are different in that their use does not cause a Fixed-Point
Designer software license to be checked out.

Data Type Override
The Fixed-Point Tool enables you to perform various data type overrides on
fixed-point signals in your simulations. This API can handle signals whose
data types have been overridden in this way:

• A signal that has been overridden with Single is treated as a Simulink
built-in single.

• A signal that has been overridden with Double is treated as a Simulink
built-in double.

A-3

A Writing Fixed-Point S-Functions

• A signal that has been overridden with Scaled double is treated as being
of data type ScaledDouble.

ScaledDouble signals are a hybrid between floating-point and fixed-point
signals, in that they are stored as doubles with the scaling, sign, and word
length information retained. The value is stored as a floating-point double,
but as with a fixed-point number, the distinction between the stored integer
value and the real-world value remains. The scaling information is applied to
the stored integer double to obtain the real-world value. By storing the value
in a double, overflow and precision issues are almost always eliminated.
Refer to any individual API function reference page at the end of this
appendix to learn how that function treats ScaledDouble signals.

For more information about the Fixed-Point Tool and data type override, see
“Fixed-Point Tool” on page 31-2 and the fxptdlg reference page.

A-4

Structure of the S-Function

Structure of the S-Function
The following diagram shows the basic structure of an S-function that directly
handles fixed-point data types.

The callouts in the diagram alert you to the fact that you must include
fixedpoint.h and fixedpoint.c at the appropriate places in the S-function.
The other elements of the S-function displayed in the diagram follow the
standard requirements for S-functions.

A-5

A Writing Fixed-Point S-Functions

To learn how to create a MEX-file for your user-written fixed-point S-function,
see “Create MEX-Files” on page A-23.

A-6

Storage Containers

Storage Containers

In this section...

“Introduction” on page A-7

“Storage Containers in Simulation” on page A-7

“Storage Containers in Code Generation” on page A-10

Introduction
While coding with the API for user-written fixed-point S-functions, it is
important to keep in mind the difference between storage container size,
storage container word length, and signal word length. The sections that
follow discuss the containers used by the API to store signals in simulation
and code generation.

Storage Containers in Simulation
In simulation, signals are stored in one of several types of containers of a
specific size.

Storage Container Categories
During simulation, fixed-point signals are held in one of the types of storage
containers, as shown in the following table. In many cases, signals are
represented in containers with more bits than their specified word length.

Fixed-Point Storage Containers

Container Category
Signal
Word Length

Container
Word Length Container Size

FXP_STORAGE_INT8 (signed)
FXP_STORAGE_UINT8 (unsigned)

1 to 8 bits 8 bits 1 byte

FXP_STORAGE_INT16 (signed)
FXP_STORAGE_UINT16 (unsigned)

9 to 16 bits 16 bits 2 bytes

FXP_STORAGE_INT32 (signed)
FXP_STORAGE_UINT32 (unsigned)

17 to 32 bits 32 bits 4 bytes

A-7

A Writing Fixed-Point S-Functions

Fixed-Point Storage Containers (Continued)

Container Category
Signal
Word Length

Container
Word Length Container Size

FXP_STORAGE_OTHER_SINGLE_WORD 33 to word
length of long
data type

Length of long
data type

Length of long data
type

FXP_STORAGE_MULTIWORD Greater than
the word length
of long data
type to 128 bits

Multiples of
length of long
data type to
128 bits

Multiples of length of
long data type to 128
bits

When the number of bits in the signal word length is less than the size of the
container, the word length bits are always stored in the least significant bits
of the container. The remaining container bits must be sign extended:

• If the data type is unsigned, the sign extension bits must be cleared to zero.

• If the data type is signed, the sign extension bits must be set to one for
strictly negative numbers, and cleared to zero otherwise.

For example, a signal of data type sfix6_En4 is held in a FXP_STORAGE_INT8
container. The signal is held in the six least significant bits. The remaining
two bits are set to zero when the signal is positive or zero, and to one when it
is negative.

A-8

Storage Containers

A signal of data type ufix6_En4 is held in a FXP_STORAGE_UINT8 container.
The signal is held in the six least significant bits. The remaining two bits
are always cleared to zero.

The signal and storage container word lengths are returned by the
ssGetDataTypeFxpWordLength and ssGetDataTypeFxpContainWordLen
functions, respectively. The storage container size is returned by the
ssGetDataTypeStorageContainerSize function. The container category
is returned by the ssGetDataTypeStorageContainCat function, which in
addition to those in the table above, can also return the following values.

A-9

A Writing Fixed-Point S-Functions

Other Storage Containers

Container Category Description

FXP_STORAGE_UNKNOWN Returned if the storage container category is unknown

FXP_STORAGE_SINGLE The container type for a Simulink single

FXP_STORAGE_DOUBLE The container type for a Simulink double

FXP_STORAGE_SCALEDDOUBLE The container type for a data type that has been overridden with
Scaled double

Storage Containers in Simulation Example
An sfix24_En10 data type has a word length of 24, but is actually stored in
32 bits during simulation. For this signal,

• ssGetDataTypeStorageContainCat returns FXP_STORAGE_INT32.

• ssGetDataTypeStorageContainerSize or sizeof() returns 4, which is
the storage container size in bytes.

• ssGetDataTypeFxpContainWordLen returns 32, which is the storage
container word length in bits.

• ssGetDataTypeFxpWordLength returns 24, which is the data type word
length in bits.

Storage Containers in Code Generation
The storage containers used by this API for code generation are not always
the same as those used for simulation. During code generation, a native C
data type is always used. Floating-point data types are held in C double
or float. Fixed-point data types are held in C signed and unsigned char,
short, int, or long.

Emulation
Because it is valuable for rapid prototyping and hardware-in-the-loop testing,
the emulation of smaller signals inside larger containers is supported in code
generation. For example, a 29-bit signal is supported in code generation
if there is a C data type available that has at least 32 bits. The rules for

A-10

Storage Containers

placing a smaller signal into a larger container, and for dealing with the extra
container bits, are the same in code generation as for simulation.

If a smaller signal is emulated inside a larger storage container in simulation,
it is not necessarily emulated in code generation. For example, a 24-bit signal
is emulated in a 32-bit storage container in simulation. However, some
DSP chips have native support for 24-bit quantities. On such a target, the
C compiler can define an int or a long to be exactly 24 bits. In this case,
the 24-bit signal is held in a 32-bit container in simulation, and in a 24-bit
container in code generation.

Conversely, a signal that was not emulated in simulation might need to be
emulated in code generation. For example, some DSP chips have minimal
support for integers. On such chips, char, short, int, and long might all
be defined to 32 bits. In that case, it is necessary to emulate 8- and 16-bit
fixed-point data types in code generation.

Storage Container TLC Functions
Since the mapping of storage containers in simulation to storage containers
in code generation is not one-to-one, the Target Language Compiler (TLC)
functions for storage containers are different from those in simulation:

• FixPt_DataTypeNativeType

• FixPt_DataTypeStorageDouble

• FixPt_DataTypeStorageSingle

• FixPt_DataTypeStorageScaledDouble

• FixPt_DataTypeStorageSInt

• FixPt_DataTypeStorageUInt

• FixPt_DataTypeStorageSLong

• FixPt_DataTypeStorageULong

• FixPt_DataTypeStorageSShort

• FixPt_DataTypeStorageUShort

• FixPt_DataTypeStorageMultiword

A-11

A Writing Fixed-Point S-Functions

The first of these TLC functions, FixPt_DataTypeNativeType, is the
closest analogue to ssGetDataTypeStorageContainCat in simulation.
FixPt_DataTypeNativeType returns a TLC string that specifies the type of
the storage container, and the Simulink Coder product automatically inserts
a typedef that maps the string to a native C data type in the generated code.

For example, consider a fixed-data type that is held in FXP_STORAGE_INT8 in
simulation. FixPt_DataTypeNativeType will return int8_T. The int8_T will
be typdef’d to a char, short, int, or long in the generated code, depending
upon what is appropriate for the target compiler.

The remaining TLC functions listed above return TRUE or FALSE depending
on whether a particular standard C data type is used to hold a given
API-registered data type. Note that these functions do not necessarily give
mutually exclusive answers for a given registered data type, due to the fact
that C data types can potentially overlap in size. In C,

sizeof(char) ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long).

One or more of these C data types can be, and very often are, the same size.

A-12

Data Type IDs

Data Type IDs

In this section...

“The Assignment of Data Type IDs” on page A-13

“Registering Data Types” on page A-14

“Setting and Getting Data Types” on page A-16

“Getting Information About Data Types” on page A-17

“Converting Data Types” on page A-19

The Assignment of Data Type IDs
Each data type used in your S-function is assigned a data type ID. You should
always use data type IDs to get and set information about data types in
your S-function.

In general, the Simulink software assigns data type IDs during model
initialization on a “first come, first served” basis. For example, consider the
generalized schema of a block diagram below.

The Simulink software assigns a data type ID for each output data type in the
diagram in the order it is requested. For simplicity, assume that the order
of request occurs from left to right. Therefore, the output of block A may be
assigned data type ID 13, and the output of block B may be assigned data
type ID 14. The output data type of block C is the same as that of block A, so
the data type ID assigned to the output of block C is also 13. The output of
block D is assigned data type ID 15.

Now if the blocks in the model are rearranged,

A-13

A Writing Fixed-Point S-Functions

The Simulink software still assigns the data type IDs in the order in which
they are used. Therefore each data type might end up with a different data
type ID. The output of block A is still assigned data type ID 13. The output
of block D is now next in line and is assigned data type ID 14. The output of
block B is assigned data type ID 15. The output data type of block C is still
the same as that of block A, so it is also assigned data type ID 13.

This table summarizes the two cases described above.

Block
Data Type ID in
Model_1

Data Type ID in
Model_2

A 13 13

B 14 15

C 13 13

D 15 14

This example illustrates that there is no strict relationship between the
attributes of a data type and the value of its data type ID. In other words, the
data type ID is not assigned based on the characteristics of the data type it is
representing, but rather on when that data type is first needed.

Note Because of the nature of the assignment of data type IDs, you should
always use API functions to extract information from a data type ID about a
data type in your S-function.

Registering Data Types
The functions in the following table are available in the API for user-written
fixed-point S-functions for registering data types in simulation. Each of these

A-14

Data Type IDs

functions will return a data type ID. To see an example of a function being
used, go to the file and line indicated in the table.

Data Type Registration Functions

Function Description Example of Use

ssRegisterDataTypeFxpBinaryPoint Register a fixed-point
data type with
binary-point-only
scaling and return its
data type ID

sfun_user_fxp_asr.c
Line 252

ssRegisterDataTypeFxpFSlopeFixExpBias Register a fixed-point
data type with [Slope
Bias] scaling specified
in terms of fractional
slope, fixed exponent,
and bias, and return
its data type ID

Not Available

ssRegisterDataTypeFxpScaledDouble Register a scaled
double data type with
[Slope Bias] scaling
specified in terms of
fractional slope, fixed
exponent, and bias,
and return its data
type ID

Not Available

ssRegisterDataTypeFxpSlopeBias Register a data type
with [Slope Bias]
scaling and return its
data type ID

sfun_user_fxp_dtprop.c
Line 319

Preassigned Data Type IDs
The Simulink software registers its built-in data types, and those data types
always have preassigned data type IDs. The built-in data type IDs are given
by the following tokens:

• SS_DOUBLE

A-15

A Writing Fixed-Point S-Functions

• SS_SINGLE

• SS_INT8

• SS_UINT8

• SS_INT16

• SS_UINT16

• SS_INT32

• SS_UINT32

• SS_BOOLEAN

You do not need to register these data types. If you attempt to register a
built-in data type, the registration function simply returns the preassigned
data type ID.

Setting and Getting Data Types
Data type IDs are used to specify the data types of input and output ports,
run-time parameters, and DWork states. To set fixed-point data types for
quantities in your S-function, the procedure is as follows:

1 Register a data type using one of the functions listed in the table Data Type
Registration Functions on page A-15. A data type ID is returned to you.

Alternately, you can use one of the preassigned data type IDs of the
Simulink built-in data types.

2 Use the data type ID to set the data type for an input or output port,
run-time parameter, or DWork state using one of the following functions:

• ssSetInputPortDataType

• ssSetOutputPortDataType

• ssSetRunTimeParamInfo

• ssSetDWorkDataType

To get the data type ID of an input or output port, run-time parameter, or
DWork state, use one of the following functions:

A-16

Data Type IDs

• ssGetInputPortDataType

• ssGetOutputPortDataType

• ssGetRunTimeParamInfo

• ssGetDWorkDataType

Getting Information About Data Types
You can use data type IDs with functions to get information about the
built-in and registered data types in your S-function. The functions in the
following tables are available in the API for extracting information about
registered data types. To see an example of a function being used, go to
the file and line indicated in the table. Note that data type IDs can also be
used with all the standard data type access methods in simstruc.h, such as
ssGetDataTypeSize.

Storage Container Information Functions

Function Description Example of Use

ssGetDataTypeFxpContainWordLen Return the word length
of the storage container
of a registered data type

sfun_user_fxp_
ContainWordLenProbe.c
Line 181

ssGetDataTypeStorageContainCat Return the storage
container category of a
registered data type

sfun_user_fxp_asr.c
Line 294

ssGetDataTypeStorageContainerSize Return the storage
container size of a
registered data type

sfun_user_fxp_
StorageContainSizeProbe.c
Line 171

A-17

A Writing Fixed-Point S-Functions

Signal Data Type Information Functions

Function Description Example of Use

ssGetDataTypeFxpIsSigned Determine whether a
fixed-point registered data
type is signed or unsigned

sfun_user_fxp_asr.c
Line 254

ssGetDataTypeFxpWordLength Return the word length of a
fixed-point registered data
type

sfun_user_fxp_asr.c
Line 255

ssGetDataTypeIsFixedPoint Determine whether a
registered data type is a
fixed-point data type

sfun_user_fxp_const.c
Line 127

ssGetDataTypeIsFloatingPoint Determine whether a
registered data type is a
floating-point data type

sfun_user_fxp_
IsFloatingPointProbe.c
Line 176

ssGetDataTypeIsFxpFltApiCompat Determine whether a
registered data type is
supported by the API for
user-written fixed-point
S-functions

sfun_user_fxp_asr.c
Line 184

ssGetDataTypeIsScalingPow2 Determine whether a
registered data type has
power-of-two scaling

sfun_user_fxp_asr.c
Line 203

ssGetDataTypeIsScalingTrivial Determine whether the
scaling of a registered data
type is slope = 1, bias = 0

sfun_user_fxp_
IsScalingTrivialProbe.c
Line 171

Signal Scaling Information Functions

Function Description Example of Use

ssGetDataTypeBias Return the bias of a registered
data type

sfun_user_fxp_dtprop.c
Line 243

ssGetDataTypeFixedExponent Return the exponent of the slope
of a registered data type

sfun_user_fxp_dtprop.c
Line 237

A-18

Data Type IDs

Signal Scaling Information Functions (Continued)

Function Description Example of Use

ssGetDataTypeFracSlope Return the fractional slope of a
registered data type

sfun_user_fxp_dtprop.c
Line 234

ssGetDataTypeFractionLength Return the fraction length of
a registered data type with
power-of-two scaling

sfun_user_fxp_asr.c
Line 256

ssGetDataTypeTotalSlope Return the total slope of the
scaling of a registered data type

sfun_user_fxp_dtprop.c
Line 240

Converting Data Types
The functions in the following table allow you to convert values between
registered data types in your fixed-point S-function.

Data Type Conversion Functions

Function Description Example of Use

ssFxpConvert Convert a value from one data type to
another data type.

Not Available

ssFxpConvertFromRealWorldValue Convert a value of data type double
to another data type.

Not Available

ssFxpConvertToRealWorldValue Convert a value of any data type to a
double.

Not Available

A-19

A Writing Fixed-Point S-Functions

Overflow Handling and Rounding Methods

In this section...

“Tokens for Overflow Handling and Rounding Methods” on page A-20

“Overflow Logging Structure” on page A-21

Tokens for Overflow Handling and Rounding
Methods
The API for user-written fixed-point S-functions provides functions for some
mathematical operations, such as conversions. When these operations
are performed, a loss of precision or overflow may occur. The tokens in
the following tables allow you to control the way an API function handles
precision loss and overflow. The data type of the overflow handling methods is
fxpModeOverflow. The data type of the rounding modes is fxpModeRounding.

Overflow Handling Tokens

Token Description Example of Use

FXP_OVERFLOW_SATURATE Saturate overflows Not Available

FXP_OVERFLOW_WRAP Wrap overflows Not Available

Rounding Method Tokens

Token Description
Example of
Use

FXP_ROUND_CEIL Round to the closest representable number
in the direction of positive infinity

Not Available

FXP_ROUND_CONVERGENT Round toward nearest integer with ties
rounding to nearest even integer

Not Available

FXP_ROUND_FLOOR Round to the closest representable number
in the direction of negative infinity

Not Available

A-20

Overflow Handling and Rounding Methods

Rounding Method Tokens (Continued)

Token Description
Example of
Use

FXP_ROUND_NEAR Round to the closest representable number,
with the exact midpoint rounded in the
direction of positive infinity

Not Available

FXP_ROUND_NEAR_ML Round toward nearest. Ties round toward
negative infinity for negative numbers,
and toward positive infinity for positive
numbers

Not Available

FXP_ROUND_SIMPLEST Automatically chooses between round
toward floor and round toward zero to
produce generated code that is as efficient
as possible

Not Available

FXP_ROUND_ZERO Round to the closest representable number
in the direction of zero

Not Available

Overflow Logging Structure
Math functions of the API, such as ssFxpConvert, can encounter overflows
when carrying out an operation. These functions provide a mechanism to log
the occurrence of overflows and to report that log back to the caller.

You can use a fixed-point overflow logging structure in your S-function by
defining a variable of data type fxpOverflowLogs. Some API functions, such
as ssFxpConvert, accept a pointer to this structure as an argument. The
function initializes the logging structure and maintains a count of each the
following events that occur while the function is being performed:

• Overflows

• Saturations

• Divide-by-zeros

A-21

A Writing Fixed-Point S-Functions

When a function that accepts a pointer to the logging structure is invoked, the
function initializes the event counts of the structure to zero. The requested
math operations are then carried out. Each time an event is detected, the
appropriate event count is incremented by one.

The following fields contain the event-count information of the structure:

• OverflowOccurred

• SaturationOccurred

• DivisionByZeroOccurred

A-22

Create MEX-Files

Create MEX-Files
To create a MEX-file for a user-written fixed-point C S-function on either
Windows or UNIX® systems:

• In your S-function, include fixedpoint.c and fixedpoint.h. For more
information, see “Structure of the S-Function” on page A-5.

• Pass an extra argument, -lfixedpoint, to the mex command. For example,

mex('sfun_user_fxp_asr.c','-lfixedpoint')

A-23

A Writing Fixed-Point S-Functions

Fixed-Point S-Function Examples

In this section...

“List of Fixed-Point S-Function Examples” on page A-24

“Get the Input Port Data Type” on page A-25

“Set the Output Port Data Type” on page A-27

“Interpret an Input Value” on page A-28

“Write an Output Value” on page A-30

“Determine Output Type Using the Input Type” on page A-31

List of Fixed-Point S-Function Examples
The following files in
matlabroot/toolbox/simulink/fixedandfloat/fxpdemos/ are examples of
S-functions written with the API for user-written fixed-point S-functions:

• sfun_user_fxp_asr.c

• sfun_user_fxp_BiasProbe.c

• sfun_user_fxp_const.c

• sfun_user_fxp_ContainWordLenProbe.c

• sfun_user_fxp_dtprop.c

• sfun_user_fxp_FixedExponentProbe.c

• sfun_user_fxp_FracLengthProbe.c

• sfun_user_fxp_FracSlopeProbe.c

• sfun_user_fxp_IsFixedPointProbe.c

• sfun_user_fxp_IsFloatingPointProbe.c

• sfun_user_fxp_IsFxpFltApiCompatProbe.c

• sfun_user_fxp_IsScalingPow2Probe.c

• sfun_user_fxp_IsScalingTrivialProbe.c

• sfun_user_fxp_IsSignedProbe.c

A-24

Fixed-Point S-Function Examples

• sfun_user_fxp_prodsum.c

• sfun_user_fxp_StorageContainCatProbe.c

• sfun_user_fxp_StorageContainSizeProbe.c

• sfun_user_fxp_TotalSlopeProbe.c

• sfun_user_fxp_U32BitRegion.c

• sfun_user_fxp_WordLengthProbe.c

The sections that follow present smaller portions of code that focus on specific
kinds of tasks you might want to perform within your S-function.

Get the Input Port Data Type
Within your S-function, you might need to know the data types of different
ports, run-time parameters, and DWorks. In each case, you will need to get
the data type ID of the data type, and then use functions from this API to
extract information about the data type.

For example, suppose you need to know the data type of your input port. To
do this,

1 Use ssGetInputPortDataType. The data type ID of the input port is
returned.

2 Use API functions to extract information about the data type.

The following lines of example code are from sfun_user_fxp_dtprop.c.

In lines 191 and 192, ssGetInputPortDataType is used to get the data type
ID for the two input ports of the S-function:

dataTypeIdU0 = ssGetInputPortDataType(S, 0);
dataTypeIdU1 = ssGetInputPortDataType(S, 1);

Further on in the file, the data type IDs are used with API functions to get
information about the input port data types. In lines 205 through 226, a check
is made to see whether the input port data types are single or double:

storageContainerU0 = ssGetDataTypeStorageContainCat(S,

A-25

A Writing Fixed-Point S-Functions

dataTypeIdU0);
storageContainerU1 = ssGetDataTypeStorageContainCat(S,

dataTypeIdU1);

if (storageContainerU0 == FXP_STORAGE_DOUBLE ||
storageContainerU1 == FXP_STORAGE_DOUBLE)

{
/* Doubles take priority over all other rules.
* If either of first two inputs is double,
* then third input is set to double.
*/
dataTypeIdU2Desired = SS_DOUBLE;

}
else if (storageContainerU0 == FXP_STORAGE_SINGLE ||

storageContainerU1 == FXP_STORAGE_SINGLE)
{

/* Singles take priority over all other rules,
* except doubles.
* If either of first two inputs is single
* then third input is set to single.
*/
dataTypeIdU2Desired = SS_SINGLE;

}
else

In lines 227 through 244, additional API functions are used to get information
about the data types if they are neither single nor double:

{

isSignedU0 = ssGetDataTypeFxpIsSigned(S, dataTypeIdU0);

isSignedU1 = ssGetDataTypeFxpIsSigned(S, dataTypeIdU1);

wordLengthU0 = ssGetDataTypeFxpWordLength(S, dataTypeIdU0);

wordLengthU1 = ssGetDataTypeFxpWordLength(S, dataTypeIdU1);

fracSlopeU0 = ssGetDataTypeFracSlope(S, dataTypeIdU0);

fracSlopeU1 = ssGetDataTypeFracSlope(S, dataTypeIdU1);

fixedExponentU0 = ssGetDataTypeFixedExponent(S,dataTypeIdU0);

fixedExponentU1 = ssGetDataTypeFixedExponent(S,dataTypeIdU1);

A-26

Fixed-Point S-Function Examples

totalSlopeU0 = ssGetDataTypeTotalSlope(S, dataTypeIdU0);

totalSlopeU1 = ssGetDataTypeTotalSlope(S, dataTypeIdU1);

biasU0 = ssGetDataTypeBias(S, dataTypeIdU0);

biasU1 = ssGetDataTypeBias(S, dataTypeIdU1);

}

The functions used above return whether the data types are signed or
unsigned, as well as their word lengths, fractional slopes, exponents, total
slopes, and biases. Together, these quantities give full information about the
fixed-point data types of the input ports.

Set the Output Port Data Type
You may want to set the data type of various ports, run-time parameters, or
DWorks in your S-function.

For example, suppose you want to set the output port data type of your
S-function. To do this,

1 Register a data type by using one of the functions listed in the table Data
Type Registration Functions on page A-15. A data type ID is returned.

Alternately, you can use one of the predefined data type IDs of the Simulink
built-in data types.

2 Use ssSetOutputPortDataType with the data type ID from Step 1 to set
the output port to the desired data type.

In the example below from lines 336 - 352 of sfun_user_fxp_const.c,
ssRegisterDataTypeFxpBinaryPoint is used to register the data type.
ssSetOutputPortDataType then sets the output data type either to the given
data type ID, or to be dynamically typed:

/* Register data type
*/

if (notSizesOnlyCall)
{

DTypeId DataTypeId = ssRegisterDataTypeFxpBinaryPoint(
S,

A-27

A Writing Fixed-Point S-Functions

V_ISSIGNED,
V_WORDLENGTH,
V_FRACTIONLENGTH,

1 /* true means obey data type override setting for
this subsystem */);

ssSetOutputPortDataType(S, 0, DataTypeId);
}
else
{

ssSetOutputPortDataType(S, 0, DYNAMICALLY_TYPED);
}

Interpret an Input Value
Suppose you need to get the value of the signal on your input port to use
in your S-function. You should write your code so that the pointer to the
input value is properly typed, so that the values read from the input port are
interpreted correctly. To do this, you can use these steps, which are shown
in the example code below:

1 Create a void pointer to the value of the input signal.

2 Get the data type ID of the input port using ssGetInputPortDataType.

3 Use the data type ID to get the storage container type of the input.

4 Have a case for each input storage container type you want to handle.
Within each case, you will need to perform the following in some way:

• Create a pointer of the correct type according to the storage container,
and cast the original void pointer into the new fully typed pointer (see a
and c).

• You can now store and use the value by dereferencing the new, fully
typed pointer (see b and d).

For example,

static void mdlOutputs(SimStruct *S, int_T tid)
{

const void *pVoidIn =

A-28

Fixed-Point S-Function Examples

(const void *)ssGetInputPortSignal(S, 0); (1)

DTypeId dataTypeIdU0 = ssGetInputPortDataType(S, 0); (2)

fxpStorageContainerCategory storageContainerU0 =
ssGetDataTypeStorageContainCat(S, dataTypeIdU0); (3)

switch (storageContainerU0)
{

case FXP_STORAGE_UINT8: (4)
{

const uint8_T *pU8_Properly_Typed_Pointer_To_U0; (a)

uint8_T u8_Stored_Integer_U0; (b)

pU8_Properly_Typed_Pointer_To_U0 =
(const uint8_T *)pVoidIn; (c)

u8_Stored_Integer_U0 =
*pU8_Properly_Typed_Pointer_To_U0; (d)

<snip: code that uses input when it's in a uint8_T>
}
break;

case FXP_STORAGE_INT8: (4)
{

const int8_T *pS8_Properly_Typed_Pointer_To_U0; (a)

int8_T s8_Stored_Integer_U0; (b)

pS8_Properly_Typed_Pointer_To_U0 =
(const int8_T *)pVoidIn; (c)

s8_Stored_Integer_U0 =
*pS8_Properly_Typed_Pointer_To_U0; (d)

<snip: code that uses input when it's in a int8_T>
}
break;

A-29

A Writing Fixed-Point S-Functions

Write an Output Value
Suppose you need to write the value of the output signal to the output port
in your S-function. You should write your code so that the pointer to the
output value is properly typed. To do this, you can use these steps, which are
followed in the example code below:

1 Create a void pointer to the value of the output signal.

2 Get the data type ID of the output port using ssGetOutputPortDataType.

3 Use the data type ID to get the storage container type of the output.

4 Have a case for each output storage container type you want to handle.
Within each case, you will need to perform the following in some way:

• Create a pointer of the correct type according to the storage container,
and cast the original void pointer into the new fully typed pointer (see a
and c).

• You can now write the value by dereferencing the new, fully typed
pointer (see b and d).

For example,

static void mdlOutputs(SimStruct *S, int_T tid)

{

<snip>

void *pVoidOut = ssGetOutputPortSignal(S, 0); (1)

DTypeId dataTypeIdY0 = ssGetOutputPortDataType(S, 0); (2)

fxpStorageContainerCategory storageContainerY0 =

ssGetDataTypeStorageContainCat(S,

dataTypeIdY0); (3)

switch (storageContainerY0)

{

case FXP_STORAGE_UINT8: (4)

{

const uint8_T *pU8_Properly_Typed_Pointer_To_Y0; (a)

A-30

Fixed-Point S-Function Examples

uint8_T u8_Stored_Integer_Y0; (b)

<snip: code that puts the desired output stored integer

value in to temporary variable u8_Stored_Integer_Y0>

pU8_Properly_Typed_Pointer_To_Y0 =

(const uint8_T *)pVoidOut; (c)

*pU8_Properly_Typed_Pointer_To_Y0 =

u8_Stored_Integer_Y0; (d)

}

break;

case FXP_STORAGE_INT8: (4)

{

const int8_T *pS8_Properly_Typed_Pointer_To_Y0; (a)

int8_T s8_Stored_Integer_Y0; (b)

<snip: code that puts the desired output stored integer

value in to temporary variable s8_Stored_Integer_Y0>

pS8_Properly_Typed_Pointer_To_Y0 =

(const int8_T *)pVoidY0; (c)

*pS8_Properly_Typed_Pointer_To_Y0 =

s8_Stored_Integer_Y0; (d)

}

break;

<snip>

Determine Output Type Using the Input Type
The following sample code from lines 243 through 261 of sfun_user_fxp_asr.c
gives an example of using the data type of the input to your S-function to
calculate the output data type. Notice that in this code

A-31

A Writing Fixed-Point S-Functions

• The output is signed or unsigned to match the input (a).

• The output is the same word length as the input (b).

• The fraction length of the output depends on the input fraction length
and the number of shifts (c).

#define MDL_SET_INPUT_PORT_DATA_TYPE
static void mdlSetInputPortDataType(SimStruct *S, int port,

DTypeId dataTypeIdInput)
{

if (isDataTypeSupported(S, dataTypeIdInput))
{

DTypeId dataTypeIdOutput;

ssSetInputPortDataType(S, port, dataTypeIdInput);

dataTypeIdOutput = ssRegisterDataTypeFxpBinaryPoint(
S,

ssGetDataTypeFxpIsSigned(S, dataTypeIdInput), (a)
ssGetDataTypeFxpWordLength(S, dataTypeIdInput), (b)
ssGetDataTypeFractionLength(S, dataTypeIdInput)

- V_NUM_BITS_TO_SHIFT_RGHT, (c)
0 /* false means do NOT obey data type override

setting for this subsystem */);

ssSetOutputPortDataType(S, 0, dataTypeIdOutput);
}

}

A-32

API Function Reference

API Function Reference

A-33

ssFxpConvert

Purpose Convert value from one data type to another

Syntax extern void ssFxpConvert (SimStruct *S,
void *pVoidDest,
size_t sizeofDest,
DTypeId dataTypeIdDest,
const void *pVoidSrc,
size_t sizeofSrc,
DTypeId dataTypeIdSrc,
fxpModeRounding roundMode,
fxpModeOverflow overflowMode,
fxpOverflowLogs *pFxpOverflowLogs)

Arguments S
SimStruct representing an S-function block.

pVoidDest
Pointer to the converted value.

sizeofDest
Size in memory of the converted value.

dataTypeIdDest
Data type ID of the converted value.

pVoidSrc
Pointer to the value you want to convert.

sizeofSrc
Size in memory of the value you want to convert.

dataTypeIdSrc
Data type ID of the value you want to convert.

roundMode
Rounding mode you want to use if a loss of precision is necessary
during the conversion. Possible values are FXP_ROUND_CEIL,
FXP_ROUND_CONVERGENT, FXP_ROUND_FLOOR, FXP_ROUND_NEAR,
FXP_ROUND_NEAR_ML, FXP_ROUND_SIMPLEST and FXP_ROUND_ZERO.

A-34

ssFxpConvert

overflowMode
Overflow mode you want to use if overflow occurs during the
conversion. Possible values are FXP_OVERFLOW_SATURATE and
FXP_OVERFLOW_WRAP.

pFxpOverflowLogs
Pointer to the fixed-point overflow logging structure.

Description This function converts a value of any registered built-in or fixed-point
data type to any other registered built-in or fixed-point data type.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

TLC
Functions

None

See Also ssFxpConvertFromRealWorldValue, ssFxpConvertToRealWorldValue

A-35

ssFxpConvertFromRealWorldValue

Purpose Convert value of data type double to another data type

Syntax extern void ssFxpConvertFromRealWorldValue
(SimStruct *S,
void *pVoidDest,
size_t sizeofDest,
DTypeId dataTypeIdDest,
double dblRealWorldValue,
fxpModeRounding roundMode,
fxpModeOverflow overflowMode,
fxpOverflowLogs *pFxpOverflowLogs)

Arguments S
SimStruct representing an S-function block.

pVoidDest
Pointer to the converted value.

sizeofDest
Size in memory of the converted value.

dataTypeIdDest
Data type ID of the converted value.

dblRealWorldValue
Double value you want to convert.

roundMode
Rounding mode you want to use if a loss of precision is necessary
during the conversion. Possible values are FXP_ROUND_CEIL,
FXP_ROUND_CONVERGENT, FXP_ROUND_FLOOR, FXP_ROUND_NEAR,
FXP_ROUND_NEAR_ML, FXP_ROUND_SIMPLEST and FXP_ROUND_ZERO.

overflowMode
Overflow mode you want to use if overflow occurs during the
conversion. Possible values are FXP_OVERFLOW_SATURATE and
FXP_OVERFLOW_WRAP.

pFxpOverflowLogs
Pointer to the fixed-point overflow logging structure.

A-36

ssFxpConvertFromRealWorldValue

Description This function converts a double value to any registered built-in or
fixed-point data type.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

TLC
Functions

None

See Also ssFxpConvert, ssFxpConvertToRealWorldValue

A-37

ssFxpConvertToRealWorldValue

Purpose Convert value of any data type to double

Syntax extern double ssFxpConvertToRealWorldValue (SimStruct *S,
const void *pVoidSrc,
size_t sizeofSrc,
DTypeId dataTypeIdSrc)

Arguments S
SimStruct representing an S-function block.

pVoidSrc
Pointer to the value you want to convert.

sizeofSrc
Size in memory of the value you want to convert.

dataTypeIdSrc
Data type ID of the value you want to convert.

Description This function converts a value of any registered built-in or fixed-point
data type to a double.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

TLC
Functions

None

See Also ssFxpConvert, ssFxpConvertFromRealWorldValue

A-38

ssFxpGetU32BitRegion

Purpose Return stored integer value for 32-bit region of real, scalar signal
element

Syntax extern uint32 ssFxpGetU32BitRegion(SimStruct *S,
const void *pVoid
DTypeId dataTypeId
unsigned int regionIndex)

Arguments S
SimStruct representing an S-function block.

pVoid
Pointer to the storage container of the real, scalar signal element
in which the 32-bit region of interest resides.

dataTypeId
Data type ID of the registered data type corresponding to the
signal.

regionIndex
Index of the 32-bit region whose stored integer value you want to
retrieve, where 0 accesses the least significant 32-bit region.

Description This function returns the stored integer value in the 32-bit region
specified by regionIndex, associated with the fixed-point data type
designated by dataTypeId. You can use this function with any
fixed-point data type, including those with word sizes less than 32 bits.
If the fixed-point word size is less than 32 bits, the remaining bits are
sign extended.

This function generates an error if dataTypeId represents a
floating-point data type.

To view an example model whose S-functions use the
ssFxpGetU32BitRegion function, at the MATLAB prompt, enter
fxpdemo_sfun_user_U32BitRegion.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

A-39

ssFxpGetU32BitRegion

Languages C

See Also ssFxpSetU32BitRegion

A-40

ssFxpGetU32BitRegionCompliant

Purpose Determine whether S-function is compliant with the U32 bit region
interface

Syntax extern ssFxpSGetU32BitRegionCompliant(SimStruct *S,
int *result)

Arguments S
SimStruct representing an S-function block.

result

• 1 if S-function calls ssFxpSetU32BitRegionCompliant to
declare compliance with memory footprint for fixed-point data
types with 33 or more bits

• 0 if S-function does not call ssFxpSetU32BitRegionCompliant

Description This function checks whether the S-function calls
ssFxpSetU32BitRegionCompliant to declare compliance with
the memory footprint for fixed-point data types with 33 or more bits.
Before calling any other Fixed-Point Designer API function on data
with 33 or more bits, you must call ssFxpSetU32BitRegionCompliant
as follows:

ssFxpSetU32BitRegionCompliant(S,1);

Note The Fixed-Point Designer software assumes that S-functions
that use fixed-point data types with 33 or more bits without calling
ssFxpSetU32BitRegionCompliant are using the obsolete memory
footprint that existed until R2007b. Either redesign these S-functions
or isolate them using the library fixpt_legacy_sfun_support.

.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

A-41

ssFxpGetU32BitRegionCompliant

Languages C

See Also ssFxpSetU32BitRegionCompliant

A-42

ssFxpSetU32BitRegion

Purpose Set stored integer value for 32-bit region of real, scalar signal element

Syntax extern ssFxpSetU32BitRegion(SimStruct *S,
void *pVoid
DTypeId dataTypeId
uint32 regionValue
unsigned int regionIndex)

Arguments S
SimStruct representing an S-function block.

pVoid
Pointer to the storage container of the real, scalar signal element
in which the 32-bit region of interest resides.

dataTypeId
Data type ID of the registered data type corresponding to the
signal.

regionValue
Stored integer value that you want to assign to a 32-bit region.

regionIndex
Index of the 32-bit region whose stored integer value you want to
set, where 0 accesses the least significant 32-bit region.

Description This function sets regionValue as the stored integer value of the 32-bit
region specified by regionIndex, associated with the fixed-point data
type designated by dataTypeId. You can use this function with any
fixed-point data type, including those with word sizes less than 32
bits. If the fixed-point word size is less than 32 bits, ensure that the
remaining bits are sign extended.

This function generates an error if dataTypeId represents a
floating-point data type, or if the stored integer value that you set is
invalid.

A-43

ssFxpSetU32BitRegion

To view an example model whose S-functions use the
ssFxpSetU32BitRegion function, at the MATLAB prompt, enter
fxpdemo_sfun_user_U32BitRegion.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

See Also ssFxpGetU32BitRegion

A-44

ssFxpSetU32BitRegionCompliant

Purpose Declare compliance with the U32 bit region interface for fixed-point
data types with 33 or more bits

Syntax extern ssFxpSetU32BitRegionCompliant(SimStruct *S,
int Value)

Arguments S
SimStruct representing an S-function block.

Value

• 1 declare compliance with memory footprint for fixed-point
data types with 33 or more bits.

Description This function declares compliance with the Fixed-Point Designer bit
region interface for data types with 33 or more bits. The memory
footprint for data types with 33 or more bits varies between MATLAB
host platforms and might change between software releases. To
make an S-function robust to memory footprint changes, use the U32
bit region interface. You can use identical source code on different
MATLAB host platforms and with any software release from R2008b.
If the memory footprint changes between releases, you do not have to
recompile U32 bit region compliant S-functions.

To make an S-function U32 bit region compliant, before calling any
other Fixed-Point Designer API function on data with 33 or more bits,
you must call this function as follows:

ssFxpSetU32BitRegionCompliant(S,1);

If an S-function block contains a fixed-point data type with 33 or more
bits, call this function in mdlInitializeSizes().

A-45

ssFxpSetU32BitRegionCompliant

Note The Fixed-Point Designer software assumes that S-functions
that use fixed-point data types with 33 or more bits without calling
ssFxpSetU32BitRegionCompliant are using the obsolete memory
footprint that existed until R2007b. Either redesign these S-functions
or isolate them using the library fixpt_legacy_sfun_support.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

See Also ssFxpGetU32BitRegionCompliant

A-46

ssGetDataTypeBias

Purpose Return bias of registered data type

Syntax extern double ssGetDataTypeBias(SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know the bias.

Description Fixed-point numbers can be represented as

real-world value = (slope × integer) + bias.

This function returns the bias of a registered data type:

• For both trivial scaling and power-of-two scaling, 0 is returned.

• If the registered data type is ScaledDouble, the bias returned is that
of the nonoverridden data type.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

TLC
Functions

FixPt_DataTypeBias

See Also ssGetDataTypeFixedExponent, ssGetDataTypeFracSlope,
ssGetDataTypeTotalSlope

A-47

ssGetDataTypeFixedExponent

Purpose Return exponent of slope of registered data type

Syntax extern int ssGetDataTypeFixedExponent (SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know the exponent.

Description Fixed-point numbers can be represented as

real-world value = (slope × integer) + bias,

where the slope can be expressed as

slope = fractional slope × 2exponent.

This function returns the exponent of a registered fixed-point data type:

• For power-of-two scaling, the exponent is the negative of the fraction
length.

• If the data type has trivial scaling, including for data types single
and double, the exponent is 0.

• If the registered data type is ScaledDouble, the exponent returned is
that of the nonoverridden data type.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

A-48

ssGetDataTypeFixedExponent

TLC
Functions

FixPt_DataTypeFixedExponent

See Also ssGetDataTypeBias, ssGetDataTypeFracSlope,
ssGetDataTypeTotalSlope

A-49

ssGetDataTypeFracSlope

Purpose Return fractional slope of registered data type

Syntax extern double ssGetDataTypeFracSlope(SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know the fractional slope.

Description Fixed-point numbers can be represented as

real-world value = (slope × integer) + bias,

where the slope can be expressed as

slope = fractional slope × 2exponent.

This function returns the fractional slope of a registered fixed-point
data type. To get the total slope, use ssGetDataTypeTotalSlope:

• For power-of-two scaling, the fractional slope is 1.

• If the data type has trivial scaling, including data types single and
double, the fractional slope is 1.

• If the registered data type is ScaledDouble, the fractional slope
returned is that of the nonoverridden data type.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

A-50

ssGetDataTypeFracSlope

TLC
Functions

FixPt_DataTypeFracSlope

See Also ssGetDataTypeBias, ssGetDataTypeFixedExponent,
ssGetDataTypeTotalSlope

A-51

ssGetDataTypeFractionLength

Purpose Return fraction length of registered data type with power-of-two scaling

Syntax extern int ssGetDataTypeFractionLength (SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know the fraction length.

Description This function returns the fraction length, or the number of bits to the
right of the binary point, of the data type designated by dataTypeId.

This function errors out when ssGetDataTypeIsScalingPow2 returns
FALSE.

This function also errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

TLC
Functions

FixPt_DataTypeFractionLength

See Also ssGetDataTypeFxpWordLength

A-52

ssGetDataTypeFxpContainWordLen

Purpose Return word length of storage container of registered data type

Syntax extern int ssGetDataTypeFxpContainWordLen (SimStruct *S,
DTypeId dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know the container word length.

Description This function returns the word length, in bits, of the storage
container of the fixed-point data type designated by dataTypeId.
This function does not return the size of the storage container or the
word length of the data type. To get the storage container size, use
ssGetDataTypeStorageContainerSize. To get the data type word
length, use ssGetDataTypeFxpWordLength.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

Examples An sfix24_En10 data type has a word length of 24, but is actually
stored in 32 bits during simulation. For this signal,

• ssGetDataTypeFxpContainWordLen returns 32, which is the storage
container word length in bits.

• ssGetDataTypeFxpWordLength returns 24, which is the data type
word length in bits.

• ssGetDataTypeStorageContainerSize or sizeof() returns 4,
which is the storage container size in bytes.

A-53

ssGetDataTypeFxpContainWordLen

TLC
Functions

FixPt_DataTypeFxpContainWordLen

See Also ssGetDataTypeFxpWordLength, ssGetDataTypeStorageContainCat,
ssGetDataTypeStorageContainerSize

A-54

ssGetDataTypeFxpIsSigned

Purpose Determine whether fixed-point registered data type is signed or
unsigned

Syntax extern int ssGetDataTypeFxpIsSigned (SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered fixed-point data type for which you
want to know whether it is signed.

Description This function determines whether a registered fixed-point data type is
signed:

• If the fixed-point data type is signed, the function returns TRUE. If
the fixed-point data type is unsigned, the function returns FALSE.

• If the registered data type is ScaledDouble, the function returns TRUE
or FALSE according to the signedness of the nonoverridden data type.

• If the registered data type is single or double, this function errors
out.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

TLC
Functions

FixPt_DataTypeFxpIsSigned

A-55

ssGetDataTypeFxpWordLength

Purpose Return word length of fixed-point registered data type

Syntax extern int ssGetDataTypeFxpWordLength (SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered fixed-point data type for which you
want to know the word length.

Description This function returns the word length of the fixed-point data type
designated by dataTypeId. This function does not return the word
length of the container of the data type. To get the container word
length, use ssGetDataTypeFxpContainWordLen:

• If the registered data type is fixed point, this function returns the
total word length including any sign bits, integer bits, and fractional
bits.

• If the registered data type is ScaledDouble, this function returns the
word length of the nonoverridden data type.

• If registered data type is single or double, this function errors out.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

Examples An sfix24_En10 data type has a word length of 24, but is actually
stored in 32 bits during simulation. For this signal,

A-56

ssGetDataTypeFxpWordLength

• ssGetDataTypeFxpWordLength returns 24, which is the data type
word length in bits.

• ssGetDataTypeFxpContainWordLen returns 32, which is the storage
container word length in bits.

• ssGetDataTypeStorageContainerSize or sizeof() returns 4,
which is the storage container size in bytes.

TLC
Functions

FixPt_DataTypeFxpWordLength

See Also ssGetDataTypeFxpContainWordLen, ssGetDataTypeFractionLength,
ssGetDataTypeStorageContainerSize

A-57

ssGetDataTypeIsFixedPoint

Purpose Determine whether registered data type is fixed-point data type

Syntax extern int ssGetDataTypeIsFixedPoint(SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know whether it is fixed-point.

Description This function determines whether a registered data type is a fixed-point
data type:

• This function returns TRUE if the registered data type is fixed-point,
and FALSE otherwise.

• If the registered data type is a pure Simulink integer, such as int8,
this function returns TRUE.

• If the registered data type is ScaledDouble, this function returns
FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

TLC
Functions

FixPt_DataTypeIsFixedPoint

See Also ssGetDataTypeIsFloatingPoint

A-58

ssGetDataTypeIsFloatingPoint

Purpose Determine whether registered data type is floating-point data type

Syntax extern int ssGetDataTypeIsFloatingPoint (SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know whether it is floating-point.

Description This function determines whether a registered data type is single or
double:

• If the registered data type is either single or double, this function
returns TRUE, and FALSE is returned otherwise.

• If the registered data type is ScaledDouble, this function returns
FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

TLC
Functions

FixPt_DataTypeIsFloatingPoint

See Also ssGetDataTypeIsFixedPoint

A-59

ssGetDataTypeIsFxpFltApiCompat

Purpose Determine whether registered data type is supported by API for
user-written fixed-point S-functions

Syntax extern int ssGetDataTypeIsFxpFltApiCompat(SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
determine compatibility with the API for user-written fixed-point
S-functions.

Description This function determines whether the registered data type is supported
by the API for user-written fixed-point S-functions. The supported data
types are all standard Simulink data types, all fixed-point data types,
and data type override data types.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

TLC
Functions

None. Checking for API-compatible data types is done in simulation.
Checking for API-compatible data types is not supported in TLC.

A-60

ssGetDataTypeIsScalingPow2

Purpose Determine whether registered data type has power-of-two scaling

Syntax extern int ssGetDataTypeIsScalingPow2 (SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know whether the scaling is strictly power-of-two.

Description This function determines whether the registered data type is scaled
strictly by a power of two. Fixed-point numbers can be represented as

real-world value = (slope × integer) + bias,

where the slope can be expressed as

slope = fractional slope × 2exponent.

When bias = 0 and fractional slope = 1, the only scaling factor that
remains is a power of two:

real-world value = (2exponent × integer) = (2-fraction length × integer).

Trivial scaling is considered a case of power-of-two scaling, with the
exponent being equal to zero.

Note Many fixed-point algorithms are designed to accept
only power-of-two scaling. For these algorithms, you can call
ssGetDataTypeIsScalingPow2 in mdlSetInputPortDataType and
mdlSetOutputPortDataType, to prevent unsupported data types from
being accepted.

A-61

ssGetDataTypeIsScalingPow2

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

TLC
Functions

FixPt_DataTypeIsScalingPow2

See Also ssGetDataTypeIsScalingTrivial

A-62

ssGetDataTypeIsScalingTrivial

Purpose Determine whether scaling of registered data type is slope = 1, bias = 0

Syntax extern int ssGetDataTypeIsScalingTrivial (SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know whether the scaling is trivial.

Description This function determines whether the scaling of a registered data type
is trivial. In [Slope Bias] representation, fixed-point numbers can be
represented as

real-world value = (slope × integer) + bias.

In the trivial case, slope = 1 and bias = 0.

In terms of binary-point-only scaling, the binary point is to the right
of the least significant bit for trivial scaling, meaning that the fraction
length is zero:

real-world value = integer × 2–fraction length = integer × 20.

In either case, trivial scaling means that the real-world value is simply
equal to the stored integer value:

real-world value = integer.

Scaling is always trivial for pure integers, such as int8, and also for the
true floating-point types single and double.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

A-63

ssGetDataTypeIsScalingTrivial

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

TLC
Functions

FixPt_DataTypeIsScalingTrivial

See Also ssGetDataTypeIsScalingPow2

A-64

ssGetDataTypeNumberOfChunks

Purpose Return number of chunks in multiword storage container of registered
data type

Syntax extern int ssGetDataTypeNumberOfChunks(SimStruct *S,
DTypeId dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know the number of chunks in its multiword storage container.

Description This function returns the number of chunks in the multiword storage
container of the fixed-point data type designated by dataTypeId.
This function is valid only for a registered data type whose storage
container uses a multiword representation. You can use the
ssGetDataTypeStorageContainCat function to identify the storage
container category; for multiword storage containers, the function
returns the category FXP_STORAGE_MULTIWORD.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

See Also ssGetDataTypeStorageContainCat

A-65

ssGetDataTypeStorageContainCat

Purpose Return storage container category of registered data type

Syntax extern fxpStorageContainerCategory
ssGetDataTypeStorageContainCat(SimStruct *S, DTypeId dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know the container category.

Description This function returns the storage container category of the data type
designated by dataTypeId. The container category returned by this
function is used to store input and output signals, run-time parameters,
and DWorks during Simulink simulations.

During simulation, fixed-point signals are held in one of the types of
containers shown in the following table. Therefore in many cases,
signals are represented in containers with more bits than their actual
word length.

Fixed-Point Storage Containers

Container Category
Signal
Word Length

Container
Word
Length Container Size

FXP_STORAGE_INT8 (signed)
FXP_STORAGE_UINT8 (unsigned)

1 to 8 bits 8 bits 1 byte

FXP_STORAGE_INT16 (signed)
FXP_STORAGE_UINT16 (unsigned)

9 to 16 bits 16 bits 2 bytes

A-66

ssGetDataTypeStorageContainCat

Fixed-Point Storage Containers (Continued)

Container Category
Signal
Word Length

Container
Word
Length Container Size

FXP_STORAGE_INT32 (signed)
FXP_STORAGE_UINT32 (unsigned)

17 to 32 bits 32 bits 4 bytes

FXP_STORAGE_OTHER_SINGLE_WORD 33 to word
length of long
data type

Length of
long data
type

Length of long data
type

FXP_STORAGE_MULTIWORD Greater than
the word
length of long
data type to
128 bits

Multiples of
length of long
data type to
128 bits

Multiples of length
of long data type to
128 bits

When the number of bits in the signal word length is less than the size
of the container, the word length bits are always stored in the least
significant bits of the container. The remaining container bits must be
sign extended to fit the bits of the container:

• If the data type is unsigned, then the sign-extended bits must be
cleared to zero.

• If the data type is signed, then the sign-extended bits must be set to
one for strictly negative numbers, and cleared to zero otherwise.

The ssGetDataTypeStorageContainCat function can also return the
following values.

A-67

ssGetDataTypeStorageContainCat

Other Storage Containers

Container Category Description

FXP_STORAGE_UNKNOWN Returned if the storage container category is unknown

FXP_STORAGE_SINGLE Container type for a Simulink single

FXP_STORAGE_DOUBLE Container type for a Simulink double

FXP_STORAGE_SCALEDDOUBLE Container type for a data type that has been overridden
with Scaled double

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

TLC
Functions

Because the mapping of storage containers in simulation to storage
containers in code generation is not one-to-one, the TLC functions
for storage containers in TLC are different from those in simulation.
Refer to “Storage Container TLC Functions” on page A-11 for more
information:

• FixPt_DataTypeNativeType

• FixPt_DataTypeStorageDouble

• FixPt_DataTypeStorageSingle

• FixPt_DataTypeStorageScaledDouble

• FixPt_DataTypeStorageSInt

• FixPt_DataTypeStorageUInt

• FixPt_DataTypeStorageSLong

A-68

ssGetDataTypeStorageContainCat

• FixPt_DataTypeStorageULong

• FixPt_DataTypeStorageSShort

• FixPt_DataTypeStorageUShort

See Also ssGetDataTypeStorageContainerSize

A-69

ssGetDataTypeStorageContainerSize

Purpose Return storage container size of registered data type

Syntax extern size_t ssGetDataTypeStorageContainerSize
(SimStruct *S, DTypeId

dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know the container size.

Description This function returns the storage container size of the data type
designated by dataTypeId. This function returns the same value as
would the sizeof() function; it does not return the word length of
either the storage container or the data type. To get the word length of
the storage container, use ssGetDataTypeFxpContainWordLen. To get
the word length of the data type, use ssGetDataTypeFxpWordLength.

The container of the size returned by this function stores input and
output signals, run-time parameters, and DWorks during Simulink
simulations. It is also the appropriate size measurement to pass to
functions like memcpy().

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

Examples An sfix24_En10 data type has a word length of 24, but is actually
stored in 32 bits during simulation. For this signal,

A-70

ssGetDataTypeStorageContainerSize

• ssGetDataTypeStorageContainerSize or sizeof() returns 4,
which is the storage container size in bytes.

• ssGetDataTypeFxpContainWordLen returns 32, which is the storage
container word length in bits.

• ssGetDataTypeFxpWordLength returns 24, which is the data type
word length in bits.

TLC
Functions

FixPt_GetDataTypeStorageContainerSize

See Also ssGetDataTypeFxpContainWordLen, ssGetDataTypeFxpWordLength,
ssGetDataTypeStorageContainCat

A-71

ssGetDataTypeTotalSlope

Purpose Return total slope of scaling of registered data type

Syntax extern double ssGetDataTypeTotalSlope (SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know the total slope.

Description Fixed-point numbers can be represented as

real-world value = (slope × integer) + bias,

where the slope can be expressed as

slope = fractional slope × 2exponent.

This function returns the total slope, rather than the fractional slope, of
the data type designated by dataTypeId. To get the fractional slope,
use ssGetDataTypeFracSlope:

• If the registered data type has trivial scaling, including double and
single data types, the function returns a total slope of 1.

• If the registered data type is ScaledDouble, the function returns the
total slope of the nonoverridden data type. Refer to the examples
below.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

A-72

ssGetDataTypeTotalSlope

Languages C

Examples The data type sfix32_En4 becomes flts32_En4 with data type override.
The total slope returned by this function in either case is 0.0625 (2-4).

The data type ufix16_s7p98 becomes fltu16_s7p98 with data type
override. The total slope returned by this function in either case is 7.98.

TLC
Functions

FixPt_DataTypeTotalSlope

See Also ssGetDataTypeBias, ssGetDataTypeFixedExponent,
ssGetDataTypeFracSlope

A-73

ssLogFixptInstrumentation

Purpose Record information collected during simulation

Syntax extern void ssLogFixptInstrumentation
(SimStruct *S,
double minValue,
double maxValue,
int countOverflows,
int countSaturations,
int countDivisionsByZero,
char *pStrName)

Arguments S
SimStruct representing an S-function block.

minValue
Minimum output value that occurred during simulation.

maxValue
Maximum output value that occurred during simulation.

countOverflows
Number of overflows that occurred during simulation.

countSaturations
Number of saturations that occurred during simulation.

countDivisionsByZero
Number of divisions by zero that occurred during simulation.

*pStrName
The string argument is currently unused.

Description ssLogFixptInstrumentation records information collected during a
simulation, such as output maximum and minimum, any overflows,
saturations, and divisions by zero that occurred. The Fixed-Point Tool
displays this information after a simulation.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

A-74

ssLogFixptInstrumentation

Languages C

A-75

ssRegisterDataTypeFxpBinaryPoint

Purpose Register fixed-point data type with binary-point-only scaling and return
its data type ID

Syntax extern DTypeId ssRegisterDataTypeFxpBinaryPoint
(SimStruct *S,
int isSigned,
int wordLength,
int fractionLength,
int obeyDataTypeOverride)

Arguments S
SimStruct representing an S-function block.

isSigned
TRUE if the data type is signed.

FALSE if the data type is unsigned.

wordLength
Total number of bits in the data type, including any sign bit.

fractionLength
Number of bits in the data type to the right of the binary point.

obeyDataTypeOverride
TRUE indicates that the Data Type Override setting for the
subsystem is to be obeyed. Depending on the value of Data Type
Override, the resulting data type could be Double, Single,
Scaled double, or the fixed-point data type specified by the other
arguments of the function.

FALSE indicates that the Data Type Override setting is to be
ignored.

Description This function fully registers a fixed-point data type with the Simulink
software and returns a data type ID. Note that unlike the standard
Simulink function ssRegisterDataType, you do not need to take any
additional registration steps. The data type ID can be used to specify

A-76

ssRegisterDataTypeFxpBinaryPoint

the data types of input and output ports, run-time parameters, and
DWork states. It can also be used with all the standard data type access
methods in simstruc.h, such as ssGetDataTypeSize.

Use this function if you want to register a fixed-point data type with
binary-point-only scaling. Alternatively, you can use one of the other
fixed-point registration functions:

• Use ssRegisterDataTypeFxpFSlopeFixExpBias to register a
data type with [Slope Bias] scaling by specifying the word length,
fractional slope, fixed exponent, and bias.

• Use ssRegisterDataTypeFxpScaledDouble to register a scaled
double.

• Use ssRegisterDataTypeFxpSlopeBias to register a data type with
[Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types,
a Fixed-Point Designer software license is checked out. To prevent a
Fixed-Point Designer software license from being checked out when you
simply open or view a model, protect registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY)
ssRegisterDataType...

Note Because of the nature of the assignment of data type IDs, you
should always use API functions to extract information from a data type
ID about a data type in your S-function. For more information, refer
to “Data Type IDs” on page A-13.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

A-77

ssRegisterDataTypeFxpBinaryPoint

TLC
Functions

None. Data types should be registered in the Simulink software.
Registration of data types is not supported in TLC.

See Also ssRegisterDataTypeFxpFSlopeFixExpBias,
ssRegisterDataTypeFxpScaledDouble,
ssRegisterDataTypeFxpSlopeBias

A-78

ssRegisterDataTypeFxpFSlopeFixExpBias

Purpose Register fixed-point data type with [Slope Bias] scaling specified in
terms of fractional slope, fixed exponent, and bias, and return its data
type ID

Syntax extern DTypeId ssRegisterDataTypeFxpFSlopeFixExpBias
(SimStruct *S,
int isSigned,
int wordLength,
double fractionalSlope,
int fixedExponent,
double bias,
int obeyDataTypeOverride)

Arguments S
SimStruct representing an S-function block.

isSigned
TRUE if the data type is signed.

FALSE if the data type is unsigned.

wordLength
Total number of bits in the data type, including any sign bit.

fractionalSlope
Fractional slope of the data type.

fixedExponent
Exponent of the slope of the data type.

bias
Bias of the scaling of the data type.

obeyDataTypeOverride
TRUE indicates that the Data Type Override setting for the
subsystem is to be obeyed. Depending on the value of Data Type
Override, the resulting data type could be Double, Single,
Scaled double, or the fixed-point data type specified by the other
arguments of the function.

A-79

ssRegisterDataTypeFxpFSlopeFixExpBias

FALSE indicates that the Data Type Override setting is to be
ignored.

Description This function fully registers a fixed-point data type with the Simulink
software and returns a data type ID. Note that unlike the standard
Simulink function ssRegisterDataType, you do not need to take any
additional registration steps. The data type ID can be used to specify
the data types of input and output ports, run-time parameters, and
DWork states. It can also be used with all the standard data type access
methods in simstruc.h, such as ssGetDataTypeSize.

Use this function if you want to register a fixed-point data type by
specifying the word length, fractional slope, fixed exponent, and bias.
Alternatively, you can use one of the other fixed-point registration
functions:

• Use ssRegisterDataTypeFxpBinaryPoint to register a data type
with binary-point-only scaling.

• Use ssRegisterDataTypeFxpScaledDouble to register a scaled
double.

• Use ssRegisterDataTypeFxpSlopeBias to register a data type with
[Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types,
a Fixed-Point Designer software license is checked out. To prevent a
Fixed-Point Designer software license from being checked out when you
simply open or view a model, protect registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY)
ssRegisterDataType...

A-80

ssRegisterDataTypeFxpFSlopeFixExpBias

Note Because of the nature of the assignment of data type IDs, you
should always use API functions to extract information from a data type
ID about a data type in your S-function. For more information, refer
to “Data Type IDs” on page A-13.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

TLC
Functions

None. Data types should be registered in the Simulink software.
Registration of data types is not supported in TLC.

See Also ssRegisterDataTypeFxpBinaryPoint,
ssRegisterDataTypeFxpScaledDouble,
ssRegisterDataTypeFxpSlopeBias

A-81

ssRegisterDataTypeFxpScaledDouble

Purpose Register scaled double data type with [Slope Bias] scaling specified in
terms of fractional slope, fixed exponent, and bias, and return its data
type ID

Syntax extern DTypeId ssRegisterDataTypeFxpScaledDouble
(SimStruct *S,
int isSigned,
int wordLength,
double fractionalSlope,
int fixedExponent,
double bias,
int obeyDataTypeOverride)

Arguments S
SimStruct representing an S-function block.

isSigned
TRUE if the data type is signed.

FALSE if the data type is unsigned.

wordLength
Total number of bits in the data type, including any sign bit.

fractionalSlope
Fractional slope of the data type.

fixedExponent
Exponent of the slope of the data type.

bias
Bias of the scaling of the data type.

obeyDataTypeOverride
TRUE indicates that the Data Type Override setting for the
subsystem is to be obeyed. Depending on the value of Data Type
Override, the resulting data type could be Double, Single,

A-82

ssRegisterDataTypeFxpScaledDouble

Scaled double, or the fixed-point data type specified by the other
arguments of the function.

FALSE indicates that the Data Type Override setting is to be
ignored.

Description This function fully registers a fixed-point data type with the Simulink
software and returns a data type ID. Note that unlike the standard
Simulink function ssRegisterDataType, you do not need to take any
additional registration steps. The data type ID can be used to specify
the data types of input and output ports, run-time parameters, and
DWork states. It can also be used with all the standard data type access
methods in simstruc.h, such as ssGetDataTypeSize.

Use this function if you want to register a scaled double data type.
Alternatively, you can use one of the other fixed-point registration
functions:

• Use ssRegisterDataTypeFxpBinaryPoint to register a data type
with binary-point-only scaling.

• Use ssRegisterDataTypeFxpFSlopeFixExpBias to register a
data type with [Slope Bias] scaling by specifying the word length,
fractional slope, fixed exponent, and bias.

• Use ssRegisterDataTypeFxpSlopeBias to register a data type with
[Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types,
a Fixed-Point Designer software license is checked out. To prevent a
Fixed-Point Designer software license from being checked out when you
simply open or view a model, protect registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY)
ssRegisterDataType...

A-83

ssRegisterDataTypeFxpScaledDouble

Note Because of the nature of the assignment of data type IDs, you
should always use API functions to extract information from a data type
ID about a data type in your S-function. For more information, refer
to “Data Type IDs” on page A-13.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

TLC
Functions

None. Data types should be registered in the Simulink software.
Registration of data types is not supported in TLC.

See Also ssRegisterDataTypeFxpBinaryPoint,
ssRegisterDataTypeFxpFSlopeFixExpBias,
ssRegisterDataTypeFxpSlopeBias

A-84

ssRegisterDataTypeFxpSlopeBias

Purpose Register data type with [Slope Bias] scaling and return its data type ID

Syntax extern DTypeId ssRegisterDataTypeFxpSlopeBias
(SimStruct *S,
int isSigned,
int wordLength,
double totalSlope,
double bias,
int obeyDataTypeOverride)

Arguments S
SimStruct representing an S-function block.

isSigned
TRUE if the data type is signed.

FALSE if the data type is unsigned.

wordLength
Total number of bits in the data type, including any sign bit.

totalSlope
Total slope of the scaling of the data type.

bias
Bias of the scaling of the data type.

obeyDataTypeOverride
TRUE indicates that the Data Type Override setting for the
subsystem is to be obeyed. Depending on the value of Data Type
Override, the resulting data type could be Double, Single,
Scaled double, or the fixed-point data type specified by the other
arguments of the function.

FALSE indicates that the Data Type Override setting is to be
ignored.

Description This function fully registers a fixed-point data type with the Simulink
software and returns a data type ID. Note that unlike the standard

A-85

ssRegisterDataTypeFxpSlopeBias

Simulink function ssRegisterDataType, you do not need to take any
additional registration steps. The data type ID can be used to specify
the data types of input and output ports, run-time parameters, and
DWork states. It can also be used with all the standard data type access
methods in simstruc.h, such as ssGetDataTypeSize.

Use this function if you want to register a fixed-point data type
with [Slope Bias] scaling. Alternately, you can use one of the other
fixed-point registration functions:

• Use ssRegisterDataTypeFxpBinaryPoint to register a data type
with binary-point-only scaling.

• Use ssRegisterDataTypeFxpFSlopeFixExpBias to register a
data type with [Slope Bias] scaling by specifying the word length,
fractional slope, fixed exponent, and bias.

• Use ssRegisterDataTypeFxpScaledDouble to register a scaled
double.

If the registered data type is not one of the Simulink built-in data types,
a Fixed-Point Designer software license is checked out. To prevent a
Fixed-Point Designer software license from being checked out when you
simply open or view a model, protect registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY)
ssRegisterDataType...

Note Because of the nature of the assignment of data type IDs, you
should always use API functions to extract information from a data type
ID about a data type in your S-function. For more information, refer
to “Data Type IDs” on page A-13.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

A-86

ssRegisterDataTypeFxpSlopeBias

Languages C

TLC
Functions

None.

See Also ssRegisterDataTypeFxpBinaryPoint,
ssRegisterDataTypeFxpFSlopeFixExpBias,
ssRegisterDataTypeFxpScaledDouble

A-87

	toc
	Fixed-Point Designer for MATLAB Code
	Fixed-Point Concepts
	Fixed-Point Data Types
	Scaling
	Slope Bias Scaling
	What Is Slope Bias Scaling?
	How to Compute Slope and Bias

	Precision and Range
	Range
	Overflow Handling

	Precision
	Rounding Methods

	Arithmetic Operations
	Modulo Arithmetic
	Two's Complement
	Addition and Subtraction
	Multiplication
	Multiplication Data Types
	Multiplication with fimath

	Casts
	Casting from a Shorter Data Type to a Longer Data Type
	Casting from a Longer Data Type to a Shorter Data Type

	fi Objects and C Integer Data Types
	Integer Data Types
	C Integer Data Types
	fi Integer Data Types

	Unary Conversions
	ANSI C Usual Unary Conversions
	fi Usual Unary Conversions

	Binary Conversions
	ANSI C Usual Binary Conversions
	fi Usual Binary Conversions

	Overflow Handling
	ANSI C Overflow Handling
	fi Overflow Handling

	Working with fi Objects
	Ways to Construct fi Objects
	Types of fi Constructors
	Examples of Constructing fi Objects
	Constructing a fi Object with Property Name/Property Value Pairs
	Constructing a fi Object Using a numerictype Object
	Constructing a fi Object Using a fimath Object
	Building fi Object Constructors in a GUI
	Determining Property Precedence
	Copying a fi Object
	Creating fi Objects For Use in a Types Table

	Cast fi Objects
	Overwriting by Assignment
	Ways to Cast with MATLAB Software
	Casting by Subscripted Assignment
	Casting by Conversion Function
	Casting with the reinterpretcast Function
	Casting with the cast Function

	fi Object Properties
	Data Properties
	fimath Properties
	numerictype Properties
	Setting fi Object Properties
	Setting Fixed-Point Properties at Object Creation
	Using Direct Property Referencing with fi

	fi Object Functions

	Fixed-Point Topics
	Set Up Fixed-Point Objects
	Create Fixed-Point Data
	Notation
	Setup
	Default Fixed-Point Attributes
	Specifying Signed and WordLength Properties
	Precision
	Access to Data
	DOUBLE(A)
	A.DOUBLE = ...
	STOREDINTEGER(A)
	Relationship Between Stored Integer Value and Real-World Value
	BIN(A), OCT(A), DEC(A), HEX(A)
	A.BIN = ..., A.OCT = ..., A.DEC = ..., A.HEX = ...
	Specifying FractionLength
	Specifying Properties with Parameter/Value Pairs
	Numeric Type Properties
	Display Preferences
	Display of Real-World Values
	Cleanup

	View Fixed-Point Number Circles
	Fixed-Point Number Definitions
	Unsigned Integers.
	Unsigned Integer Number Circle.
	Unsigned Fixed-Point.
	Unsigned Fixed-Point Number Circle.
	Unsigned Fractional Fixed-Point.
	Unsigned Fractional Fixed-Point Number Circle.
	Signed Two's-Complement Integers.
	Signed Two's-Complement Integer Number Circle.
	Signed Fixed-Point.
	Signed Fixed-Point Number Circle.
	Signed Fractional Fixed-Point.
	Signed Fractional Fixed-Point Number Circle.
	Perform Binary-Point Scaling
	FI Construction
	Fraction Length and the Position of the Binary Point
	The Fraction Length is Positive and Less than the Word Length
	The Fraction Length is Positive and Greater than the Word Length
	The Fraction Length is a Negative Integer and Less than the Word
	The Fraction Length is Set Automatically to the Best Precision P
	Interactive FI Binary Point Scaling Example
	Develop Fixed-Point Algorithms
	Simple Example of Algorithm Development
	Floating-Point Variable Definitions
	Data-Type-Independent Algorithm
	Visualize Dynamic Range
	Instrument Floating-Point Code
	Analyze Information in the Scope
	Fixed-Point Variable Definitions
	Same Data-Type-Independent Algorithm
	Compare and Plot the Floating-Point and Fixed-Point Results
	Plot the Error
	Simulink®
	Assumptions Made for this Example
	Calculate Fixed-Point Sine and Cosine
	Calculating Sine and Cosine Using the CORDIC Algorithm
	Understanding the CORDICSINCOS Sine and Cosine Code
	Visualizing the Sine-Cosine Rotation Mode CORDIC Iterations
	Computing Fixed-point Sine with cordicsin
	Accelerating the Fixed-Point CORDICSINCOS Function with FIACCEL
	Calculating SIN and COS Using Lookup Tables
	Single Lookup Table Based Approach
	Understanding the Lookup Table Based SIN and COS Implementation
	Computing Fixed-point Sine Using SIN
	Comparing the Costs of the Fixed-Point Approximation Algorithms
	References
	Calculate Fixed-Point Arctangent
	Calculating atan2(y,x) Using the CORDIC Algorithm
	Understanding the CORDICATAN2 Code
	Visualizing the Vectoring Mode CORDIC Iterations
	Performing Overall Error Analysis of the CORDIC Algorithm
	Accelerating the Fixed-Point CORDICATAN2 Algorithm Using FIACCEL
	Calculating atan2(y,x) Using Chebyshev Polynomial Approximation
	Comparing the Algorithmic Error of the CORDIC and Polynomial App
	Converting the Floating-Point Chebyshev Polynomial Approximation
	Performing the Overall Error Analysis of the Polynomial Approxim
	Calculating atan2(y,x) Using Lookup Tables
	Single Lookup Table Based Approach
	Understanding the Lookup Table Based ATAN2 Implementation
	Computing Fixed-point Argtangent Using ATAN2
	Comparison of Overall Error Between the Fixed-Point Implementati
	Comparing the Costs of the Fixed-Point Approximation Algorithms
	References
	Compute Sine and Cosine Using CORDIC Rotation Kernel
	Introduction
	CORDIC Kernel Algorithm Using the Rotation Computation Mode
	Efficient MATLAB Implementation of a CORDIC Rotation Kernel Algo
	CORDIC-Based Sine and Cosine Computation Using Normalized Inputs
	References
	Perform QR Factorization Using CORDIC
	Setup
	Defining the CORDIC QR Algorithm
	Defining the CORDIC Givens Rotation
	Defining the Inverse CORDIC Growth Constant
	Exploring CORDIC Growth as a Function of Number of Iterations
	Comparing CORDIC to the Standard Givens Rotation
	Example of CORDIC Rotations
	Determining the Optimal Output Type of Q for Fixed Word Length
	Preventing Overflow in Fixed Point R
	Example of Fixed Point Growth in R
	Increasing Precision in R
	Picking Default Number of Iterations
	Example: QR Factorization Not Unique
	Solving Systems of Equations Without Forming Q
	Links to the Documentation
	Functions Used in this Example
	References
	Cleanup
	Compute Square Root Using CORDIC
	Introduction
	CORDIC Kernel Algorithms Using Hyperbolic Computation Modes
	MATLAB Implementation of a CORDIC Hyperbolic Vectoring Algorithm
	CORDIC-Based Square Root Computation
	MATLAB Implementation of a CORDIC Square Root Kernel
	References
	Convert Cartesian to Polar Using CORDIC Vectoring Kernel
	Introduction
	CORDIC Kernel Algorithm Using the Vectoring Computation Mode
	Efficient MATLAB Implementation of a CORDIC Vectoring Kernel Alg
	CORDIC-Based Cartesian to Polar Conversion Using Normalized Inpu
	References
	Set Data Types Using Min/Max Instrumentation
	The Unit Under Test
	Data Types Determined by the Requirements of the Design
	Data Types Determined by the Values of the Coefficients and Inpu
	Instrument the MATLAB® Function as a Scaled-Double MEX Function
	Test Bench with Chirp Input
	Run the Instrumented MEX Function to Record Min/Max Values
	Show Instrumentation Results with Proposed Fraction Lengths for
	Test Bench with Step Input
	Run the Instrumented MEX Function with Step Input
	Show Accumulated Instrumentation Results
	Apply Proposed Fixed-Point Properties
	Instrument the MATLAB® Function as a Fixed-Point MEX Function
	Validate the Fixed-Point Algorithm
	Validate with Chirp Input
	Validate with Step Inputs
	Convert Fast Fourier Transform (FFT) to Fixed Point
	Textbook FFT Algorithm
	Verify Floating-Point Code
	Identify Fixed-Point Issues
	Use Min/Max Instrumentation to Identify Overflows
	Modify the Algorithm to Address Fixed-Point Issues
	References
	Detect Limit Cycles in Fixed-Point State-Space Systems
	Select a State-Space Representation of the System.
	Filter Implementation
	Floating-Point Filter
	Random Initial States Followed Through Time
	State Trajectory
	Fixed-Point Filter Creation
	Plot the Projection of the Square in Fixed-Point
	Execute the Fixed-Point Filter.
	Sufficient Conditions for Preventing Overflow Limit Cycles
	Apply Similarity Transform to Create a Normal A
	Check for Limit Cycles on the Transformed System.
	Plot the Projection of the Square of the Normal-Form System
	Plot the State Sequence
	Compute Quantization Error
	Uniformly Distributed Random Signal
	Fix: Round Towards Zero.
	Floor: Round Towards Minus Infinity.
	Ceil: Round Towards Plus Infinity.
	Round: Round to Nearest. In a Tie, Round to Largest Magnitude.
	Convergent: Round to Nearest. In a Tie, Round to Even.
	Comparison of Nearest vs. Convergent
	Plot Helper Function
	Normalize Data for Lookup Tables
	Function to Normalize Unsigned Data
	Number-of-Leading-Zeros Lookup Table
	Example
	Implement Fixed-Point Log2 Using Lookup Table
	Log2 Implementation
	Log2 Lookup Table
	Example
	Implement Fixed-Point Square Root Using Lookup Table
	Square Root Implementation
	Square Root Lookup Table
	Example
	Set Fixed-Point Math Attributes
	Set and Remove Fixed Point Math Attributes
	Mismatched FIMATH
	Changing FIMATH on Temporary Variables
	Removing FIMATH Conflict in a Loop
	Polymorphic Code
	More Polymorphic Code
	SETFIMATH on Integer Types

	Working with fimath Objects
	fimath Object Construction
	fimath Object Syntaxes
	Building fimath Object Constructors in a GUI

	fimath Object Properties
	Math, Rounding, and Overflow Properties
	How Properties are Related
	Sum data type properties
	Product data type properties

	Setting fimath Object Properties
	Setting fimath Properties at Object Creation
	Using Direct Property Referencing with fimath

	fimath Properties Usage for Fixed-Point Arithmetic
	fimath Rules for Fixed-Point Arithmetic
	Binary Operations
	Unary Operations
	Concatenation Operations
	fimath Object Operations: add, mpy, sub
	MATLAB Function Block Operations

	Binary-Point Arithmetic
	[Slope Bias] Arithmetic

	fimath for Rounding and Overflow Modes
	fimath for Sharing Arithmetic Rules
	Default fimath Usage to Share Arithmetic Rules
	Local fimath Usage to Share Arithmetic Rules

	fimath ProductMode and SumMode
	Example Setup
	FullPrecision
	KeepLSB
	KeepMSB
	SpecifyPrecision

	How Functions Use fimath
	Functions that use then discard attached fimath
	Functions that ignore and discard attached fimath
	Functions that do not perform math

	Working with fipref Objects
	fipref Object Construction
	fipref Object Properties
	Display, Data Type Override, and Logging Properties
	fipref Object Properties Setting
	Setting fipref Properties at Object Creation
	Using Direct Property Referencing with fipref

	fi Object Display Preferences Using fipref
	Underflow and Overflow Logging Using fipref
	Logging Overflows and Underflows as Warnings
	Accessing Logged Information with Functions

	Data Type Override Preferences Using fipref
	Overriding the Data Type of fi Objects
	Data Type Override for Fixed-Point Scaling

	Working with numerictype Objects
	numerictype Object Construction
	numerictype Object Syntaxes
	Example: Construct a numerictype Object with Property Name and P
	Example: Copy a numerictype Object
	Example: Build numerictype Object Constructors in a GUI

	numerictype Object Properties
	Data Type and Scaling Properties
	How Properties are Related
	Properties that affect the slope
	Stored integer value and real world value

	Set numerictype Object Properties
	Setting numerictype Properties at Object Creation
	Use Direct Property Referencing with numerictype Objects

	numerictype of Fixed-Point Objects
	Valid Values for numerictype Object Properties
	Properties That Affect the Slope
	Stored Integer Value and Real World Value

	numerictype Objects Usage to Share Data Type and Scaling Setting
	Example 1
	Example 2

	Working with quantizer Objects
	Constructing quantizer Objects
	quantizer Object Properties
	Quantizing Data with quantizer Objects
	Transformations for Quantized Data

	Fixed-Point Conversion
	Fixed-Point Conversion Workflows
	Manual Workflow
	Automated Project Workflow

	Automated Fixed-Point Conversion
	License Requirements
	Automated Fixed-Point Conversion Capabilities
	Code Coverage
	Proposing Data Types
	Running a Simulation
	Computing Derived Ranges

	Locking Proposed Data Types
	Viewing Functions
	Viewing Variables
	Viewing Information for MATLAB Classes

	Histogram
	Function Replacements
	Validating Types
	Testing Numerics
	Detecting Overflows
	See Also

	Specify Type Proposal Options
	Detect Overflows Using the Fixed-Point Conversion Tool
	Prerequisites
	Create a Project
	Add File
	Define Input Types
	Fixed-Point Conversion
	Test Numerics and Check for Overflows
	Detect Overflows at the Command Line
	Prerequisites
	Implement FIR Filter Algorithm for Floating-Point and Fixed-Poin
	Original Algorithm
	Test File
	Prepare for Instrumentation and Code Generation
	Convert Functions to use Types Tables
	Generate C-Code
	Propose Data Types Based on Simulation Ranges
	Prerequisites
	Create a New Folder and Copy Relevant Files
	The fun_with_matlab Function
	The fun_with_matlab_test Script
	Check Code Generation Readiness
	Create and set up a MATLAB Coder Project
	Define Input Types
	Fixed-Point Conversion
	Generate Fixed-Point C Code
	Optimize Fixed-Point C Code
	Propose Data Types Based on Derived Ranges
	Prerequisites
	Create a New Folder and Copy Relevant Files
	The dti Function
	The dti_test Function
	Check Code Generation Readiness
	Create and set up a MATLAB Coder Project
	Define Input Types
	Fixed-Point Conversion
	Generate Fixed-Point C Code
	Manual Fixed-Point Conversion Workflow
	Manual Fixed-Point Conversion Best Practices
	Create a Test File
	Prepare Your Algorithm for Code Acceleration or Code Generation
	Check for Fixed-Point Support for Functions Used in Your Algorit
	Manage Data Types and Control Bit Growth
	Separate Data Type Definitions from Algorithm
	Convert to Fixed Point
	What Are Your Goals for Converting to Fixed Point?
	Build and Run an Instrumented MEX Function
	Create a Types Table
	Run With Fixed-Point Types and Compare Results

	Optimize Data Types
	Use Scaled Doubles
	Use the Histogram to Fine-Tune Data Type Settings
	Explore Design Tradeoffs

	Optimize Your Algorithm
	Use fimath to Get Natural Types for C or HDL
	Replace Built-in Functions With More Efficient Fixed-Point Imple
	Re-implement Division Operations Where Possible
	Eliminate Floating-Point Variables

	Generated Fixed-Point Code
	Fixed-Point Code for MATLAB Classes
	Automated Conversion Support for MATLAB Classes
	Unsupported Constructs
	Coding Style Best Practices

	Automated Fixed-Point Conversion Best Practices
	Create a Test File
	Prepare Your Algorithm for Code Acceleration or Code Generation
	Check for Fixed-Point Support for Functions Used in Your Algorit
	Manage Data Types and Control Bit Growth
	Convert to Fixed Point
	What Are Your Goals for Converting to Fixed Point?
	Run With Fixed-Point Types and Compare Results

	Use the Histogram to Fine-Tune Data Type Settings
	Optimize Your Algorithm
	Use fimath to Get Natural Types for C or HDL
	Replace Built-in Functions With More Efficient Fixed-Point Imple
	Re-implement Division Operations Where Possible
	Eliminate Floating-Point Variables

	Avoid Explicit Double and Single Casts

	Code Acceleration and Code Generation from MATLAB for Fixed-Poin
	Code Acceleration and Code Generation from MATLAB
	Requirements for Generating Complied C Code Files
	Functions Supported for Code Acceleration or C Code Generation
	Workflow for Fixed-Point Code Acceleration and Generation
	Set Up C Compiler
	Accelerate Code Using fiaccel
	Speeding Up Fixed-Point Execution with fiaccel
	Running fiaccel
	Generated Files and Locations
	Comparing Run Times When Accelerating Different Algorithm Parts
	Trial 1: Best Performance
	Trial 2: Worst Performance
	Ratio of Times

	Data Type Override Using fiaccel
	Specifying Default fimath Values for MEX Functions

	File Infrastructure and Paths Setup
	Compile Path Search Order
	Naming Conventions
	Reserved Prefixes
	Reserved Keywords
	Conventions for Naming Generated files

	Detect and Debug Code Generation Errors
	Debugging Strategies
	Error Detection at Design Time
	Error Detection at Compile Time

	Set Up C Code Compilation Options
	C Code Compiler Configuration Object
	Compilation Options Modification at the Command Line Using Dot N
	How fiaccel Resolves Conflicting Options

	MEX Configuration Dialog Box Options
	See Also

	Best Practices for Accelerating Fixed-Point Code
	Recommended Compilation Options for fiaccel
	Build Scripts
	Check Code Interactively Using MATLAB Code Analyzer
	Separating Your Test Bench from Your Function Code
	Preserving Your Code
	File Naming Conventions

	Use Fixed-Point Code Generation Reports
	Code Generation Report Creation
	Code Generation Report Opening
	Viewing Your MATLAB Code
	Viewing Variables in the Variables Tab
	See Also

	Generate C Code from Code Containing Global Data
	Workflow Overview
	Declaring Global Variables
	Defining Global Data
	Defining Global Data in the MATLAB Global Workspace
	Defining Global Data at the Command Line

	Synchronizing Global Data with MATLAB
	Why Synchronize Global Data?
	When to Synchronize Global Data
	How to Synchronize Global Data

	Limitations of Using Global Data

	Define Input Properties Programmatically in MATLAB File
	How to Use assert
	Specify Any Class
	Specify fi Class
	Specify Structure Class
	Specify Any Size
	Specify Scalar Size
	Specify Real Input
	Specify Complex Input
	Specify numerictype of Fixed-Point Input
	Specify fimath of Fixed-Point Input
	Specify Multiple Properties of Input

	Rules for Using assert Function
	Specifying Properties of Primary Fixed-Point Inputs
	Specifying Class and Size of Scalar Structure
	Specifying Class and Size of Structure Array

	Control Run-Time Checks
	Types of Run-Time Checks
	When to Disable Run-Time Checks
	How to Disable Run-Time Checks

	Fix Run-Time Stack Overflows
	Code Generation with MATLAB Coder
	Code Generation with MATLAB Function Block
	Composing a MATLAB Language Function in a Simulink Model
	MATLAB Function Block with Data Type Override
	Fixed-Point Data Types with MATLAB Function Block
	Specifying Fixed-Point Parameters in the Model Explorer
	Using fimath Objects in MATLAB Function Blocks
	Sharing Models with Fixed-Point MATLAB Function Blocks

	Generate Fixed-Point FIR Code Using MATLAB Function Block
	Program the MATLAB Function Block
	Prepare the Inputs
	Create the Model
	Define the fimath Object Using the Model Explorer
	Run the Simulation

	Fixed-Point FIR Code Example Parameter Values
	Accelerate Code for Variable-Size Data
	Disable Support for Variable-Size Data
	Control Dynamic Memory Allocation
	Accelerate Code for MATLAB Functions with Variable-Size Data
	Accelerate Code for a MATLAB Function That Expands a Vector in a
	About the MATLAB Function uniquetol
	Step 1: Add Compilation Directive for Code Generation
	Step 2: Address Issues Detected by the Code Analyzer
	Step 3: Generate MEX Code
	What do these command-line options mean?
	Step 4: Fix the Size Mismatch Error
	Step 5: Compare Execution Speed of MEX Function to Original Code

	Accelerate Fixed-Point Simulation
	Description of the Example
	Copy Required File
	Inspect the MATLAB Feedback Function Code
	Create the Input Signal and Initialize Variables
	Run Normal Mode
	Build the MEX Version of the Feedback Code
	Run the MEX Version
	Acceleration Ratio
	Clean up Temporary Files
	Propose Fixed-Point Data Types Using an Instrumented Mex Functio
	Prerequisites
	Create a New Folder and Copy Relevant Files
	The fun_with_matlab Function
	Check Code Generation Readiness
	Create and set up a MATLAB Coder Project
	About the fun_with_matlab_test Script
	Contents of fun_with_matlab_test
	Define Input Types
	Build Instrumented MEX Function
	View Data Type Proposal Settings
	Run Simulation
	View Code Generation Report
	Next Steps
	Apply Fixed-Point Data Types Using an Instrumented Mex Function
	Prerequisites
	Create a New Folder and Copy Relevant Files
	The fun_with_fi Function
	Create and set up a MATLAB Coder Project
	Define Input Types
	The fun_with_fi_test Script
	Run Simulation
	Code Generation Readiness Tool
	What Information Does the Code Generation Readiness Tool Provide
	Summary Tab
	Code Structure Tab
	Code Distribution
	Call Tree

	See Also

	Check Code Using the Code Generation Readiness Tool
	Run Code Generation Readiness Tool at the Command Line
	Run the Code Generation Readiness Tool From the Current Folder B
	See Also

	Check Code Using the MATLAB Code Analyzer
	Fix Errors Detected at Code Generation Time
	See Also

	Avoid Multiword Operations in Generated Code

	Interoperability with Other Products
	fi Objects with Simulink
	Reading Fixed-Point Data from the Workspace
	Writing Fixed-Point Data to the Workspace
	Setting the Value and Data Type of Block Parameters
	Logging Fixed-Point Signals
	Accessing Fixed-Point Block Data During Simulation

	fi Objects with DSP System Toolbox
	Reading Fixed-Point Signals from the Workspace
	Writing Fixed-Point Signals to the Workspace
	fi Objects with dfilt Objects

	Ways to Generate Code

	Calling Functions for Code Generation
	Resolution of Function Calls for Code Generation
	Key Points About Resolving Function Calls
	Compile Path Search Order
	When to Use the Code Generation Path

	Resolution of File Types on Code Generation Path
	Compilation Directive %#codegen
	Call Local Functions
	Call Supported Toolbox Functions
	Call MATLAB Functions
	Declaring MATLAB Functions as Extrinsic Functions
	Declaring Extrinsic Functions
	When to Use the coder.extrinsic Construct
	Rules for Extrinsic Function Declarations
	Scope of Extrinsic Function Declarations

	Calling MATLAB Functions Using feval
	How MATLAB Resolves Extrinsic Functions During Simulation
	Working with mxArrays
	Converting mxArrays to Known Types

	Restrictions on Extrinsic Functions for Code Generation
	Limit on Function Arguments

	Code Generation for MATLAB Classes
	MATLAB Classes Definition for Code Generation
	Language Limitations
	Code Generation Features Not Compatible with Classes
	Defining Class Properties for Code Generation
	Calls to Base Class Constructor
	Inheritance from Built-In MATLAB Classes Not Supported

	Classes That Support Code Generation
	Generate Code for MATLAB Value Classes
	Generate Code for MATLAB Handle Classes and System Objects
	MATLAB Classes in Code Generation Reports
	What Reports Tell You About Classes
	How Classes Appear in Code Generation Reports
	In the MATLAB Code Tab
	In the Variables Tab
	In the Call Stack

	How to Generate a Code Generation Report

	Troubleshooting Issues with MATLAB Classes
	Class class does not have a property with name name
	Workaround

	Defining Data for Code Generation
	Data Definition for Code Generation
	Code Generation for Complex Data
	Restrictions When Defining Complex Variables
	Expressions With Complex Operands Yield Complex Results

	Code Generation for Characters

	Defining Functions for Code Generation
	Specify Variable Numbers of Arguments
	Supported Index Expressions
	Apply Operations to a Variable Number of Arguments
	When to Force Loop Unrolling
	Using Variable Numbers of Arguments in a for-Loop
	Key Points About the Example

	Implement Wrapper Functions
	Passing Variable Numbers of Arguments from One Function to Anoth
	Key Points About the Example

	Pass Property/Value Pairs
	Variable Length Argument Lists for Code Generation
	Use variable length argument lists in top-level functions accord
	Use curly braces {} to index into the argument list
	Verify that indices can be computed at compile time
	Do not write to varargin

	Defining MATLAB Variables for C/C++ Code Generation
	Variables Definition for Code Generation
	Best Practices for Defining Variables for C/C++ Code Generation
	Define Variables By Assignment Before Using Them
	Defining a Variable for Multiple Execution Paths
	Defining Fields in a Structure
	Use Caution When Reassigning Variables
	Use Type Cast Operators in Variable Definitions
	Define Matrices Before Assigning Indexed Variables

	Eliminate Redundant Copies of Variables in Generated Code
	When Redundant Copies Occur
	How to Eliminate Redundant Copies by Defining Uninitialized Vari
	What happens if you access uninitialized data?
	Defining Uninitialized Variables

	Reassignment of Variable Properties
	Dynamically sized variables
	Variables reused in the code for different purposes
	Define and Initialize Persistent Variables
	Reuse the Same Variable with Different Properties
	When You Can Reuse the Same Variable with Different Properties
	When You Cannot Reuse Variables
	Variable Reuse in an if Statement
	Limitations of Variable Reuse

	Avoid Overflows in for-Loops
	Supported Variable Types

	Design Considerations for C/C++ Code Generation
	When to Generate Code from MATLAB Algorithms
	When Not to Generate Code from MATLAB Algorithms

	Which Code Generation Feature to Use
	Prerequisites for C/C++ Code Generation from MATLAB
	MATLAB Code Design Considerations for Code Generation
	See Also

	Differences in Behavior After Compiling MATLAB Code
	Why Are There Differences?
	Character Size
	Order of Evaluation in Expressions
	Termination Behavior
	Size of Variable-Size N-D Arrays
	Size of Empty Arrays
	Floating-Point Numerical Results
	When computer hardware uses extended precision registers
	For certain advanced library functions
	For implementation of BLAS library functions
	NaN and Infinity Patterns
	Code Generation Target
	MATLAB Class Initial Values
	Variable-Size Support for Code Generation

	MATLAB Language Features Supported for C/C++ Code Generation
	MATLAB Language Features Not Supported for C/C++ Code Generation

	Code Generation for Enumerated Data
	Enumerated Data Definition for Code Generation
	Enumerated Types Supported for Code Generation
	Enumerated Type Based on int32
	Syntax
	Example
	How to Use

	When to Use Enumerated Data for Code Generation
	Generate Code for Enumerated Data from MATLAB Algorithms
	How to Generate Code for Enumerated Data

	Define Enumerated Data for Code Generation
	Naming Enumerated Types for Code Generation

	Instantiate Enumerated Types for Code Generation
	Operations on Enumerated Data for Code Generation
	Assignment Operator, =
	Relational Operators, < > <= >= == ~=
	Cast Operation
	Indexing Operation
	Control Flow Statements: if, switch, while

	Include Enumerated Data in Control Flow Statements
	if Statement with Enumerated Data Types
	Class Definition: sysMode
	Class Definition: LEDcolor
	MATLAB Function: displayState
	Build and Test a MEX Function for displayState

	switch Statement with Enumerated Data Types
	Class Definition: VCRState
	Class Definition: VCRButton
	MATLAB Function: VCR
	Build and Test a MEX Function for VCR

	while Statement with Enumerated Data Types
	Class Definition: State
	MATLAB Function: Setup
	Build and Test a MEX Executable for Setup

	Customize Enumerated Types Based on int32
	About Customizing Enumerated Types
	Specify a Default Enumerated Value
	Specify a Header File

	Control Names of Enumerated Type Values in Generated Code
	Change and Reload Enumerated Data Types
	Restrictions on Use of Enumerated Data in for-Loops
	Do not use enumerated data as the loop counter variable in for-
	Toolbox Functions That Support Enumerated Types for Code Generat

	Code Generation for Function Handles
	Function Handle Definition for Code Generation
	Define and Pass Function Handles for Code Acceleration
	Function Handle Limitations for Code Generation
	Function handles must be scalar values.
	You cannot use the same bound variable to reference different fu
	You cannot pass function handles to or from extrinsic functions.
	You cannot pass function handles to or from primary functions.
	You cannot view function handles from the debugger

	Generate Efficient and Reusable Code
	Optimization Strategies
	Modularize MATLAB Code
	Eliminate Redundant Copies of Function Inputs
	Inline Code
	Prevent Function Inlining
	Use Inlining in Control Flow Statements

	Control Inlining Using Configuration Object
	Control Size of Functions Inlined
	Control Size of Functions After Inlining
	Control Stack Size Limit on Inlined Functions

	Fold Function Calls into Constants
	Control Stack Space Usage
	Control Stack Space Usage Using Project Interface
	Control Stack Space Usage from Command Line
	Stack Allocation and Performance
	Rewrite Logical Array Indexing as a Loop
	Dynamic Memory Allocation and Performance
	When Dynamic Memory Allocation Occurs

	Minimize Dynamic Memory Allocation
	Provide Maximum Size for Variable-Size Arrays
	Constrain Array Size Using assert Statements
	When Array Size Is Specified by Input Variables
	When Array Size Is Obtained from Computation Using Input Variabl
	Restrict Concatenations in a Loop Using coder.varsize with Upper
	Array size during initialization is not a compile-time constant
	Array size during initialization is a compile-time constant
	Restrict Concatenations Using coder.varsize with Upper Bounds
	Constrain Array Size When Rearranging a Matrix
	Rearrange a Matrix into Given Number of Rows
	Disable Dynamic Memory Allocation During Code Generation
	Set Dynamic Memory Allocation Threshold
	Set Dynamic Memory Allocation Threshold Using Project Interface
	Set Dynamic Memory Allocation Threshold from Command Line

	Excluding Unused Paths from Generated Code
	Prevent Code Generation for Unused Execution Paths
	Prevent Code Generation When Local Variable Controls Flow
	Prevent Code Generation When Input Variable Controls Flow

	Generate Code with Parallel for-Loops (parfor)
	Minimize Redundant Operations in Loops
	Unroll for-Loops
	Limit Copying the for-loop Body in Generated Code

	Support for Integer Overflow and Non-Finites
	Disable Support for Integer Overflow
	Disable Support for Non-Finites

	Integrate Custom Code
	ExternalLib_API.m
	MATLAB Coder Optimizations in Generated Code
	Constant Folding
	Control Constant Folding

	Loop Fusion
	Successive Matrix Operations Combined
	Unreachable Code Elimination

	Generate Reusable Code

	Code Generation for MATLAB Structures
	Structure Definition for Code Generation
	Structure Operations Allowed for Code Generation
	Define Scalar Structures for Code Generation
	Restriction When Using struct
	Restrictions When Defining Scalar Structures by Assignment
	Adding Fields in Consistent Order on Each Control Flow Path
	Restriction on Adding New Fields After First Use

	Define Arrays of Structures for Code Generation
	Ensuring Consistency of Fields
	Using repmat to Define an Array of Structures with Consistent Fi
	Defining an Array of Structures Using Concatenation

	Make Structures Persistent
	Index Substructures and Fields
	Reference substructure field values individually using dot notat
	Reference field values individually in structure arrays
	Do not reference fields dynamically
	Assign Values to Structures and Fields
	Field properties must be consistent across structure-to-structur
	Do not use field values as constants
	Do not assign mxArrays to structures
	Pass Large Structures as Input Parameters

	Functions, Classes, and System Objects Supported for Code Genera
	Functions and Objects Supported for C and C++ Code Generation —
	Functions and Objects Supported for C and C++ Code Generation —
	Aerospace Toolbox
	Arithmetic Operations in MATLAB
	Bit-Wise Operations MATLAB
	Casting in MATLAB
	Communications System Toolbox
	Complex Numbers in MATLAB
	Computer Vision System Toolbox
	Control Flow in MATLAB
	Data and File Management in MATLAB
	Data Types in MATLAB
	Desktop Environment in MATLAB
	Discrete Math in MATLAB
	DSP System Toolbox
	Error Handling in MATLAB
	Exponents in MATLAB
	Filtering and Convolution in MATLAB
	Fixed-Point Designer
	Histograms in MATLAB
	Image Acquisition Toolbox
	Image Processing Toolbox
	Input and Output Arguments in MATLAB
	Interpolation and Computational Geometry in MATLAB
	Linear Algebra in MATLAB
	Logical and Bit-Wise Operations in MATLAB
	MATLAB Compiler
	Matrices and Arrays in MATLAB
	Nonlinear Numerical Methods in MATLAB
	Numerical Integration and Differentiation in MATLAB
	Optimization Functions in MATLAB
	Phased Array System Toolbox
	Polynomials in MATLAB
	Programming Utilities in MATLAB
	Relational Operators in MATLAB
	Rounding and Remainder Functions in MATLAB
	Set Operations in MATLAB
	Signal Processing in MATLAB
	Signal Processing Toolbox
	Special Values in MATLAB
	Specialized Math in MATLAB
	Statistics in MATLAB
	Statistics Toolbox
	String Functions in MATLAB
	Structures in MATLAB
	Trigonometry in MATLAB

	Code Generation for Variable-Size Data
	What Is Variable-Size Data?
	Variable-Size Data Definition for Code Generation
	Bounded Versus Unbounded Variable-Size Data
	Control Memory Allocation of Variable-Size Data
	Specify Variable-Size Data Without Dynamic Memory Allocation
	Fixing Upper Bounds Errors
	Specifying Upper Bounds for Variable-Size Data
	When to Specify Upper Bounds for Variable-Size Data
	Specifying Upper Bounds on the Command Line for Variable-Size In
	Specifying Unknown Upper Bounds for Variable-Size Inputs
	Specifying Upper Bounds for Local Variable-Size Data
	Using a Matrix Constructor with Nonconstant Dimensions

	Variable-Size Data in Code Generation Reports
	What Reports Tell You About Size
	How Size Appears in Code Generation Reports
	How to Generate a Code Generation Report

	Define Variable-Size Data for Code Generation
	When to Define Variable-Size Data Explicitly
	Using a Matrix Constructor with Nonconstant Dimensions
	Inferring Variable Size from Multiple Assignments
	Inferring Upper Bounds from Multiple Definitions with Different

	Defining Variable-Size Data Explicitly Using coder.varsize
	Specifying Which Dimensions Vary
	Allowing a Variable to Grow After Defining Fixed Dimensions
	Defining Variable-Size Matrices with Singleton Dimensions
	Defining Variable-Size Structure Fields

	C Code Interface for Arrays
	C Code Interface for Statically Allocated Arrays
	C Code Interface for Dynamically Allocated Arrays
	emxArray Structure Definition
	C Code Interface for Structure Fields

	Utility Functions for Creating emxArray Data Structures

	Diagnose and Fix Variable-Size Data Errors
	Diagnosing and Fixing Size Mismatch Errors
	Assigning Variable-Size Matrices to Fixed-Size Matrices
	Empty Matrix Reshaped to Match Variable-Size Specification
	Performing Binary Operations on Fixed and Variable-Size Operands
	Diagnosing and Fixing Errors in Detecting Upper Bounds
	Using Nonconstant Dimensions in a Matrix Constructor

	Incompatibilities with MATLAB in Variable-Size Support for Code
	Incompatibility with MATLAB for Scalar Expansion
	Workaround

	Incompatibility with MATLAB in Determining Size of Variable-Size
	Workarounds

	Incompatibility with MATLAB in Determining Size of Empty Arrays
	Workaround

	Incompatibility with MATLAB in Determining Class of Empty Arrays
	Workaround

	Incompatibility with MATLAB in Vector-Vector Indexing
	Workaround

	Incompatibility with MATLAB in Matrix Indexing Operations for Co
	Incompatibility with MATLAB in Concatenating Variable-Size Matri
	Dynamic Memory Allocation Not Supported for MATLAB Function Bloc

	Variable Sizing Restrictions for Code Generation of Toolbox Func
	Common Restrictions
	Variable-length vector restriction
	Automatic dimension restriction
	Array-to-vector restriction
	Array-to-scalar restriction

	Toolbox Functions with Variable Sizing Restrictions

	Primary Functions
	Primary Function Input Specification
	Why You Must Specify Input Properties
	Properties to Specify
	Default Property Values
	Supported Classes

	Rules for Specifying Properties of Primary Inputs
	Methods for Defining Properties of Primary Inputs
	Define Input Properties by Example at the Command Line
	Command Line Option -args
	Rules for Using the -args Option
	Specifying Properties of Primary Inputs by Example
	Specifying Properties of Primary Fixed-Point Inputs by Example

	Specify Constant Inputs at the Command Line
	Calling Functions with Constant Inputs
	Specifying a Structure as a Constant Input

	Specify Variable-Size Inputs at the Command Line
	Specifying a Variable-Size Vector Input

	Define Input Properties Programmatically in the MATLAB File
	How to Use assert with MATLAB Coder
	Specify Any Class
	Specify fi Class
	Specify Structure Class
	Specify Fixed Size
	Specify Scalar Size
	Specify Upper Bounds for Variable-Size Inputs
	Specify Inputs with Fixed- and Variable-Size Dimensions
	Specify Size of Individual Dimensions
	Specify Real Input
	Specify Complex Input
	Specify numerictype of Fixed-Point Input
	Specify fimath of Fixed-Point Input
	Specify Multiple Properties of Input

	Rules for Using assert Function
	Specifying General Properties of Primary Inputs
	Specifying Properties of Primary Fixed-Point Inputs
	Specifying Class and Size of Scalar Structure
	Specifying Class and Size of Structure Array

	System Objects Supported for Code Generation
	Code Generation for System Objects

	System Objects
	Create System Objects
	Create a System object
	Change a System object Property
	Check if a System object Property Has Changed
	Run a System object
	Display Available System Objects

	Set Up System Objects
	Create a New System object
	Retrieve System object Property Values
	Example

	Set System object Property Values
	Set Properties for a New System object
	Set Properties for an Existing System object
	Use Value-Only Inputs

	Process Data Using System Objects
	What are System object Methods?
	The Step Method
	Common Methods
	Advantages of Using Methods

	Tuning System object Properties in MATLAB
	Understand System object Modes
	Change Properties While Running System Objects
	Change System object Input Complexity or Dimensions

	Find Help and Examples for System Objects
	Use System Objects in MATLAB Code Generation
	Considerations for Using System Objects in Generated Code
	Use System Objects with codegen
	Use System Objects with the MATLAB Function Block
	Use System Objects with MATLAB Compiler

	Fixed-Point Designer for Simulink Models
	Getting Started
	Product Description
	Key Features

	What You Need to Get Started
	Installation
	Sharing Fixed-Point Models

	Physical Quantities and Measurement Scales
	Introduction
	Selecting a Measurement Scale
	Measurement Scales: Beyond Multiplication

	Select a Measurement Scale for Temperature

	Why Use Fixed-Point Hardware?
	Why Use the Fixed-Point Designer Software?
	Developing and Testing Fixed-Point Systems
	Supported Data Types
	Configure Blocks with Fixed-Point Output
	Specify the Output Data Type and Scaling
	Integers
	Fractional Numbers
	Generalized Fixed-Point Numbers
	Floating-Point Numbers

	Specify Fixed-Point Data Types with the Data Type Assistant
	Signedness
	Word length
	Scaling
	Calculate Best-Precision Scaling

	Rounding
	Overflow Handling
	Lock the Output Data Type Setting
	Real-World Values Versus Stored Integer Values

	Configure Blocks with Fixed-Point Parameters
	Specify Fixed-Point Values Directly
	Specify Fixed-Point Values Via Parameter Objects

	Pass Fixed-Point Data Between Simulink Models and MATLAB
	Read Fixed-Point Data from the Workspace
	Write Fixed-Point Data to the Workspace
	Log Fixed-Point Signals
	Access Fixed-Point Block Data During Simulation

	Cast from Doubles to Fixed Point
	About This Example
	Block Descriptions
	Simulations
	Binary-Point-Only Scaling
	[Slope Bias] Scaling

	Data Types and Scaling
	Data Types and Scaling in Digital Hardware
	Fixed-Point Numbers
	Fixed-Point Numbers
	Signed Fixed-Point Numbers
	Binary Point Interpretation
	Scaling
	Binary-Point-Only Scaling
	Slope and Bias Scaling
	Unspecified Scaling

	Quantization
	Fixed-Point Format

	Range and Precision
	Range
	Precision
	Fixed-Point Data Type Parameters
	Range of an 8-Bit Fixed-Point Data Type — Binary-Point-Only Scal
	Range of an 8-Bit Fixed-Point Data Type — Slope and Bias Scaling

	Fixed-Point Numbers in Simulink
	Constant Scaling for Best Precision
	Fixed-Point Data Type and Scaling Notation
	Scaled Doubles
	What Are Scaled Doubles?
	When to Use Scaled Doubles

	Use Scaled Doubles to Avoid Precision Loss
	About the Model
	Running the Example

	Display Port Data Types

	Floating-Point Numbers
	Floating-Point Numbers
	Scientific Notation
	The IEEE Format
	The Sign Bit
	The Fraction Field
	The Exponent Field
	Single-Precision Format
	Double-Precision Format

	Range and Precision
	Range
	Precision
	Floating-Point Data Type Parameters

	Exceptional Arithmetic
	Denormalized Numbers
	Inf
	NaN

	Arithmetic Operations
	Fixed-Point Arithmetic Operations
	Precision
	Limitations on Precision
	Rounding
	Choose a Rounding Mode
	Choosing a Rounding Mode for Diagnostic Purposes

	Rounding Modes for Fixed-Point Simulink Blocks
	Rounding Mode: Ceiling
	Rounding Mode: Convergent
	Rounding Mode: Floor
	Rounding Mode: Nearest
	Rounding Mode: Round
	Rounding Mode: Simplest
	Optimize Rounding for Casts
	Optimize Rounding for High-Level Arithmetic Operations
	Optimize Rounding for Intermediate Arithmetic Operations

	Rounding Mode: Zero
	Rounding to Zero Versus Truncation

	Pad with Trailing Zeros
	Limitations on Precision and Errors
	Maximize Precision
	Net Slope and Net Bias Precision
	What are Net Slope and Net Bias?
	Detecting Net Slope and Net Bias Precision Issues
	Fixed-Point Constant Underflow
	Fixed-Point Constant Overflow
	Fixed-Point Constant Precision Loss

	Detect Net Slope and Bias Precision Issues
	Detect Fixed-Point Constant Precision Loss

	Range
	Limitations on Range
	What Are Saturation and Wrapping?
	Saturation and Wrapping
	Guard Bits
	Determine the Range of Fixed-Point Numbers

	Recommendations for Arithmetic and Scaling
	Arithmetic Operations and Fixed-Point Scaling
	Addition
	Inherited Scaling for Speed
	Inherited Scaling for Maximum Precision
	Binary-Point-Only Scaling

	Accumulation
	Binary-Point-Only Scaling

	Multiplication
	Inherited Scaling for Speed
	Inherited Scaling for Maximum Precision
	Binary-Point-Only Scaling

	Gain
	Inherited Scaling for Speed
	Inherited Scaling for Maximum Precision

	Division
	Inherited Scaling for Speed
	Inherited Scaling for Maximum Precision
	Binary-Point-Only Scaling

	Summary

	Parameter and Signal Conversions
	Introduction
	Parameter Conversions
	Offline Conversions

	Signal Conversions
	Offline Conversions
	Online Conversions and Operations
	Streamlining Simulations and Generated Code

	Rules for Arithmetic Operations
	Introduction
	Computational Units
	Addition and Subtraction
	Fixed-Point Simulink Blocks Summation Process
	Streamlining Simulations and Generated Code

	The Summation Process
	Multiplication
	Fixed-Point Simulink Blocks Multiplication Process

	The Multiplication Process
	Division
	Fixed-Point Simulink Blocks Division Process

	The Division Process
	Shifts
	Shifting Bits to the Right

	Conversions and Arithmetic Operations

	Realization Structures
	Realizing Fixed-Point Digital Filters
	Introduction
	Realizations and Data Types

	Targeting an Embedded Processor
	Introduction
	Size Assumptions
	Operation Assumptions
	Design Rules
	Design Rule 1: Only Multiply Base Data Types
	Design Rule 2: Delays Should Use the Base Data Type
	Design Rule 3: Temporary Variables Can Use the Accumulator Data
	Design Rule 4: Summation Can Use the Accumulator Data Type

	Canonical Forms
	Canonical Forms
	Direct Form II
	Series Cascade Form
	Parallel Form

	Fixed-Point Advisor
	Preparation for Fixed-Point Conversion
	Introduction
	Best Practices
	Use a Known Working Model
	Back Up Your Model
	Convert Small Models
	Convert Subsystems
	Specify Short Simulation Run Times
	Make Small Changes to Your Model
	Isolate the System Under Conversion
	Use Lock Output Data Type Setting
	Save Simulink Signal Objects
	Save Restore Point

	Run the Fixed-Point Advisor
	Fix a Task Failure
	Manually Fixing Failures
	Automatically Fixing Failures
	Batch Fixing Failures
	Restore Points
	Save a Restore Point
	When to Save a Restore Point
	How to Save a Restore Point

	Load a Restore Point
	When to Load a Restore Point
	How to Load a Restore Point

	Converting a Model from Floating- to Fixed-Point Using Simulatio
	About This Example
	Starting the Preparation
	Preparing Model for Conversion
	Prepare for Data Typing and Scaling
	Propose Data Types Based on the Simulation Reference Run
	Apply the New Fixed-Point Data Types
	Simulate the Model Using New Fixed-Point Settings

	Fixed-Point Tool
	Fixed-Point Tool
	Introduction to the Fixed-Point Tool
	Using the Fixed-Point Tool

	Run Management
	Run Management
	Run Management with the Shortcut Editor
	Manual Run Management

	Why Use Shortcuts to Manage Runs
	When to Use Shortcuts to Manage Runs
	Add Shortcuts
	Edit Shortcuts
	Delete Shortcuts
	Capture Model Settings Using the Shortcut Editor

	Debug a Fixed-Point Model
	Simulating the Model to See the Initial Behavior
	Debugging the Model
	Setting Up Shortcuts
	Testing Subsystem Math1 Settings
	Testing Subsystem Math2 Settings

	Simulating the Model Using a Different Input Stimulus
	Debugging the Model with the New Input
	Proposing Fraction Lengths for Math2 Based on Simulation Results
	Verifying the New Settings

	Logging Simulation Ranges for Referenced Models
	Viewing Simulation Ranges for Referenced Models
	Fixed-Point Instrumentation and Data Type Override Settings
	See Also

	Log Simulation Ranges for Referenced Models
	Simulate the Model Using Local Settings
	Gather a Floating-Point Benchmark
	Propose Data Types for a Referenced Model
	Logging Simulation Ranges for MATLAB Function Block
	See Also

	Log Simulation Ranges for MATLAB Function Block
	View Signal Names in Fixed-Point Tool

	Convert Floating-Point Model to Fixed Point
	Learning Objectives
	Model Description
	Model Overview
	Model Set Up
	Source
	Controller Subsystem
	Scope

	Before You Begin
	Convert Floating-Point Model to Fixed Point
	Open the Model
	Prepare Floating-Point Model for Conversion to Fixed Point
	Open the Fixed-Point Advisor
	Prepare Model for Conversion
	Prepare for Data Typing and Scaling
	Return to Fixed-Point Tool to Perform Data Typing and Scaling

	Propose Data Types
	Apply Fixed-Point Data Types
	Verify Fixed-Point Settings
	Test Fixed-Point Settings With New Input Data
	Gather a Floating-Point Benchmark
	Propose Data Types for the New Input
	Apply the New Fixed-Point Data Types
	Verify New Fixed-Point Settings
	Prepare for Code Generation

	Key Points to Remember
	Where to Learn More

	Producing Lookup Table Data
	Producing Lookup Table Data
	Worst-Case Error for a Lookup Table
	What Is the Worst-Case Error?
	Approximate the Square Root Function

	Create Lookup Tables for a Sine Function
	Introduction
	Parameters for fixpt_look1_func_approx
	Using Only errmax
	Using Only nptsmax
	Spacing

	Setting Function Parameters for the Lookup Table
	Using errmax with Unrestricted Spacing
	Creating the Lookup Table
	Plotting the Results

	Using nptsmax with Unrestricted Spacing
	Setting the Number of Breakpoints
	Creating the Lookup Table
	Plotting the Results
	Restricting the Spacing

	Using errmax with Even Spacing
	Using nptsmax with Even Spacing
	Using errmax with Power of Two Spacing
	Using nptsmax with Power of Two Spacing
	Specifying Both errmax and nptsmax
	Comparison of Example Results

	Use Lookup Table Approximation Functions
	Effects of Spacing on Speed, Error, and Memory Usage
	Criteria for Comparing Types of Breakpoint Spacing
	Model That Illustrates Effects of Breakpoint Spacing
	Data ROM Required for Each Lookup Table
	Uneven Case
	Even Case
	Power of Two Case

	Determination of Out-of-Range Inputs
	How the Lookup Tables Determine Input Location
	Uneven Case
	Even Case
	Power of Two Case
	Comparison

	Interpolation for Each Lookup Table
	Uneven Case
	Even Case
	Power of Two Case

	Summary of the Effects of Breakpoint Spacing

	Automatic Data Typing
	About Automatic Data Typing
	Before Proposing Data Types for Your Model
	Best Practices for Fixed-Point Workflow
	Use a Known Working Simulink Model
	Back Up Your Simulink Model
	Capture the Current Data Type Override Settings
	Convert Individual Subsystems
	Isolate the System Under Conversion
	Do Not Use “Save as” on Referenced Models
	Use Lock Output Data Type Setting
	Save Simulink Signal Objects
	Test Update Diagram Failure

	Models That Might Cause Data Type Propagation Errors
	Automatic Data Typing Using Simulation Data
	Workflow for Automatic Data Typing Using Simulation Data
	Set Up the Model
	Prepare the Model for Fixed-Point Conversion
	Gather a Floating-Point Benchmark
	Proposing Data Types
	Propose Data Types
	Examine Results to Resolve Conflicts
	Summary
	Proposed Data Type Summary
	Needs Attention
	Shared Data Type Summary
	Constrained Data Type Summary
	Data Type Details
	To Examine the Results and Resolve Conflicts

	Apply Proposed Data Types
	Verify New Settings
	Automatic Data Typing of Simulink Signal Objects

	Automatic Data Typing Using Derived Ranges
	Prerequisites for Autoscaling Using Derived Ranges
	Workflow for Autoscaling Using Derived Data
	Set Up the Model
	Prepare Model for Autoscaling Using Derived Data
	Derive Minimum and Maximum Values
	Resolve Range Analysis Issues
	Proposing Data Types
	Propose Data Types
	Examine Results to Resolve Conflicts
	Summary
	Proposed Data Type Summary
	Needs Attention
	Shared Data Type Summary
	Constrained Data Type Summary
	Data Type Details
	To Examine the Results and Resolve Conflicts

	Apply Proposed Data Types
	Update Diagram

	Propose Fraction Lengths
	Propose Fraction Lengths
	About the Feedback Controller Example Model
	Opening the Feedback Controller Model
	Simulation Setup
	Idealized Feedback Design
	Digital Controller Realization

	Propose Fraction Lengths Using Simulation Range Data
	Initial Guess at Scaling
	Data Type Override
	Automatic Data Typing

	Propose Word Lengths
	How the Fixed-Point Tool Proposes Word Lengths
	How the Fixed-Point Tool Uses Range Information
	How the Fixed-Point Tool Uses Target Hardware Information

	Propose Word Lengths
	Propose Word Lengths Based on Simulation Data

	Propose Data Types Using Multiple Simulations
	About This Example
	About the Model
	Merging Results from Two Simulation Runs

	Running the Simulation
	Simulate the Model Using Random Uniform Noise
	Simulate Model Using Band-Limited White Noise
	Merge Results
	Propose Fraction Lengths Based on Merged Results

	View Simulation Results
	Compare Runs
	Compare Signals
	Inspect Signals
	Histogram Plot of Signal
	See Also

	Viewing Results With the Simulation Data Inspector
	Why Use the Simulation Data Inspector
	When to Use the Simulation Data Inspector
	What You Can Inspect in the Simulation Data Inspector
	See Also

	Range Analysis
	How Range Analysis Works
	Analyzing a Model with Range Analysis
	Automatic Stubbing
	What is Automatic Stubbing?
	How Automatic Stubbing Works

	Model Compatibility with Range Analysis

	Derive Ranges
	Derive Ranges at the Subsystem Level
	Deriving Ranges at the Subsystem Level
	When to Derive Ranges at the Subsystem Level

	Derive Ranges at the Subsystem Level

	View Derived Ranges in the Fixed-Point Tool
	Range Analysis Examples
	Derive Ranges Using Design Ranges
	Derive Ranges Using Block Initial Conditions
	Derive Ranges Using Design Ranges for Simulink.Parameter Objects
	Insufficient Design Range Information
	Providing More Design Range Information
	Fixing Design Range Conflicts

	Derive Ranges for a Referenced Model
	Derive Ranges
	View Derived Ranges for Referenced Model
	Add Design Range for Sum Block and Derive Ranges
	Propose Data Types for a Referenced Model
	Deriving Ranges for a Referenced Model
	Viewing Derived Minimum and Maximum Values for Referenced Models
	Data Type Override Settings
	See Also

	Intermediate Range Results
	Unsupported Simulink Software Features
	Supported and Unsupported Simulink Blocks
	Overview of Simulink Block Support
	Additional Math and Discrete Library
	Commonly Used Blocks Library
	Continuous Library
	Discontinuities Library
	Discrete Library
	Logic and Bit Operations Library
	Lookup Tables Library
	Math Operations Library
	Model Verification Library
	Model-Wide Utilities Library
	Ports & Subsystems Library
	Signal Attributes Library
	Signal Routing Library
	Sinks Library
	Sources Library
	User-Defined Functions Library
	Limitations of Support for Model Blocks

	Working with Bus Objects in the Fixed-Point Workflow
	Refine Data Types of a Model with Buses Using Simulation Data
	Open and Simulate the Model
	Use Data Type Override to Resolve Overflows
	Propose New Fraction Lengths
	Examine and Apply Proposed Types
	Verify New Fixed-Point Settings
	Save the Model and New Bus Data Types

	Convert a Model with Buses to Fixed-Point Using Range Analysis
	Open and Simulate the Model
	Set Design Minimums and Maximums
	Open the Fixed-Point Tool and Run the Fixed-Point Advisor
	Derive Minimum and Maximum Values
	Propose Fraction Lengths
	Examine and Apply Proposed Types
	Verify New Fixed-Point Types
	Save the Model and the New Bus Data Types

	Bus Objects in the Fixed-Point Workflow
	Bus Naming Conventions with Data Type Override
	Data Type Override Limitations
	How Data Type Proposals Are Determined for Bus Objects

	Code Generation
	Generating and Deploying Production Code
	Code Generation Support
	Introduction
	Languages
	Data Types
	Rounding Modes
	Overflow Handling
	Blocks
	Scaling

	Accelerating Fixed-Point Models
	Using External Mode or Rapid Simulation Target
	Introduction
	External Mode
	Rapid Simulation Target

	Optimize Your Generated Code
	Reducing ROM Consumption or Model Execution Time
	Restrict Data Type Word Lengths
	Avoid Fixed-Point Scalings with Bias
	Wrap and Round to Floor or Simplest
	Limit the Use of Custom Storage Classes
	Limit the Use of Unevenly Spaced Lookup Tables
	Minimize the Variety of Similar Fixed-Point Utility Functions
	Handle Net Slope Correction
	When to Use Integer Division to Handle Net Slope Correction
	When Not to Use Integer Division to Handle Net Slope Correction

	Use Integer Division to Handle Net Slope Correction
	Improve Numerical Accuracy of Simulation Results with Integer Di
	Improve Efficiency of Generated Code with Integer Division to Ha
	Optimize Generated Code Using Specified Minimum and Maximum Valu
	Prerequisites
	How to Configure Your Model
	How to Enable Simulation Range Checking
	How to Enable Optimization
	Limitations

	Eliminate Unnecessary Utility Functions Using Specified Minimum
	Generate Code Without Using Minimum and Maximum Values
	Generate Code Using Minimum and Maximum Values
	Modify the Specified Minimum and Maximum Values

	Optimizing Your Generated Code with the Model Advisor
	Optimize Generated Code with Model Advisor
	Identify Blocks that Generate Expensive Fixed-Point and Saturati
	Identify Sum blocks for questionable fixed-point operations
	Identify Min Max blocks for questionable fixed-point operations
	Identify Discrete Integrator blocks for questionable fixed-point
	Identify Compare to Constant blocks for questionable fixed-point
	Identify Lookup Table blocks for questionable fixed-point operat
	Check optimization and hardware implementation settings
	Identify blocks that will invoke net slope correction
	Identify product blocks that are less efficient
	Check for expensive saturation code

	Identify Questionable Fixed-Point Operations
	Check for expensive multiplication code
	Check for expensive division code
	Identify lookup blocks with uneven breakpoint spacing
	Check for expensive pre-lookup division
	Check for expensive data type conversions
	Check for fixed-point comparisons with predetermined results
	Check for expensive binary comparison operations
	Check for expensive comparison code

	Identify Blocks that Generate Expensive Rounding Code

	Use the Model Advisor to Optimize Fixed-Point Operations in Gene

	Fixed-Point Advisor Reference
	Fixed-Point Advisor
	Fixed-Point Advisor Overview
	Description
	Procedures
	See Also

	Preparing Model for Conversion
	Prepare Model for Conversion Overview
	Description
	See Also

	Verify model simulation settings
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Verify update diagram status
	Description
	Results and Recommended Actions
	See Also

	Address unsupported blocks
	Description
	Results and Recommended Actions
	Tips
	See Also

	Set up signal logging
	Description
	Analysis Result and Recommended Actions
	Tip

	Create simulation reference data
	Description
	Input Parameters
	Results and Recommended Actions
	Action Results
	Tips

	Verify Fixed-Point Conversion Guidelines Overview
	Description
	See Also

	Check model configuration data validity diagnostic parameters se
	Description
	Results and Recommended Actions
	Action Results

	Implement logic signals as Boolean data
	Description
	Results and Recommended Actions
	Action Results

	Check bus usage
	Description
	Results and Recommended Actions

	Simulation range checking
	Description
	Results and Recommended Actions
	Action Results

	Check for implicit signal resolution
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Preparing for Data Typing and Scaling
	Prepare for Data Typing and Scaling Overview
	Description
	Tips
	See Also

	Review locked data type settings
	Description
	Results and Recommended Actions
	Action Results

	Remove output data type inheritance
	Description
	What are Floating-Point Inheritance Blocks?
	Input Parameters
	Results and Recommended Actions
	Action Results

	Relax input data type settings
	Description
	Results and Recommended Actions
	Action Results
	Tip

	Verify Stateflow charts have strong data typing with Simulink
	Description
	Results and Recommended Actions
	Action Results

	Remove redundant specification between signal objects and blocks
	Description
	Input Parameters
	Results and Recommended Actions
	Action Results

	Verify hardware selection
	Description
	Input Parameters
	Results and Recommended Actions
	See Also

	Specify block minimum and maximum values
	Description
	Results and Recommended Actions
	Tips
	See Also

	Return to the Fixed-Point Tool to Perform Data Typing and Scalin
	See Also

	Troubleshooting
	Frequently Asked Questions About Fixed-Point Numbers
	What Is the Difference Between Fixed-Point and Built-In Integer
	Negative Fraction Length
	Fraction Length Greater Than Word Length
	fi Constructor Does Not Follow globalfimath Rules

	Decide Which Workflow Is Right For Your Application
	Tips for Making Generated Code More Efficient
	fimath Settings for Efficient Code
	Replace Functions With More Efficient Fixed-Point Implementation
	CORDIC
	Lookup tables
	Division

	Know When a Function is Supported for Instrumentation and Accele
	What to Do If a Function Is Not Supported for Fixed-Point Conver
	Isolate the Unsupported Functions
	Create a Replacement Function
	Lookup Table Approximation
	Polynomial Approximation
	User-Authored Function

	Common Errors and Warnings
	fi*% non-fi Errors
	Data Type Mismatch Errors
	Mismatched fimath Errors

	Prevent The Fixed-Point Tool From Overriding Integer Data Types
	Why Did The Fixed-Point Tool Not Propose Data Types?
	Inherited Output Data Types
	Inadequate Range Information

	What to Do When a Block Is Not Supported For Fixed-Point Convers
	Which Simulink Blocks Are Supported by the Fixed-Point Tool
	What to Do When a Block Is Not Supported for Fixed-Point Convers
	Isolate the Block
	Lookup Table Block Implementation
	User-Authored Blocks

	Writing Fixed-Point S-Functions
	Data Type Support
	Supported Data Types
	The Treatment of Integers
	Data Type Override

	Structure of the S-Function
	Storage Containers
	Introduction
	Storage Containers in Simulation
	Storage Container Categories
	Storage Containers in Simulation Example

	Storage Containers in Code Generation
	Emulation
	Storage Container TLC Functions

	Data Type IDs
	The Assignment of Data Type IDs
	Registering Data Types
	Preassigned Data Type IDs

	Setting and Getting Data Types
	Getting Information About Data Types
	Converting Data Types

	Overflow Handling and Rounding Methods
	Tokens for Overflow Handling and Rounding Methods
	Overflow Logging Structure

	Create MEX-Files
	Fixed-Point S-Function Examples
	List of Fixed-Point S-Function Examples
	Get the Input Port Data Type
	Set the Output Port Data Type
	Interpret an Input Value
	Write an Output Value
	Determine Output Type Using the Input Type

	API Function Reference

	tables
	Global Data Synchronization Options
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specify properties for each field according to its class
	Fixed-Point Data Type Range and Default Scaling
	How to enable strict bus mode
	Fixed-Point Storage Containers
	Other Storage Containers
	Data Type Registration Functions
	Storage Container Information Functions
	Signal Data Type Information Functions
	Signal Scaling Information Functions
	Data Type Conversion Functions
	Overflow Handling Tokens
	Rounding Method Tokens
	Fixed-Point Storage Containers
	Other Storage Containers

